Towards in-process x-ray CT for dimensional metrology

Warnett, Jason M and Titarenko, Valeriy and Kiraci, Ercihan and Attridge, Alex and Lionheart, William R B and Withers, Philip J and Williams, Mark A (2016) Towards in-process x-ray CT for dimensional metrology. Measurement Science and Technology, 27 (3). 035401. ISSN 0957-0233

[thumbnail of Warnett_2016_Meas._Sci._Technol._27_035401.pdf] Text
Warnett_2016_Meas._Sci._Technol._27_035401.pdf - Published Version

Download (1MB)

Abstract

X-ray computed tomography (CT) offers significant potential as a metrological tool, given the wealth of internal and external data that can be captured, much of which is inaccessible to conventional optical and tactile coordinate measurement machines (CMM). Typical lab-based CT can take upwards of 30 min to produce a 3D model of an object, making it unsuitable for volume production inspection applications. Recently a new generation of real time tomography (RTT) x-ray CT has been developed for airport baggage inspections, utilising novel electronically switched x-ray sources instead of a rotating gantry. This enables bags to be scanned in a few seconds and 3D volume images produced in almost real time for qualitative assessment to identify potential threats. Such systems are able to scan objects as large as 600 mm in diameter at 500 mm s−1. The current voxel size of such a system is approximately 1 mm—much larger than lab-based CT, but with significantly faster scan times is an attractive prospect to explore. This paper will examine the potential of such systems for real time metrological inspection of additively manufactured parts. The measurement accuracy of the Rapiscan RTT110, an RTT airport baggage scanner, is evaluated by comparison to measurements from a metrologically confirmed CMM and those achieved by conventional lab-CT. It was found to produce an average absolute error of 0.18 mm that may already have some applications in the manufacturing line. While this is expectedly a greater error than lab-based CT, a number of adjustments are suggested that could improve resolution, making the technology viable for a broader range of in-line quality inspection applications, including cast and additively manufactured parts.

Item Type: Article
Subjects: STM Open Press > Computer Science
Depositing User: Unnamed user with email support@stmopenpress.com
Date Deposited: 07 Jul 2023 03:57
Last Modified: 17 May 2024 10:26
URI: http://journal.submissionpages.com/id/eprint/1750

Actions (login required)

View Item
View Item