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ABSTRACT 
 

This paper examines the effect of some thermo-physical properties of fluid on heat and mass 
transfer flow past semi-infinite moving vertical plate. The fluid considered is optically thin such that 
the thermal radiative heat loss on the fluid is modeled using Rosseland approximation.The 
governing partial differential equations in dimensionless forms are solved numerically using the 
Method of Lines (MOL). The velocity, the temperature, and the concentration profiles of the flow 
are discussed numerically and presented. Numerical values of the skin-friction coefficient, Nusselt 
number, and Sherwood number at the plate are discussed numerically for various values of 
thermo-physical parameters and they are presented by the tables.The result shows that an 
increase in thermal radiation causes increase in velocity and temperature profiles of the flow, thus, 
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the thermal radiation intensifies the convective flow. Also, an increase in Soret number causes 
increase in velocity and concentration profiles of the flow while the effect is negligible on 
temperature profile distribution. Similarly, an increase in Dufour number causes increase in velocity 
and temperature profiles of the flow.  

 
 
Keywords: Thermal radiation; Soret number; Dufour number; temperature profiles; concentration 

profiles. 
 

1. INTRODUCTION  
 
The consideration of natural convection induced 
by buoyancy forces from thermal and mass 
diffusion is of great interest in view of its 
applications to geophysics, drying process etc., 
Alao, et al. [1] and many engineering problems 
such as cooling of nuclear reactors, 
astrophysics, boundary layer control in 
aerodynamics and cooling tower under the 
influence of magnetic field, Joytsana, et al. [2].  
 
Prasad and Reddy [3] have studied the radiation 
and mass transfer effects on an unsteady MHD 
convective flow past a heated vertical plate in a 
porous medium with viscous dissipation. 
Ferdows, et al. [4] studied Soret and Dufour 
effects on natural convection heat and mass 
transfer flow in a porous medium considering 
internal heat generation. While analyzing the 
heat and mass transfer characteristic of flow 
using exponential form of internal heat 
generation, they suggested that the velocity, 
temperature and concentration flow fields are 
appreciably influenced by Dufour and Soret 
effects. Furthermore, in their analysis, with 
increasing Dufour number and decreasing Soret 
number, the velocity and concentration 
distributions reduced significantly, while 
temperature distribution increased along the flow 
field. Motsa and Shateyi [5] studied the effects of 
Soret and Dufour on steady MHD natural 
convection flow past a semi-infinite moving 
vertical plate in a porous medium with viscous 
dissipation in the presence of a chemical 
reaction.  In the analysis of the model, they 
remarked that an increase in Soret and Dufor 
parameters increases significantly the velocity 
and concentration profiles of the flow but noted 
that Dufour effect enhances flow velocity much 
more than Soret. In many chemical engineering 
processes, there occurred chemical reaction 
between a foreign mass and the fluid in which 
the plate is moving. Rajesh and Vijaya [6] 
investigated radiation and mass transfer effects 
on MHD free convection flow past an 
exponentially accelerated vertical plate with 
variable temperature. Gnaneswara and Bhaskar, 

[7] studied the effects of Soret and Dufour on 
steady MHD free convection flow past a semi-
infinite moving vertical plate in a porous medium 
with viscous dissipation. Vempati and Laxmi- 
Narayana-Gari [8] investigated the effects of 
Soret and Dufour on unsteady MHD flow past an 
infinite vertical porous plate with thermal 
radiation [9]. Gbadeyan, et al. [10] studied the 
heat and mass transfer for Soret and Dufour 
effect on mixed convection boundary layer flow 
over a stretching vertical surface in a porous 
medium filled with a viscoelastic fluid in the 
presence of magnetic field. Soret and Dufour 
effects on transient MHD flow past a semi-
infinite vertical porous plate with chemical 
reaction was investigated by Shivaiah and 
Anand [11]. 

 
Generally, the thermal-diffusion (Soret) and the 
diffusion-thermo (Dufour) effects are of smaller 
order of magnitude than the effects prescribed 
by Fick’s laws and are often neglected in heat 
and mass transfer processes by many 
researchers.  The effects of Soret for instance 
has been used for isotope separation. Subhakar 
and Gangadhar [12] investigated the effects of 
Soret and Dufour on MHD free convection heat 
and mass transfer flow over a stretching vertical 
plate with suction and heat source or heat sink. 
Olanrewaju [13] studied similarity solution for 
natural convection from a moving vertical plate 
with internal heat generation and a convective 
boundary condition in the presence of thermal 
radiation and viscous dissipation. likewise, 
Makinde and Mutuku [14] examined the effect of 
the complex interaction between the electrical 
conductivity of the conventional base fluid and 
that of the nanoparticles under the influence of 
magnetic field in a boundary layer flow with heat 
transfer over a convectively heated flat surface 
using numerical approach called Runge–Kutta–
Fehlberg method with shooting technique. 
Prabhakar [15] examined radiation and viscous 
dissipation effects on unsteady MHD free 
convective mass transfer flow past an infinite 
vertical porous plate with hall current in the 
presence of chemical reaction. The thermal 
radiation on the flow and heat transfer process is 
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of great influence in the design of many 
advanced energy conversion system operating 
at higher temperature. Thermal radiation within 
this system is usually as a result of emission by 
hot walls and the working fluid, Seigel and 
Howell [16]. Effect of radiation and soret in the 
presence of heat source/sink on unsteady MHD 
flow past a semi-infinite vertical plate was 
studied by Srihari and Srinivas [17]. Makinde, et 
al. [18] examined combined effects of buoyancy 
force, convective heating, Brownian motion, 
thermophoresis and magnetic field on stagnation 
point flow and heat transfer due to nanofluid flow 
towards a stretching/shrinking sheet. They 
observed that both the skin friction coefficient 
and the local Sherwood number decrease, while 
the local Nusselt number increases with 
increasing intensity of buoyancy force and noted 
that dual solution exists for shrinking case. 
 

Motivated by the above literatures and the 
numerous possible industrial applications of the 
MHD problems  operating at high temperatures 
as a result of viscous dissipation, as used in 
isotope separation, MHD generators, polymer 
technology, purification of crude oil, fluid 
droplets sprays and others, it is of paramount 
interest in this paper to investigate the effects of 
Thermal Radiation, Soret and Dufour, Viscous 
dissipation, and other thermo-physical properties 
on an unsteady heat and mass MHD fluid flow. 
 

In this paper, our concern is to use the 
numerical Method of lines (MOL) to solve the 
equations of continuity, linear momentum, 
energy and diffusion, which govern the flow field. 
The behaviours of the velocity, temperature and 
concentration profiles, coefficient of skin-friction, 
Nusselt number and Sherwood number has 
been discussed for variations in the governing 
parameters.  
 

2. MATHEMATICAL MODEL AND 
ANALYSIS 

 
Consider an unsteady two-dimensional laminar 
boundary layer flow of a viscous, 
incompressible, radiating fluid along a semi-
infinite vertical plate in the presence of thermal 
and concentration buoyancy effects. The � ′-axis 
is taken along the vertical infinite plate in the 
upward direction and � ′-axis normal to the plate 
as in Fig. 1 and since the plate is considered 
infinite in � ′ -direction, all flow become self-
similar away from the leading edge. Therefore, 
all the physical variable become function of � ′ 
and � ′  only. The effects of soret, dufour and 

viscous dissipation are considered. By applying 
Boussinesq’s approximation, the flow field is 
governed by the following boundary layer 
equations, Alao, et al. [1]: 
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Subject to the conditions: 
 

�′ = ��, � = �� + �(�� − �∞)�
�′� ′
	           (5) 

 

� = 	�� + 	�(��-�∞)�
�′� ′

 at� ′ = 0             (6)                              
 

�′ 	→ 0,			� → 		�∞,					�	 → 	 �∞, as � ′ = ∞,   (7) 
 
where �′  and � ′  are velocity components in � ′ 
and � ′ directions respectively, t′- the time,	�- the 
dimensional concentration, ��- the specific heat 

at constant pressure, ��- the mass diffusivity, g- 
the acceleration due to gravity, kr′- the chemical 
reaction parameter, α- the fluid thermal 
diffusivity, β- the thermal expansion coefficient,  
β*- the concentration expansion  coefficient, µ- 
the coefficient of viscosity, ρ- the fluid density,  
��  – the thermal  diffusion ratio, ��- the mean 
fluid temperature, �∞ - the free stream 
dimensional temperature, 	�∞  -the free  stream 
dimensional concentration, σ – the electrical 
conductivity  of the fluid, �� - the external 
imposed magnetic field strength in � ′  direction,  
��  – the radiative  heat flux, �� - the 
concentration susceptivity, � – the viscosity, ��-
the scale of free stream velocity, �� - the wall 
dimensional temperature,  �� - the wall 
dimensional concentration, �∞ - the free stream 
dimensional  temperature, �∞ - the free stream 
dimensional concentration,  n′- the constant. 
 
From the continuity equation (1), it is obvious 
that suction velocity normal to the plate can 
either be a constant or function of time. We 



consider a case when it is function of both 
constant and time, hence it is expressed as

 

� ′ =	−�� �1 + 	����
′� ′
�                     

 
where � is a real positive constant, 
small values less than unity i.e. �
and �� is a non-zero positive constant (the scale 
of suction velocity at the plate surface), the 
negative sign indicates that the suction is 
towards the plate. 
 
In order to simplify the radiative heat flux on the 
flow, Rosseland diffusion approximation is 
considered as reported in Adegbie and Fagbade 
[19] such that; 
 

�� = −
���

���

���

��′                                    

 
where �� is the Stefan-Boltzman constant and 
is the mean absorption coefficient and the fluid 
is considered to be optically thin.  

 
If the temperature difference within the flow is 
sufficiently small, then equation (9) can be 
linearized by expanding T4 in the Taylor series 
about �∞ as follows: 

 
Let �(�) = �� . The Taylor series expansion of  
�(�) about � = �∞ is given by 
 

Fig. 1. The config
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consider a case when it is function of both 
constant and time, hence it is expressed as 

                 (8) 

is a real positive constant, � and �� are 
� ≪ 1, �� ≪ 1 

zero positive constant (the scale 
of suction velocity at the plate surface), the 
negative sign indicates that the suction is 

In order to simplify the radiative heat flux on the 
flow, Rosseland diffusion approximation is 
considered as reported in Adegbie and Fagbade 

                                 (9) 

Boltzman constant and �� 
is the mean absorption coefficient and the fluid 

If the temperature difference within the flow is 
sufficiently small, then equation (9) can be 

in the Taylor series 

. The Taylor series expansion of  

�(�) = �(�∞) +	�
′(�∞)(� − �∞) + � ′′

 

Neglecting higher order terms, equation (10) 
becomes:  
 

�(�) = �(�∞) + � ′(�∞)(� − �∞) 
 

Hence 
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Substituting equation (11) into equation (9) 
gives: 
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By algebraic simplification, equation (13) 
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where 
��

��′�
(3�∞

�) = 0	,	  as  �∞  is a free stream 

dimensional temperature which is a constant.  
 

In order to transform the governing equations 
and the boundary conditions into dimensionless 
forms, the following non-dimensional quantities 
are introduced, Alao, et al. [1], Rao, et al. [20], 
Moorthy and Senthilvadivu [21] 
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         (16)              

                         

In view of equations: (8), (15) and (16), 
equations: (2), (4) and (14), are algebraically 
simplified to the following dimensionless forms, 
Alao, et al. [1]: 
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where ��, ��, ��, �, ��, ��, ��,�, ��  and 	��  are 
the thermal Grashof number, modified Grashof 
number, Prandtl number, Radiation parameter, 
Eckert number, Schmidt number, Chemical 
reaction parameter, Magnetic parameter, Dufour 
number and Soret number respectively. �- the 
velocity profile of the flow, � - the temperature 
profile of the flow and � - the concentration 
profile of the flow, each as a function of � and �. 
 
The transformed boundary conditions are: 
 

�(�, �) = 1,				�(�, �) = 1 + ����,			 
	�(�, �) = 1 + ����		��		� = 0	,																						(20) 

�(�, �) → 0, �(�, �) → 0			,	 
	�(�, �) 	→ 0,				��						�	 → 	∞                   (21) 

 
3. METHOD OF LINES (MOL) 
 
The basic idea of the MOL is to replace the 
spatial (boundary value) derivatives in the PDE 
with algebraic approximations, Biazar and 
Nomidi [22], Shiesser [23], Knapp [24]. Once 
this is done, only the initial value variable, 
typically time in a physical problem, remains. 
Then, with only one remaining independent 
variable, we have a system of ODEs that 
approximates the original PDE. Any suitable 
integration algorithm for initial value ODEs can 
now be used to compute an approximate 
numerical solution to the PDE. 
 
Before applying the method of lines to 
equations: (17) - (19) subject to the boundary 
conditions in equations: (20) - (23), we, first of 
all, adopt the approximations below, to decouple 
and linearize equations: (17) – (19). 

Approximating �, �  in equation (17), 
��

��
,
���

���
 in 

equation (18), and 
���

���
 in equation (19), all to be 

unity, Chung [25].  
 
In view of the approximations adopted, 
equations (17) – (19), reduce to: 
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Applying the method of lines to equation (22), 
we discretize the partial derivative in space 
variable �, to result in approximating system of 
ODEs in variable t, thus we have: 
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= (1 + �����)

(���� − ����)

2ℎ
+	 

�����	���	�	����
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Simplifying the right-hand side of equation (25) 
gives: 
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Where 
 

  �� = �
�

��
−

���������

��
� , �� = �� −

�

��
	, �� = �

�

��
+

���������

��
�	 , �� = �� +	��	, � = 1,2, …�														(27)  

      
Equations (26) – (27) can be solved iteratively using the boundary conditions �(0, �) = 1  and 
�(∞, �) = 0 in equations (20) – (21) 
 
For � = 1, 2, …�, �(0, �) = 	 ��(�, �) = 1 and �(∞, �) ≈ �(� + 1, �) = 0,   equation (26) can be written 
as; 
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The system in equation (28), in matrix form is given as: 
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where the coefficients ��	, ��, �� and �� are given by equation (27) and �̇� = �
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In a similar way, equation (23) becomes: 
 

 �
��

��
�
�
= �

���

����
−

���������

��
� ���� + −2 �

���

����
� �� + �

���

����
+

���������

��
� ���� + (�� + ��)                    (30) 

 

	�
��

��
�
�
= ������ + ���� + ������ + ��                                                                                            (31) 

 
where  
 

�	� = �
���

����
−

���������

��
� , �� = −2 �

���

����
� , �� = �

���

����
+

���������

��
� , �� = �� + ��, � = 1,2, …�        (32)  

 
Equations (31) – (32) can be solved iteratively using the boundary conditions �(0, �) = 1  and 
�(∞, �) = 0 in equations (20) – (21) 
 
For � = 1, 2, … ,�,			�(0, �) = 1 + �����, �(∞, �) ≈ �(� + 1, �) = 	0 , equation (31) is written in matrix 
form: 
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where the coefficients ��, ��, �� and �� are given by equation (32) and  �̇� = 	 �
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Similarly, equation (24) becomes: 
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Equations (35) – (36) can be solved iteratively using the boundary conditions �(0, �) = 1  and 
�(∞, �) = 0 in equations (20) – (21) 
 

For � = 1, 2, …�, �(0, �) = 1 + �����, �(∞, �) ≈ �(� + 1, �) = 0	,  equation (35) is written in matrix 
form: 
 

⎣
⎢
⎢
⎢
⎢
⎡
�̇�
�̇�
⋮

�̇���
̇

�̇� ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
��
0
0
⋮
0

			

��
��
0
⋮
0

			

��
��
��
⋮
0

		

0
��
��
⋮
0

			

0
0
��
⋮
0

				

⋯
⋯
⋯
⋯
⋯

	

0
0

0
0

0
⋮

0
⋮

�� ��⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
1 + �����

��
��
⋮

����
�� ⎦

⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡
��
��
��
��
⋮
��⎦
⎥
⎥
⎥
⎥
⎤

                                                          (37)       

      
where the coefficients ��, ��, �� and ��	are given 

by equation (36) and �̇� = �
��

��
�
�
 

 

In practical engineering application, the physical 
quantities of practical values are the local skin 
friction due to velocity profiles, rate of heat 
transfer (Nusselt number) due to temperature 
profiles and rate of mass transfer (Sherwood 
number) due to concentration profiles. 
 

The three physical quantities at the plate are 
given in as, Alao, et al. [1]:   
 

Skin friction coefficient:  
 

��� =
�′�

�����
= �

��

��
��
���

                    (38) 

 

Nusselt Number �:		�� = −
��

��

��′
�

(����∞)
�
�′��

       (39)  

 

Sherwood Number: ��ℎ = −
��

��

��′
�

(����∞)
�
�′��

          (40) 

 

Using non-dimensional quantities defined in 
equations (15) – (16), the Nusselt Number and 
Sherwood Number are simplified as: 
 

���/��� = −�
��

��
��
���

                     (41) 

 

And 
 

� ��
���

= −�
��

��
��
���

                                      (42) 

where ��� =
���

�
  is the local Reynolds number. 

 
4. RESULTS AND DISCUSSION 
 

In this paper, a numerical approach called 
method of lines (MOL) has been used to solve 
the transformed equations (22) – (24) subject to 
the boundary conditions (20) and (21). With this 
approach, the effects of governing flow 
parameters on the velocity profile, temperature 
profile and concentration profile are discussed 
and presented by the graphs. Also, the 
computational values for coefficient of skin 
friction, Nusselt number and Sherwood number 
for different values of flow parameters are 
discussed and presented in tables. For the 
analysis of the results, various values of flow 
controlling parameters: �� = �� = 2.0, �� =
0.71, �� = 0.001, �� = 0.6, � = �� = �� = 0.5, � =
0.1, � = 1.0, ℎ = 0.1, � = 0.02,  are used for 
computations. Thus, all the graphs and tables 
correspond to these values unless otherwise 
stated. The system of ODEs obtained from 
equations (29), (33) and (37) are solved uing 
with MATLAB CODE (ode45 and ode15s) 
depending on the stiffness of the equations, with 
iteration � = 1, 2, 3. 
 

In the absence of Soret (�� ) and Dufour (�� ) 
parameters, the computational results obtained 
in this paper agrees with the results of Rao,      
et al [17] and Alao, et al [16], as shown in          
Table 1. 
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Table 1. Computational values for local skin-friction, �′(�),  and local Nusselt number, −�′(�),  
for different values of thermal radiation parameter (� ) when � = �. �, �� = �� = �, �� = �. ���,

�� = �� = �. �, �� = �. ��, � = 	� � = �. �, ��= �. �, � = �. �, � = �. �, � = �. �, � = �. �� 
 

R Present Study Alao, et al. Rao, et al. 
�′(�) −�′(�) �′(�) −�′(�) �′(�) −�′(�) 

0.0 2.1578            0.8337 2.1693                0.8291 2.1664        0.8365 
0.5 2.4406                   0.6157 2.4657                0.6154 2.4548         0.6139 
1.0 2.6325                   0.5164 2.6546                0.5087 2.6536         0.5032 
2.0 2.9406                   0.4183 2.9039                0.4017 2.9037         0.4010 

 
Table 2. Computed values of the local skin-friction for various values of Soret number (��) and 

Dufour number (��) when � = �. �, � = �. �, 	�� = �. ��, 	�� = �� = �.�, � = �. �, � = �. �, � =
�. �, � = �. ��		�� = �. �	and the computed values of the local nusselt number for various values 

of Soret number  (��) and Dufour number (� �) when � = �. ��, � = �. �, � = �. �, � = �. �, � =
�. �, �� = �. ��, � = �. �, �� = �. ��� 

 
local skin-friction local nusselt number 

�� �� Present study Alao, et al. �� �� Present study Alao, et al. 

�′(�) �′(�) −�′(�) −�′(�) 

0.
0 

0 
0.5 
1.0 

1.7795 
1.9090 
2.0227 

1.7539 
1.8830 
2.0121 

0.0 0 
0.5 
1.0 

0.6683 
0.5411 
0.4172 

0.6936 
0.5559 
0.4183 

0.
5 
 

0 
0.5 
1.0 

1.9090 
2.0227 
2.1388 

1.8907 
2.0198 
2.1489 

0.5 
 

0 
0.5 
1.0 

0.6683 
0.5466 
0.5401 

0.6936 
0.5559 
0.4183 

1.
0 

0 
0.5 
1.0 

2.0227 
2.1388 
2.2242 

2.0274 
2.1566 
2.2857 

1.0 0 
0.5 
1.0 

0.6683 
0.5411 
0.4172 

0.6936 
0.5559 
0.4183 

  
Table 3. Computed values of the local Sherwood number for various values of soret number 

(��) and dufour number (� �) when � = �. ��, � = �. �, � = �. �, � = �. �, � = �. �, ��= �. �, �� = �. � 
 

�� Du Present study Alao et.al �� � � Present study Alao et.al 

-�′(�) −�′(�) −�′(�) −�′(�) 
0.0 0.0 

0.5 
1.0 

0.6683 
0.5411 
0.4172 

0.6936 
0.5559 
0.4183 

0.5 
 
 

0.0 
0.5 
1.0 

0.8639 
0.8639 
0.8639 

0.8634 
0.8634 
0.8634 

0.5 
 

0.0 
0.5 
1.0 

0.6683 
0.5466 
0.5401 

0.6936 
0.5559 
0.4183 

0.5 
 

0.0 
0.5 
1.0 

0.7238 
0.6888 
0.6482 

0.6994 
0.6994 
0.6994 

1.0 0.0 
0.5 
1.0 

0.6683 
0.5411 
0.4172 

0.6936 
0.5559 
0.4183 

1.0 0.0 
0.5 
1.0 

0.5445 
0.5415 
0.5334 

0.5354 
0.5354 
0.5354 

 

Table 4. Computed values of the local skin friction and the local Nusselt number for various 
values of the thermal radiation parameter �  when �� = �. ��,�� = �� = �.�, �� = �� = �. �, � =

�. �, � = �. �, � = �. � 
 

local skin friction Nusselt number 
R Present study Alao et.al R Present study Alao et.al 

�′(�) �′(�) −�′(�) −�′(�) 

0.0 
0.4 
0.8 
1.0 

1.7546 
1.9735 
2.0032 
2.0504 

1.7940 
1.9166 
2.0111 
2.0512 

0.0 
0.4 
0.8 
1.0 

0.7330 
0.6652 
0.6192 
0.5814 

0.7455 
0.6533 
0.6051 
0.5892 
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Table 5. Computed value of the local 
Sherwood number for various values of the 

thermal radiation parameter (�) when 
�� = �. ��, �� = �� = �. �, �� = �� = �. �, � =

�. �, � = �. �, � = �. � 
 

R Present study Alao et.al 

−�′(�) −�′(�) 
0.0 
0.4 
0.8 
1.0 

0.6834 
0.6807 
0.6647 
0.6277 

0.6994 
0.6994 
0.6994 
0.6994 

                                                  

5. CONCLUSION 
 

The study has examined the Method of Lines 
analysis (MOL) on the problem of an unsteady 
heat and mass transfer flow of an MHD fluid 
past a semi-infinite vertical plate with viscous 
dissipation under the influence of thermal 
radiation, Soret, Dufour and other pertinent flow 
parameters. The following conclusions are 
drawn from the study: 
 

(1)  As soret number (��) and dufour number 
(��)  increase, the skin-friction coefficient (�� ) 

increases while the Nusselt number (��) 
decreases. 
 

(2) As soret number ( ��)  increases, the 
Sherwood number (�ℎ) reduces drastically while 
increase in dufour number (��) has negligible or 
no influence on it. 
 

(3) As the thermal radiation parameter ( � ) 
increases with an optimized value of magnetic 
parameter (�), the skin-friction coefficient (�� ) 

increases while the Nusselt number (��) 
decreases and there is negligible or no influence 
on the Sherwood number (�ℎ). 
 

(4) As the thermal radiation parameter ( � ) 
increases, both the velocity �(�, �)  profile and 
the temperature profile �(�, �) increase. Thus, it 
is obvious that the thermal radiation intensifies 
the convective flow. 
 

(5) As soret number ( ��)  increases, both the 
velocity �(�, �)  profile and the concentration 
profile �(�, �) increase, while there is negligible 
or no effect on the temperature distribution. 
 

(6) As dufour number (��) increases, both the 
velocity �(�, �)  profile and the temperature 
profile �(�, �) increase. 
 

(7) An increase in the magnetic parameter (�) 
decreases the velocity profile �(�, �)  as a result 

of a resistive Lorentz force produced by the 
magnetic field. 
 

(8) As Schmidt number (��)  and Chemical 
reaction (��) increase, the velocity profile �(�, �) 
as well as the concentration profile �(�, �) 
decrease. 
 

(9) As Eckert number (��) increases, both the 
velocity �(�, �)  profile and the temperature 
profile �(�, �) increase. 
 

(10) As the thermal Grashof number (��) and 
the modified Grashof number (��) increase, the 
velocity profile �(�, �) increases. 
 
(11) It has been observed that, in designing a 
system where high temperature is needed, such 
as glass production, propulsion system, plasma 
physics etc., the effects of thermal radiation 
parameter, Soret, Dufour, Eckert number, 
Grashof number, Chemical reaction parameter, 
Schmidt number and Magnetic parameter 
should be considered carefully, for optimal 
performance of such system.  
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