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Abstract 
 

Abstract: Malaria remains a major infectious disease that affects millions of people. Once infected with 
Plasmodium parasites, a host can develop a broad range of clinical presentations, which result from 
complex interactions between factors derived from the host, the parasite and the environment. Malaria has 
historically been a very serious health problem and currently poses the most significant threat to the 
health of Masinde Muliro University of Science and Technology students, data shows that more than 70% 
percent of pediatric cases are due to malaria.  
Methodology: Hence, the study aimed to fit malaria incidences dataset for the period 1st January, 2013 to 
31st December, 2015. Data on monthly malaria incidence was obtained from the Masinde Muliro 
University of Science and Technology health service. Gamma, Weibull and Lognormal Distributions 
were employed to fit the malaria incidence dataset using R-software.  
Results: High malaria incidences were observed in the months of August, September and November. 
AIC values results showed that lognormal distribution had the lowest AIC value of 185.9875 followed by 
the Gamma distribution with a value of 187.8815 and then the Weibull distribution with a value of 
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188.7271. This confirmed the lognormal distribution to be the best fitting distribution for the malaria 
incidence dataset 
Conclusion: The Poisson regression model did not accurately fit the data on malaria incidences due to 
over dispersion in the data but lognormal distribution was a better fit compared to gamma and Weibull 
distribution. 
 

 
Keywords: Malaria incidence; dataset; fit; lognormal; Weibull; Gamma. 
 

1 Introduction 
 
Malaria is a parasitic disease caused by a unicellular protozoan of the genus Plasmodium which is 
transmitted by the anopheles mosquito. There are about 120 species of Plasmodium parasites found in the 
blood of mammals, reptiles and birds. Four of these species commonly infect humans, i.e. Plasmodium 
falciparum, Plasmodium vivax, Plasmodium ovale and Plasmodium malariae. Plasmodium falciparum found 
throughout the tropics and sub-tropics is largely responsible for most of malaria's global morbidity and 
mortality. The parasites are transmitted to humans through the bites of infectious female mosquito (vectors). 
Following an infective bite, symptoms appear in about 9-14 days. According to WHO [1], the latest world 
malaria report released in November 2017 shows that the number of malaria cases reported in the year 2016 
was 216 million up from 211 million cases reported in 2015. The report also shows that malaria death 
estimates in 2016 stood at 445,000 compared to 446,000 deaths in 2015. The high burden of malaria cases in 
2016 was in Africa at 90% with 91% cases of deaths reported. Malaria is among the top ten disease burden 
in Kenya, it was ranked 3rd cause of premature death in 2010 by Global Burden of Diseases (GBD).  Of the 
total population in Kenya, approximately 70% are at risk. Fourteen million and 17 million are in endemic 
and epidemic areas respectively. Malaria has historically been a very serious health problem and currently 
poses the most significant threat to the health of student at Masinde Muliro University of Science and 
Technology (MMUST) which is in malaria prone area. The malaria situation in MMUST is typical of Sub-
Saharan Africa making its transmission an all year round affair and seasonal variation. The MMUST Health 
facility records show that between 300-700 cases of malaria are reported each month which constitutes 75% 
of all out- patient cases. Transmission of malaria in takes place throughout the year but peaks during the long 
rainy season from April to August (MMUST health facility records). Malaria transmission is driven by 
several factors including climatic, geographic, and socio-economic variables it is also affected by climate 
variability at both seasonal and inter-annual scales Yeka et al. [2]. According to Gemperli [3], the main 
effect the environment has on the malaria vector is the influence factors such as temperature and rainfall 
have on the mosquito's survival and the duration of the parasites life cycle in the vector. Malaria 
transmission will thus depend on whether the mosquito vector and parasite had the ability to coexist long 
enough for transmission to occur. The main malaria vectors found in MMUST are Anopheles gambiae sensu 
stricto, An. Arabiensis and An. Funestus. Anopheles gambiae generally increases in density after the start of 
the long rains, while An. funestus density is seen to vary in direct proportion to the proximity of permanent 
breeding grounds rather than rainfall. The malaria cases in MMUST can either be complicated malaria or 
uncomplicated malaria.  
 

1.1 The Study Area 
 
The research was conducted in Masinde Muliro University of Science and Technology (MMUST) located in 
Kakamega Town, Kakamega County with an altitude of 1561m above the sea level and a student population 
of approximately 15000.  
 

1.2 Literature Review  
 
Malaria remains one of the leading health problems of the developing world, and Kenya bears a particularly 
large burden from the disease. The prevalence of malaria infection, incidence of disease, and mortality from 
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severe malaria all remain very high despite efforts from different multi-agency like WHO in fighting the 
burden of malaria disease. Several studies have been carried out on malaria incidence. Bayesian analysis of 
an epidemiological model of Plasmodium falciparum malaria infection in Ndiop, Senegal was analyzed by 
Nicole et al. [4]. The model describes the application of Bayesian calibration of malaria transmission model 
using longitudinal data gathered from 176 subjects in Ndiop from 1st July, 1993 to 1st August, 1994. The 
model was able to adequately predict Plasmodium falciparum parasitaemia prevalence in the study 
population that is, during the dry season, the estimated fraction of non-immune subjects went down to 20% 
and increases upto 80%. The model was also able to predict time-weighted average incidence contributed by 
non-immune and immune individuals as 0.2 and 0.47 case/day respectively. Poisson and Negative binomial 
regression models was used to study the trend of malaria prevalence in Minna, Nigeria by Patience and 
Osagie [5]. Their results showed that the prevalence of malaria is still on increase by 6% on monthly basis 
while Martens et al. [6] examined the relationship between malaria and environmental and socio-economic 
variables in Sudan using health production modified model. The used regression analysis method in analysis 
of their results, the regression results showed significant relationships between malaria, rainfall and water 
bodies while other variables such as Human Development Index, temperature, population density and 
percent of cultivated areas were not significant. Teklehaimanot et al. [7,8,9,10] used robust Poisson 
regression model to model the daily average number of cases in 10 districts of Ethiopia that was associated 
with rainfall, minimum temperature and maximum temperature as explanatory variable in a polynomial 
distributed lag model. To improve reliability and generalizability within similar climatic conditions, the 
districts were grouped into two climatic zones, hot and cold. The results showed that malaria was associated 
with rainfall and minimum temperature in Ethiopia. In cold districts, rainfall was associated with a delayed 
increase in malaria cases while the association in the hot districts occurred at relatively shorter lags. The 
results also showed that in cold districts, minimum temperature was associated with malaria cases with a 
delayed effect while in hot districts, the effect of minimum temperature was non-significant at most lags, and 
much of its contribution was relatively immediate. 
 
Nkurunziza et al. [11] modeled the effects of climate on malaria in Burundi using generalized linear models 
and generalized additive mixed models. The results showed that there was a strong positive association 
between malaria incidence in a given month and minimum temperature of the previous month. In contrast, 
the results also showed that rainfall and maximum temperature in a given month have possible negative 
effect on malaria incidence of the same month. Kakchapati and Ardkaew [12] carried out a study to model 
the spatial and trends of malaria incidence in Nepal. They used Poisson and negative binomial regression 
models to _t malaria incidence rates as a function of year and location. Their study showed a steady 
decreasing trend in malaria incidence, but the numbers of malaria cases were still very high. 
Sriwattanapongse et al. [13] used Spearman’s correlation between weekly climatic variables (temperatures, 
relative humidity and rainfall) and malaria to analyze the bivariate relationships between types of malaria 
para-sites and potential climatic factors. A discrete Poisson model was used to identify purely spatial clusters 
of malaria incidence in the high risk areas. A Poisson regression model combined with distributed lag non-
linear model was also used to examine the effects of temperature, relative humidity and rainfall on the 
number of malaria cases. The residuals were checked to evaluate the adequacy of the model. Sensitivity 
analysis was performed to ensure that the associations between climate variables and malaria incidences did 
not change substantially when the degrees of freedom for climate variables were changed. 
 
Drebel [14] carried out a study using logistic regression to estimate and assess malaria prevalence and the 
use of malaria risk reduction measures and their association with selected background characteristics in 
South Sudan. The results suggest that educational attainment need not be very advanced to affect practices of 
malaria prevention and treatment. Primary school attendance was a stronger predictor for use of malaria risk 
reduction measures than any other selected background characteristics. Chanda et al. [15] conducted a study 
on malaria vector control in South Sudan. The study revealed that the peak of malaria transmission season 
lasting 7 to 8 months of the year south of the country and 5 to 6 months in the north. Wardrop et al. [16] 
studied malaria incidence over time and its association with temperature and rainfall in four counties of 
Yunnan province, China. Seasonal trend decomposition was used to examine secular trends and seasonal 
patterns in malaria incidence, a Poisson regression with Distributed lag non-linear models were used to 
estimate the weather drivers of malaria seasonality. The study revealed that there was a declining trend in 
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malaria incidence in all four counties. Kim et al. [17], estimated the effects of climate factors on P. vivax 
malaria transmission using generalized linear Poisson models and distributed lag non-linear models. Their 
findings suggested that malaria transmission in temperate areas was highly dependent on climate factors. 
Nath and Mwchahary [18], analyzed the temporal correlation between malaria incidence and climatic 
variables using malaria incidence rates in Kokrajhar district of Assam over the period 2001 to 2010. Linear 
regressions were used to obtain linear relationships between climatic factors and malaria incidence. 
Temperature was found to be negatively correlated with non-forest malaria incidence while relative humidity 
was positively correlated with forest malaria incidence. 
 

2 Materials and Methods 
 
2.1 Data 
 
The malaria incidence records over the period 2013- 2015 were considered for analysis, records of malaria 
incidence were collected from Masinde Muliro University of Science and Technology (MMUST) health 
facility. The malaria transmission in MMUST occurs all year round with peak seasons following the long 
rains in March to June and Short rains in October to December. The annual inoculation rates are estimated to 
be 300 infective bites per person per annum [2]. The data considered were from 50,723 cases reported to 
health facility between 1st January, 2013 and 31th December, 2015.  
 
Monthly malaria incidence rate (MIR) for MMUST was calculated by the formula- 
 

Total malaria positive cases
MIR

Total number of cases tested for malaria
  

 

2.2 Methods 
 
The response variable is the malaria incidence, and the explanatory variable is time in months for three 
years. The generalized linear models were applied. The basic count data regression models can be 
represented and understood using generalized linear models (GLM) framework. Poisson regression is 
commonly used for modeling the number of cases of disease in a specific population with a certain time. 
Poisson regression is a special case of (GLM) where the response variable follows Poisson distribution. 
Poisson models for disease counts are often over-dispersed, in which case the negative binomial regression 
is more appropriate. The negative binomial model is an extension of Poisson model for incidence rates that 
allows for the over-dispersion that commonly occurs for disease count [19]. 
 
Before fitting one or more distributions to a data set, it is generally necessary to choose good candidates 
among a predefined set of distributions. This choice may be guided by the knowledge of stochastic processes 
governing the modelled variable, or, in the absence of knowledge regarding the underlying process, by the 
observation of its empirical distribution. First of all, it is common to start with plots of the empirical 
distribution function and the histogram (or density plot), which can be obtained with the plotdist function of 
the fitdistrplus package. This function provides two plots: the left-hand plot is by default the histogram on a 
density scale (or density plot of both, according to values of arguments histo and demp) and the right-hand 
plot the empirical cumulative distribution function (CDF). In addition to empirical plots, descriptive 
statistics may help to choose candidates to describe a distribution among a set of parametric distributions. 
Especially the Skewness and kurtosis, linked to the third and fourth moments, are useful for this purpose. A 
non-zero Skewness reveals a lack of symmetry of the empirical distribution, while the kurtosis value 
quantifies the weight of tails in comparison to the normal distribution for which the kurtosis equals 3. A 
Skewness-kurtosis plot such as the one proposed by Cullen and Frey (1999) is provided by the descdist 
function for the empirical distribution. On this plot, values for common distributions are displayed in order 
to help the choice of distributions to fit to data. For some distributions (normal, uniform, logistic, 
exponential), there is only one possible value for the Skewness and the kurtosis. Thus, the distribution is 
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represented by a single point on the plot. For other distributions, areas of possible values are represented, 
consisting in lines (as for gamma and lognormal distributions), or larger areas (as for beta distribution). 
Skewness and kurtosis are known not to be robust [9]. In order to take into account the uncertainty of the 
estimated values of kurtosis and Skewness from data, a nonparametric bootstrap procedure (Efron and 
Tibshirani, 1994) can be performed by using the argument boot [9]. 
 

3 Results  
 
It is observed from the Table 1 that the average number of malaria incidence in the year 2013 was 887.92. 
This rose to 2080 in the year 2014 and reduce to 1259 in the year 2015. This was a drastic decrease after the 
year 2014. The table also shows that the minimum number of malaria incidence in a month is 162 for the 
three years and 3195 as the maximum number of malaria incidence in a month for the three years. 
 

Table 1. Malaria Incidence between 2013 and 2015 
 

YEAR(MONTH) 2013 2014 2015 
JANUARY 655 2417 2467 
FEBRUARY 919 2518 1958 
MARCH  505 1460 2294 
APRIL 368 1798 2294 
MAY 390 2151 1102 
JUNE 445 2730 1130 
JULY 306 3195 1447 
AUGUST 330 656 205 
SEPTEMBER 2216 1671 496 
OCTOBER 2057 1603 1080 
NOVEMBER 1802 2842 201 
DECEMBER 662 1919 162 

 

Fig. 1 shows that High endemic occurred in the month of July and lowest endemic in the month of August 
and December. The results also shows that there was no clear trend of malaria incidence.  
 

 
 

Fig. 1. Monthly malaria incidence 
 
In order to choose good candidates among a predefined set of distributions to fit to the malaria incidence 
data set, an observation of empirical distribution of the dataset was done. Empirical distribution function and 
histogram was plotted. In addition to empirical plot, descriptive statistics were also done to help in choosing 
candidates to describe a distribution among a set of parametric distributions. Especially, skewness and 
kurtosis were useful for this purpose. A skewness-kurtosis plot like the one which was proposed by Cullen 
and Frey in 1999 was then done as shown in Figs. 2a,b,3a,b and 4a,b. The function provides two plots; a 
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histogram on a density scale and the plot for the empirical distribution function (CDF). Since skewness and 
kurtosis are known to be robust, therefore, to take into account, the uncertainty of the estimated values of 
kurtosis and skewness from data a non-parametric bootstrap procedure is performed by use of argument boot 
stored in R software. Also the values of skewness and kurtosis get computed on bootstrap samples and get 
reported on skewness-kurtosis plot. 
 

Table 2. Summary statistics for malaria incidence 
 

Year minimum Mean  Standard 
deviation 

Standard 
error 

Coefficient 
of variation 

1st 
quartile 

3rd 
quartile  

Maximum 

2013 306.0 887.92 712.44 205.66 0.8024 384.5 1139.75 2216.0 
2014 656 2080 705.13 203.55 0.3390 1654 2571 3195.0 
2015 162 1259 897.06 258.96 0.7125 423.25 2042 2566.0 

 
Table 3. Skewness and Kurtosis for malaria incidence 

 
Year Skewness Kurtosis 
2013 1.1772 -0.3092 
2014 -0.3434 0.0827 
2015 0.1996 -1.4230 

 
Fig. 2a shows a positively skewed distribution and the summery from Table 2 give estimated skewness as 
1.1772 and estimated kurtosis as -0.3092. The nonzero skewness reveal lack of symmetry for the empirical 
distribution. The kurtosis is below three hence show that the distribution is platykurtic. Fig. 3a shows a 
negatively skewed distribution and the summery from Table 2 give estimated skewness as -0.3434 and 
estimated kurtosis as 0.0827. The nonzero skewness reveal lack of symmetry for the empirical distribution. 
The kurtosis is below three hence show that the distribution is platykurtic. Fig. 4a shows a positively skewed 
distribution and the summery from Table 2 give estimated skewness as 0.1996 and estimated kurtosis as -
0.4230. The nonzero skewness reveal lack of symmetry for the empirical distribution. The kurtosis is below 
three hence show that the distribution is platykurtic. The nonzero skewness revealed lack of symmetry of the 
empirical distribution. The kurtosis value quantifies the weight of the tails in comparison to the normal 
distribution for which the kurtosis equals 3. From the Cullen and Gray graph (Figs. 2b, 3b and 4b), the 
observed value is outside the normal distribution. Positively skewed functions (Gamma, Lognormal and 
Weibull) were then considered to be the possible candidate distributions to fit. 

 

 
 

Fig. 2a. Histogram and CDF for malaria incidence in 2013 dataset 
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Fig. 2b. Skewness-Kurtosis plot for 2013 malaria incidence dataset 
 

 
 

Fig. 3a. Histogram and CDF for malaria incidence in 2014 dataset 

 
 

Fig. 3b. Skewness-Kurtosis plot for 2014 malaria incidence dataset 
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Fig. 4a. Histogram and CDF for malaria incidence in 2015 dataset 
 

 
 

Fig. 4b. Skewness-Kurtosis plot for 2015 malaria incidence dataset 
 

The Identification of probability distribution process was guided by observation of empirical plots and 
descriptive statistics which helped in identifying the candidate to describe a distribution among a set of 
parametric distributions. The candidate distributions identified were Gamma, Lognormal and Weibull. The 
distributions were then fitted to the malaria dataset. 
 
The density functions of the fitted distributions along with the histogram was also plotted using the R 
software (Fig. 5), as shown below. By looking at the results by balling, lognormal distribution fitted better. 
Goodness of fit of quantile-quantile plot for the comparison of the three fitted distributions and the empirical 
distribution was also done using R software (Fig. 6).  Also, by using AIC values results got from the Table 2, 
lognormal distribution had the lowest AIC value of 185.9875 followed by the Gamma distribution with a 
value of 187.8815 and then the Weibull distribution with a value of 188.7271. This confirmed the lognormal 
distribution to be the best fitting distribution for the malaria incidence dataset. The Q-Q plot also in Fig. 6 
showed that lognormal distribution had most of its points lying along the straight line as compared to the 
Weibull distribution and the gamma distribution. The shape parameter is greater than one thus the lognormal 
distribution assumes a mounded but skewed shape. The mean of the distribution is greater than the standard 
deviation which is responsible for the very shape just mentioned. 
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Table 4. Distribution fitted to malaria incidence dataset 
 

Distribution Parameter Estimate Std error AIC BIC Loglikelihood 

Gamma Shape 2.0775 0.5194 187.8815 188.8513 -91.94073 

 Parameter 0.0023 0.0005 

Weibull Shape 1.4194 0.3075 188.7271 189.6969 -92.36357 

 Scale 986.4877 213.3607 

Lognormal Meanlog 6.5393 0.2003 185.9872 186.957 -90.9936 

 Sdlog 0.6934 0.1416 
 

 
 

Fig. 5. Density plots of Gamma, Weibull and lognormal of malaria dataset 
 

 
 

Fig. 6a. Q-Q plot of malaria dataset 
 

The density plot and the CDF plot shown in Fig. 6 may be considered as the basic classical goodness-of-fit 
plots. The Q-Q plot emphasizes the lack-of-fit at the distribution tails while the P-P plot emphasizes the 
lack-of-fit at the distribution center. In Fig. 6, none of the three fitted distributions correctly describes the 
center of the distribution, but the lognormal distributions could be preferred for their better description of the 
right tail of the empirical distribution, especially if this tail is important in the use of the fitted distribution, as 
it is in the context of malaria incidence dataset. 
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Fig. 6b. Four Goodness-of-fit plots for various distributions fitted to continuous data (Weibull, gamma 
and lognormal distribution) 

 

4 Discussion  
 
The Identification of probability distribution process was guided by observation of empirical plots and 
descriptive statistics which helped in identifying the candidate to describe a distribution among a set of 
parametric distributions. The Gamma, Weibull and Lognormal distributions were selected since the data was 
positively skewed. The parameters of the selected distributions were estimated by the maximum likelihood 
estimation method using the function ‘fitdist’ available in the ‘fitdistrplus’ package of the R software. 
 
In order to choose good candidates among a predefined set of distributions to fit to malaria incidence dataset, 
an observation of empirical distribution of the data set was done. Empirical distribution function and 
histogram. The function provided two plots according to values of arguments ’histo’ and ’demp’ stored in 
the package ’fitdistrplus’;one plot is a histogram drawn on a density scale and the other is the empirical 
cumulative distribution function (CDF). A skewness-kurtosis plot was done, the function provides two plots; 
a histogram on a density scale and the plot for the empirical distribution function (CDF). On such a plot, 
values for common distributions are displayed in order to help in the choice of distributions to fit to data. 
Values of skewness and kurtosis get computed on bootstrap samples and reported on skewness-kurtosis plot. 
The non-zero skewness revealed lack of symmetry of the empirical distribution. The kurtosis value 
quantifies the weight of the tails in comparison to the normal distribution for which the kurtosis equals. 
From the Cullen and Gray graph, the observed value is outside the normal distribution. Positively skewed 
functions (Gamma, Lognormal and Weibull) were considered. 
 

5 Conclusion 
 
The results obtained suggest that malaria incidence is increasing with time therefore there is need for study 
that incorporates more explanatory variables. Determination of malaria trend is critical for the design of 
policies aimed at reducing malaria incidence and improvement of healthcare system. The Poisson regression 
did not accurately fit the data on malaria incidences due to over dispersion in the data but lognormal was a 
better fit compared to gamma and Weibull distribution. 
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