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Abstract

The paper is devoted to construction of some closed inductive sequence of models of the generalized
second-order Dedekind theory of real numbers with exponentially increasing powers. These
models are not isomorphic whereas all models of the standard second-order Dedekind theory
are. The main idea in passing to generalized models is to consider instead of superstructures
with the single common set-theoretical equality and the single common set-theoretical belonging
superstructures with several generalized equalities and several generalized belongings for first
and second orders. The basic tools for the presented construction are the infraproduct of
collection of mathematical systems different from the factorized Lo$ ultraproduct and the
corresponding generalized infrafiltration theorem. As its auxiliary corollary we obtain the
generalized compactness theorem for the generalized second-order language.
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1 Introduction

It is well known that all standard models of the standard second-order Dedekind theory of real
numbers are isomorphic (see, for example, [1, 7.2]). The paper is devoted to the exposition of some
generalized second-order Dedekind theory of real numbers with non-isomorphic generalized models.

More precisely, the paper is devoted to construction of some closed inductive sequence R; (1 < i <
wo) of models of the generalized second-order Dedekind theory of real numbers with exponentially
increasing powers. The models R; (0 < i < wp) are embedded in each other as submodels and at
the same time they all are embedded in the limit-closer model R.,, as extending submodels. These
generalized models are completely different from mathematical systems presented in [2, 2.14] under
the name of non-standard analysis (for the current state of this field see e.g. [3, 4]).

The main idea in passing to generalized models is to consider the generalized second-order language
L(X%) of some generalized signature ¥j containing, in addition to individual and predicative constants
and variables, some symbols d, of generalized equalities and some symbols e, of generalized belongings
for first-order types 7 and second-order types T = [70,. .., Tk].

Correspondingly, in the capacity of initial formulas of the language L(XJ) the formulas of the
following two forms are taken: the formula y” §, 27 and the formula (z°,...,z;*) e- u”, where y°
and z° are the variables of the first- or the second-order type o and x* and u” are the variables of
the first-order types 7; and the second-order type 7 = [70,. .., 7&], respectively.

These atomic formulas are interpreted on an evaluated system ((A4,S5),~) (with a superstructure
S3 of the signature X3 over a support A and an evaluation 7 on the system U = (4,59)) in
the following generalized way: v(y7) ~o v(z7) and (y(z(?),...,v(zz*)) € v(u"), where =, is a
generalized ratio of equality and &, is a generalized ratio of belonging. Generalized equalities and
generalized belongings are connected with each other by the initial principle of change of equals
(see axiom E4 from 2.3).

With respect to the signature 33 formulas ¢ in the language L(X29) are defined by common induction,
when we start from the above-mentioned atomic formulas.

To give a semantics of the language L(3%) a satisfaction of a formula ¢ on the system U with
respect to the evaluation of variables 7y is defined according to the above-mentioned generalized
interpretation of the atomic formulas.

The semantics for the language L(33) differs both from the standard semantics (see [2, Appendix],
[5, §16]) and from the Henkin semantics (see [2, Appendix], [5, §21], [6, 4], and [7, 8, 9]), which
restricts the range of values of the evaluation 7(z7) for a variable " of a second-order type 7 by
some subset of the set P(7(A)) of the terminal 7(A).

The general material about second-order notions mentioned above is presented in Sections 2 and 3
of the paper. More specific material about the generalized second-order Dedekind theory of real
numbers Thﬁ’22 and about the canonical model Ry = Rg = (R, Sgre) is presented in Section 4.

In Section 5 we construct some inductive sequence of non-canonical models R; = []IAQ“ Si), 1 <4 < wo,
with exponentially increasing powers. The basic tool for construction of these systems is the
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infraproduct of collection of systems of the signature 33, different from the factorized ultraproduct
a la Los. To prove that the systems R; are models for Th%, we use the simplified variant of
the generalized infrafiltration theorem for the generalized second-order language L(X3) presented
in [10, 11]. Note that the corresponding proof of the infrafiltration property for the standard second-
order language L(X5") do not “pass”.

The main results of this paper were announced in [12].

Further, to shorten the writings we use for the designation of a symbol-string p by a symbol-string o
the symbol-strings o = p or p = o (o is a designation for p).

2 The Type Theory in the Language of the Signature
with Generalized Equalities and Belongings

2.1 Types

Fix the canonical set wo of all natural numbers and its subset N = wo\{0} constructed in the
Neumann — Bernays— Godel (NBG) or Zermelo — Fraenkel (ZF) set theories or in the local theory of
sets (LTS) (see [13] and [14, 1.1, A.2, B.1]). Hereinafter ST denotes any of these set theories.
Define by induction the semitypes and the types:

1. 0 is the semitype and the type;

2. if 7 is a type, then 7 is the semitype:

3. if 7 is a semitype, then [7] is the type;

4. if 19,..., 7% are semitypes and k > 1, then (70,...,7%) is the semitype.
This definition is a slight modification of the corresponding definition from [5, §20].

Further, instead of [(7o,...,7x)] we shall write simply [70,...,7%]; then the notation [ro, ..., 7k]
may be used for k > 0.

Semantics of semitypes and types will be explained in the subsection 2.3.

Types 0 will be called the first-order type. If 7o,...,7; are first-order types and k& > 0 then
[70, ..., 7] will be called the second-order type.

For a type 7 = [70,..., 7] with k = 0 the types 70,...,7% will be called the parents of the type T
and will be denoted by por, ..., prT, respectively.

Consider the set P(7) = {poT,...,pr7} of all parents of the type T.
For the first-order type 7 put formally pr = 7 and P(7) = {pr} = {7}.

With any type 7 we associate the semitype T of the type T as follows:
1. if 7 is the first-order type, then 7 = 7;
2. if 7 = [r1] and 71 is a semitype, then 7 = 1.

In other words, the semitype of a type is obtained by omitting the square brackets.

2.2 Terminals over set and mappings

Define the terminals 7(A) of the semitypes T over a set A by induction:
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1. 0(A) = 4;

2. if 7 is a semitype, then [7](A) = P(7(A)), where P denotes the operation of taking power-set
of the intended set;

3. if 10,..., 7% are semitypes, k = 1, then (70,...,7%)(A) = 70(A) x ... x 7(A).

Thus, for semitypes 7o,...,7% with k& > 1, for the type 7 = [70,...,7x], and for its semitype
7 = (10,...,7k) the equalities 7(A) = P(10(A) x ... x 7(A)) and F(A) = 10(A) x ... x 7x(A) are
fulfilled.

Let u : A — B be a mapping from the set A to the set B. Define the terminals 7™ (u) of the
semitypes T over the mapping u : A — B by induction:
1. 0™(u)=u: A — B;

2. if 7 is a semitype, then [7]™(u) : P(7(A)) — P(7(B)) is the mapping such that [7]™ (u)(P) =
(" (w)[P]={qer(B)|3pe P (¢ =7"(u)(p))} for every P € P(7(A));

3. if 70,..., 7k are semitypes and k > 1, then
(o, -, 7)™ (u) : To(A) X ... X T (A) = 70(B) x ... x 17,(B)
is the mapping such that

(105 -y 7)™ (u))(Pos - - -, px) = (70" (P0), - - -, Tk (Pr))

for every (po,...,pr) € To(A) x ... x T (A).

2.3 The signature with generalized equalities and belongings and
its language

A non-empty set O of types 7 will be called the type domain if 7 € © implies pr € © for every
parent pr of the type 7. In the type domain © select the belonging type subdomain ©, = {1 € © |
3k € wo 3710,..., 7k €O (7 = [10,...,7&])}-

A collection X = (37 | 7 € ©) of collections X7 = (0], | w € Q) of constants o, of the types T
will be called the signature of constants of the type domain ©. Sets Q2 may be empty, and then
3o =@.

The constants o0 of the first-order type 0 are called individual or objective. The constants of other
types are called predicate.

A collection 3. = (6| 7 € O) of binary predicate symbols of (generalized) equalities 6 of the types T
will be called the signature of (generalized) equalities of the type domain ©. It follows from the
definition of the type domain that for every equality symbol . the collection ¥, contains necessarily
the equality symbols §,, for every parent pr of the type 7.

A collection 3, = (e-| 7 € ©4) of binary predicate symbols of (generalized) belongings . of the
types T will be called the signature of (generalized) belongings of the type domain ©.

A collection ¥, = (X7 | 7 € ©) of denumerable sets X7 of variables x7, y7,. .. of the types T will be
called the signature of variables of the type domain ©. The sets 37 may be empty. The variables
z°,4°, ... of the first-order type 0 are called individual or objective. The variables of other types
are called predicate.

Further, we shall always assume that for every type 7 € © there are either constants or variables of
this type.
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The quadruple 29 = 3.|3.|X|X, will be called the generalized signature or the signature with
generalized equalities and belongings.

The language L(X7) of the generalized signature %9 consists of:
1. all types 7 from the type domain ©;
2. all members of all signatures from X9
3. the logical symbols —, v, A, =, V, and 3;
4. parenthesis.

If the type domain © contains first- and second-order types only and at least one second-order
type, then we shall say that the signature ¢ and the language L(X9) have the second order (see [2,
Appendix], [6, 4]). In this case the notations ¥§ and L(39) will be used.

2.4 Terms, formulas, and the type theory for the language of the
generalized signature

Constants and variables of a type 7 are called terms of the type T of the language L(X7).

The atomic formulas of the language L(X9) are defined in the following way:
1. if ¢ and r are terms of a type 7 € ©, then ¢ 6, r is an atomic formula;

2. if 7o,..., T are types from © for k = 0, 7 = [70,...,7k] € Op, ¢°, ..., q,* are terms of the
types 7o, ..., Tk, respectively, and r” is a term of the type 7, then (gy°,...,q.*) - r" is
the atomic formula; in particular, for k& = 0 the symbol-string ¢3° €[ rl7l is the atomic
formula.

The formulas of the language L(X9) are constructed from atomic ones with the use of connectives
Vv, A, 7, =, quantifiers 32" and Vz" with respect to the variables ", and parenthesis.

The logical aziom schemes of the type theory in the language L(X9) of the generalized signature %9
are the schemes of the predicate calculus, where variables and terms substituting each other must
be of the same type 7 € O.

In addition to these axiom schemes, consider the following equality axioms for the types T € ©.

El. Vz' (z 6- x).
E2. V2", y" (z 6,y =y dr x).
E3. Va",y",2" (x0-yAYydr 2=z 0r 2)
E4. (The initial principle of change of equals.)
Var®, s . ak et uT, 07 (20 6 Yo A o A Tk Ory Yk A UGS U=

= ((zo, ..., %K) er u < (Yo, .. .,yk)&v))), where 7 = [70,...,Tk].

The inference rules in the depicted type theory are:

P = an (@) en
5 (MP) and s (Gen).

If there are non-logical axioms or axiom schemes written by second-order formulas of the language
L(X%), then we shall say that a (mathematical) generalized second-order theory is given.
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3 Mathematical Systems of the Signature 9 with Gene-
ralized Equalities and Belongings

3.1 The definition of mathematical systems and their homomor-
phisms of the generalized signature X9

Generalized systems. Let X9 be a fixed signature defined in 2.3. Fix also a set A. For the
set A and the signature X9 consider the following collections:

1. Se. = (S7 | 7 € ©) of collections ST = (s], | w € Q) of constant structures s, € T(A) of the
types T;

2. Se = (~-| 7 € ©) of generalized ratios of equality ~-< T(A) x T(A) of the types T on the
sets T7(A), containing the usual set-theoretic ratios of equality = on the sets 7(X), i. e., such
ratios ~, that for every elements r,s € 7(A) the equality » = s implies the generalized
equality r ~;, s;

3. Sy = (&+] T € Op) of generalized ratios of belonging €. 7(A)x71(A) of the types T, containing
the usual set-theoretic ratios of belonging € from the sets 7(X) into the sets 7(X), i. e., such
ratios &, that for every elements p € 7(A) and P € 7(A) the belonging p € P implies the
generalized belonging p €, P;

4. S, = (7(A) | T € ©) of the terminals 7(A) of the types T over the set A.

The quadruple S = (Se, Se, Sy, Sv) of the above-mentioned collections will be called a superstructure
of the signature 39 over the set A.

The pair U = (A, S) will be called a mathematical system of the generalized signature X9 with the
support (carrier) A and the superstructure S. This notion is a generalization of the notion of an
algebraic system of the signature X1 (see [15, §15]).

The mathematical system U = (A4, S) will be called also an interpretation of the signature 9 on
the support A.

Further, for a type 7 = [0, ..., 7x] and elements p = (p(0),...,p(k)), ¢ = (¢(0),...,q(k)) € 7(A) =
T0(A) X ... x 7,(A) along with

P(0) ~r q(0) A ... A p(K) ~ry, q(K)
we shall also write p ~+ q.
The generalized equalities &~ and the generalized belongings &, admit some additional conditions.
A system U will be called balanced if
VP,QeT(A) (P~ Q<VYpeP3IqeQ (g~rp) AVqeQ Ipe P (p~zq)),
where 70,...,7%: €0,k >0and 7 = [70,...,7%] € O.

A system U will be called regular if Vp € 7(A) VP € 7(A) (p €& P < 3¢ € P (p ~+ q)), where
T0,.--,Tk €0, k>0, and 7 = [10,...,7k] € ©. A system U will be called eztensional if

VP,QeT(A) (P~ QeVp(pe- P=>pe&, Q) AVq (g&r Q= q&, P)),

where 7 € O,.

18



Zakharov and Rodionov; ARJOM, 16(1): 13-39, 2020; Article no. ARJOM.52400

Generalized homomorphisms. Let U = (4,5) and V = (B,T) be systems of the
signature 39 from 3.1. A mapping u : A — B in the considered set theory ST from the set A
to the set B is called a homomorphism of the signature 39 from the system U into the system V
if for every type 7 € ©, every index w € Q., every corresponding constant structure s, € 7(A) of
the collection S¢, and every corresponding constant structure t7, € 7(B) of the collection T, the
following properties are fulfilled:

1. if 7 =0, then 7" (u)(s;,) = u(sy) = to;

2. if 7 € Oy, then every generalized belonging p €. 4 s., implies the corresponding generalized
belonging 7™ (u)(p) €~ 5 t,, for every p € 7(A).

3.2 Evaluations and models

An evaluation on a system U = (A, S) of the signature X9 is a mapping v defined on the set of all
variables of the signature X9 and associating with the variable x” of the type 7 € © the element
~(z7) of the terminal 7(X) (see [15, §16], [5, 16.17]). The pair (U,~) consisting of the system U of
the signature ¥9 and the evaluation v on U will be called an evaluated mathematical system of the
signature 39.

Define the value q[y] of a term q with respect to the evaluation v on the system U in the following
way (see [15, §16], [16, §6], [2, 2.2], [17, 2.5]): for a constant o, of a type 7 € © put o[v] = s,
and for a variable 7 of a type 7 € © put a7 [y] = y(z7).

Define the satisfaction (translation) of a formula ¢ of the language L(X3) on a system U of the
signature X9 with respect to an evaluation ~ (in notation, U k= ¢[v]) by induction in the following
way (see [2, 2.2], [17, 2.5], [5, 16.17], [14, A.1.3]):

1. if ¢ and r are terms of a type 7 € © and ¢ = (¢ §; r), then U E ¢[7] is equivalent to
a[v] =+ r[v];

2. if 19,..., 7k are types from © for k = 0, 7 = [70,...,7k] € ©, qo, . . ., qx are terms of the types

To, - ..,Tk, Tespectively, 7 is a term of the type 7, and ¢ = (qo,...,qx) &+ 7, then U = ¢[7]

iff (qo[v],-- -, ar[v]) €= vyl

if o = =, then U E p[v] iff U = 9[~] is not true;

if o= (¢ v E),then U k= p[v] iff U E y[y] or U E £[7];

if o= (1 A &), then U = o[y] it U = 4[] and U k= €[]

if o = (¢ = €), then U & o[v] iff that U k= «[y] implies U &= £[];

if ¢ = 327, then U = ¢[y] is equivalent to U = 9[v'] for some evaluation ' such that
' (y7) = v(y°) for every variable y7 # z7;

N ot e w

8. if ¢ = Va1, then U = ¢[y] is equivalent to U & 1[7'] for every evaluation +' such that
' (y?) = v(y°) for every variable y” # z7.

Let @ be a set of formulas of the language L(X3). An evaluated mathematical system (U,~) of the
signature ¥3 will be called an (evaluated) model for the set ® if U = ¢[v] for every formula ¢ €
(see [15, §17]). A mathematical system U of the signature X3 will be called a model for the set ®
if an evaluated mathematical system (U,~) is a model for the set ® for every evaluation v on U.

A model (U,~) will be called balanced, regular, extensional, etc. if the system U is the same.

A model (U,~) for a set ® will be called second-order if at least one formula from ® contains at
least one second-order variable.
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Remark that if a system U = (A, S) is considered in an axiomatic set theory, then the satisfaction of
a closed formula ¢ of the language L(X3) with respect to any evaluation = is reduced to correctness
of the relativization ¢" of ¢ on the corresponding terminals of the support A in this set theory.
Here the correctness of ¢ means that ¢" is a deducible formula in this axiomatic set theory.

Thus, if ® consists of closed formulas only, then U is a model for @ iff (U,~) is a model for ® for
some (and, consequently, for any) evaluation 7.

In particular, since equality axioms E1-E4 are closed formulas, their relativizations E1"-E4" take
the following forms:

E1" = Vzer(A) (z =~ z);

E2"= Vaz,ye7(A) (z =+ y =y ~- z);

E3 = Va,y,2e€7(A) (x = Yy AY Rr 2= T =y 2);

E4A" = Yao,y0 € 10(A) ... Vg, yr € T(A) Vu,v e 7(A) (o ~rg Yo A ... A
ATk Rr, Yk AU 0= ((To,...,2Tk) € u < (Yo,...,Yk) Er V)),

where 7 = [70,..., 7], kK =0, and all types are in ©.
The satisfaction of formulas E1"-E3" means that all generalized equalities ~, are equivalence

relations on corresponding sets 7(A), and the satisfaction of formula E4" means the initial principle
of change of equals in the atomic formula with the generalized belonging &-.

Further on, we shall say that a system U of the signature X§ has true generalized equalities and
belongings if axioms E1-E4 from 2.3 are satisfied on U with respect to some (and, consequently, to
any) evaluation v. This means that formulas E1"-E4" are correct for the system U in the used set
theory.

3.3 The generalized equality of values of evaluations and satisfiability

For every formula ¢ of the language L(%J) we define the formula »* by induction:

1. ¢* = ¢ for every atomic formula ¢;
2. (Y AQF =vF ALY

8. (~u)* = v

4. (Fz7)* = Iz

5. (¥ v ¥ =—(=p* A =€¥);

6. (¥ = &)* = (" A =¥);

7. (Ya)* = (327 (—6)).
A formula ¢ is said to be normalizable if for every mathematical $3-system U and every evaluation
on U the following condition holds: U & ¢[y] < U & ¢*[v].

Lemma 1. Let formulas ¥ and £ be normalizable. Then formulas i A&, =, Y v €, ¥ =&, Va,
and 3z7 are normalizable as well.

The proof of this lemma uses the definition of satisfiability and some well known tautologies only,
so it is omitted.

Propositon 1. FEvery formula of the language L(X5) of the generalized second-order signature 3
is normalizable.
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Proof. Denote by ® the set of all formulas of the language L(33). The subset of the set ® consisting
of formulas containing at most n € wp logical symbols —, A, =, v, 3, V, denote by ®,,. It is clear
that ® = [J(®n | n € wo).

Prove by the complete induction principle the following assertion A(n): every formula ¢ € ® is
normalizable.

If n = 0, then the formula ¢ is atomic, and so by the definition of the operation ¢ > ©* we have
»* = ¢. Consequently, the assertion A(0) is true.

Suppose that for all m < n the assertion A(m) is true. Let ¢ € ®,. If p = Y A&, p = 1,
p=Fa"Y, p=9YpvE o= =& or p =V, then ¢, £ € &,,_1. Therefore by the induction
hypothesis, the formulas 1 and ¢ are normalizable. By Lemma 1 the formula ¢ is normalizable.
Hence the assertion A(n) is true. O

Propositon 2. Let U be a mathematical system of the second-order signature 9 with true generalized
equalities and belongings. Then for every formula ¢ of the language L(X9) and every evaluations
and 0 on the system U such that v(z7) ~. §(z7) for every variable 7 of every type T € © the
properties U = ¢[y] and U E ¢[d] are equivalent.

Proof. The set of all formulas ¢ of the language L(XJ) constructed by induction from the atomic
formulas with the use of connectives — and A and quantifier 3 denote by W. The subset of the set
W consisting of formulas containing at most n € wy logical symbols —, A, and 3 denote by ¥,,. It
is clear that U = | J(¥r | n € wo).

Prove by the complete induction principle the assertion A(n): for every formula ¢ € U, and every
mentioned evaluations v and § the assertion of the Proposition holds.

Let n =0 and ¢ € ¥y. Then ¢ is an atomic formula.

At first consider the atomic formula ¢ of the form ¢”d,r". Suppose that ¢° = z7 and " = o[,.
Then U E ¢[v] is equivalent to y(z) ~, s, and U E ¢[d] is equivalent to §(z) ~- s.

Since, by our condition, y(z) ~- §(z), then assuming U E ¢[v] and using axioms E2" and E3" we
infer U = ¢[d]. The inverse inference is checked in the same way. For the terms ¢” and 7 of other
forms the reasons are quite similar.

Now, consider the atomic formula ¢ of the form (q°, ..., ¢* Ye,r* for the type T = [10, ..., 7k] € Op.
Assume that ¢;» = z}* and 77 = u” for some variables zx and u. Then U k ¢[7] is equivalent to
(v(z0), ..., v(zk)) € v(u) and U E ¢[d] is equivalent to (6(xo),...,d(zk)) €~ 6(u).

Suppose U E ¢[v]. Since, by our condition, v(z}*) ~-, §(z}*), then using axiom E4", we infer
U = ¢[d]. The inverse inference is checked in the same way. For the terms ¢,* and r” of other
kinds the reasons are quite similar.

Assume that assertion A(m) is true for every m < n. Let ¢ = 327¢. Then ¢ € U,,_;. Let be given
some evaluations v and § such that v(z™) ~- §(z7).

Suppose U & ¢[v]. Tt is equivalent to U &= 1[y'] for some evaluation v’ such that v'(y) = v(y) for
any y° # a”.

Define an evaluation & on U setting &'(y) = d(y) for every y” # z” and §'(z) = 7'(z). Then
&'(y) = d(y) ~o v(y) =7'(y) and &'(z) =+ (2), i.e., §'(z) ~- 7/ (2).
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Since &' ~ 7' in the above indicated sense, by our condition, we conclude that U & ¥[y'] < U &
[6']. Consequently, we obtain the property U &= %[6']. By construction, §'(y) = §(y) for every
v’ # .

By the definition of satisfiability, we conclude that U = ¢[d]. The inverse inference of U = ¢[v]
from U [ ¢[d] is established quite analogously.

Now, let ¢ =1 A €. Then ¥,€ € U,,_1, whence U = ¢[y] © U E ¢[§] and U E £[y] < U = &[4].
Hence (U E ¢[y] AU EEY]) < (U E$[6] AU £[6]). Thus, U ¢[v] < U E ¢[4].

Finally, let ¢ = —t. Then ¢ € ¥,,_;. Consequently, U = ¢[y] « U &= ¢[é]. From here U
el —(UEYN]) < —UEd]) < Uk e[d]

This proves that the assertion A(n) is true. By the complete induction principle, the assertion
A(n) is true for every natural number n € wo, i.e., the assertion of the Proposition holds for every
formula ¢ € 0.

Now let ¢ be an arbitrary formula of the language L(X§). By virtue of Proposition 1 we have
Uk ply] © Uk e*[y] and U & ¢[§] < U E ¢*[d]. By the definition of the operation ¢ — ¢™*, we
have ¢* € U. As was shown above, U = ¢*[7] « U &= »*[§]. As a result, we obtain the equivalence
Uk o[y] © U E pld]. O

3.4 Examples of good models for the second-order equality axioms

Construct for axioms E1-E4 two regular, balanced, extensional, second-order models.

Take p=0, 0 = [p], © = {p,0}, Qp = &, Qo =, X2 =, and X7 = &. Then X = (J,,00),
Oy = {0}, Xy = (e+ | T€ Oy), i.e., Ty consists of the symbol e, = e[, only, and the collection
¥, = (X7 | 7 € ©) consists of a denumerable set X of variables ”,y”, ... of the first-order type p
and a denumerable set X7 of variables u?,v?,... of the second-order type o.

Consider the signature ¥ = X. | . | ¥ | ¥,. This language contains the three atomic formulas:
xP0,y”, u’0,v° and zfe,u’.

Ezample 1. Take the set Q = Z x (Z\{0}) of all rational fractions p = “* as the set A;. Since
Q, = Q, = &, there are no constants.

For fractions p = = and p = 2 put p ~, ¢ if mt = ns in Z. For sets P,Q € P(A1) put P ~, Q
if Vpe PIqe@Q (p~pq) An(Vge @3Ipe P (q ~,p)). Itis clear that the generalized ratio
of equality ~, is wider than the usual set-theoretical ratio of equality = in ST. For example, for
Py={2,2} and Qo = {3, 2, 3} we have Py ~, Qo but Py # Qo.

For a fraction p € A; and a set Pe P(A1) put p &€; Pif3ge A1 (q~,p A q€e P).

It is clear that the generalized ratio of belonging &, is wider than the usual set-theoretical ratio of

belonging € in ST. For example, % &, Py and g &, Py but 1% ¢ Py and g ¢ Po.

The collection of terminals S; = (7(A1) | T € ©) consists of the terminal p(4;) = A; and the
terminal o(A;) = P(A1).

The constructed collections form the superstructure S; over the set A;. Consider the mathematical
system Uy = (A1, 51) of the signature 3.

Ezample 2. Take the set of all closed segments p of straight lines on the plane as the set A2. Since
Q, = Qs = &, there are no constants.
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For segments p,q € A2 put p ~, ¢ if ¢ is obtained from p by some parallel transfer. For sets
P,Q € P(A2) of segments put P ~, Q if

(VpePIgeQ(p~pq) A(VgeQ3Ipe P (q~,p)).

For a segment p € A and a set of segments P € P(Az) put p €, P if 3g€ Az (¢ =, p A g € P),
i.e., the segment p can be transferred into the set P by some parallel transfer.

The collection of terminals S2 = (7(A2) | 7 € ©) consists of the terminal p(A42) = Az and the
terminal o(Az) = P(A2).

The constructed collections form the superstructure S2 over the set As.
Consider the mathematical system Uz = (A2, S2) of the signature X.

Propositon 1. The above-constructed mathematical systems Ur and Uz are the regular, balanced,
extensional, second-order models for equality axioms E1-E4.

Proof. The correctness of the equality axioms is evident. The regularity follows from the definition.
The same is true for the balance property.

Check the extensionality property. Let P,Q € 0(A) = P(A). Assume p € P. Then p &€, P. Suppose
the right side of the extensionality formula. By condition we conclude p &€, Q). By the regularity
property there exists an element g € () such that ¢ ~, p. The inverse finding of an element p € P
for a given element g € Q such that p ~, ¢ is established quite similarly. In accordance with the
definition of the equality ~, we conclude that P ~, Q. Thus, we have inferred the left side of the
extensionality formula. It follows from the correctness of axiom E4" that the left side implies the
right one. O

4 The Generalized Second-order Dedekind Theory of
Real Numbers

4.1 The signature for the generalized and the standard second-
order Dedekind theories of real numbers

Consider the first-order type m = 0, the second-order types s = [n], p = [7, 7], and A\ = [, 7, 7]
and the type domain © = 0%, = {m, >, p, A} with the belonging type subdomain O, = {3, p, A}.

Put Qr =2, Q. =9, Q, = 3, 2\ = 2, and consider the collections

ST = (07 | we Q) = (03, 07), 5= (0% |we ) = 2,

= (o |we,) = (d5,07,05), and ¥} = (O’j, |we QA) = (00, 07).
They compose the signature of constants of the type domain © of the form ¥, = (X7 | 7€ ©) =
((aS,a{'L@,(US,O'f,UQ’L(U(},Uf‘)) containing the objective first-order constants of and o] for
denoting the real numbers 0 (null) and 1 (unit), respectively, the predicate second-order constants o),
of, and of for denoting the ratio of negation, the ratio of inversion, and the ratio of order,

respectively, and the predicate second-order constants o¢ and o7 for denoting the ratio of addition
and the ratio of multiplication, respectively.

Further, along with of, o7, of, 0¥, ¢4, 0f', and o7 we shall simply write 0, 1, —, /, <, +, and -,
respectively.
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Take the signature of the generalized equalities of the type domain © of the form ¥ = (4. | 7€ ©) =
(0x, 05, 0p,0x) containing the first-order equality d, and the second-order equalities (], Opx,x],
and 5[.”17“7,].

Take the signature of the generalized belongings of the type domain © of the form ¥, = (e- | 7 € ©y) =
(&3 €pyE0).

Finally, take a denumerable set 37 of objective variables ™,y ,... of the first-order type m and
denumerable sets £, £ and X of predicate variables u”,v*, ..., u”,v”, ..., and v, v, ... of the
second-order types s, p, and A, respectively.

They form the signature 3, = (X7 | 7 € @) = (X7, 5%, 58, %)) of variables of the type domain ©.

Consider the generalized signature %, = X.|Zc|%y|X, and the corresponding language L(X%,).
Terms p,q,r,s,... of this language are constants and variables only; the atomic equality formulas
have the forms ¢™ 6 r™, ¢ .. ™, ¢ 0, r*, and ¢ 6x . Respectively, the atomic belonging
formulas have the forms ¢™ €. 7, (p™,q") €, r°, and (p™,q", ™) €x s™.

Further, along with =™, y™, and d, we shall simply write =, y, and §, respectively.

Along with the generalized signature %%, we consider the standard signature X3, = S.|S5HZ5 5.,
where in the signature of the standard equalities L5 = (5T“| TE 9) the type equalities 6, are
one and the same standard equality 6°° and in the signature of the standard belongings 3;f =
(575t| TE @b) the type belongings e, are one and the same standard belonging £°*.

Respectively, this signature 5% generates the standard language L(X3,) with atomic equality
formulas of the forms ¢™ 6% ™, ¢ 6%t v, ¢° 6°' v?, and ¢* 6°' r* and with atomic belonging
formulas of the forms ¢™ e* v, (p™,¢™) € v, and (p™, ¢, r™) € s> for all terms p,q,7,s, .. ..

4.2 The axiomatics for the generalized and the standard second-
order Dedekind theories of real numbers

The signature X%, gives the opportunity to define the language L(X%,) and to construct the
desired models of the generalized second-order theory of real numbers, but the absence of functional
variables in this signature makes the writing of generalized axioms for this theory very unusual.
Only the names of these axioms placed in round brackets clarify their customary sense.

The azioms of the generalized second-order Dedekind theory of real numbers are the following ones.

A1 (the emistence and functionality of the negation).

(Ve 3y ((z,9) ep =) A (Va,uy" ((,9) ep =) A ((2,9) g =) =y 6 y).

A2 (the ezistence and functionality of the addition).

(Va,y 3z ((m,9,2) ex ) A (Va,y,2,2" ((m,y,2) ex +) A (2,9,2) ex +) = 26 2).

A3 (the existence and functionality of the inversion).

(Vo (=(z60) =3y ((z,y) &0 /) » (Va,y ((z,y) & /) = —(x 6 0))) A
A,y y ((@y) e /) A ((@y) e ) =y 0 y).
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A4 (the existence and functionality of the multiplication).
(any 3z ((:E?yv Z) X )) A (Vﬂfa% zazl ((:E?yv Z) EX ) A ((xay7zl) EX ) =2z0 Z,)'
The appearance of axioms Al-A4 in this list is directly impelled by the absence of functional
variables in the signature 3%,.
A5 (the non-equality of the unit and the null). —(1 6 0).

A6 (the associativity of the addition).

Va,y,z Yur,uz,vi,v2 (((x,y,u1) ex +) A ((u1, z,u2) ex +)A

A ((y,z,01) ex +) A ((z,v1,v2) ex +) = u2 0 v2).

The writing of axiom A6 in the common way: Vz,y,z (((z + y) + 2) 6 (z + (y + 2))).
AT (the neutrality of the null).

Va Yu,v (((z,0,u) ex +) = ud z) A (((0,z,v) ex +) = v § z)).

A8 (the elimination of the negation).

Vo Vur,uz,v,v2 ((z,u1) gp —) A ((z,u1,u2) ex +) = uz 6 0)A

A (((z,v1) €p =) A ((v1,2,02) ex +) = v2 6 0)).

A9 (the commutativity of the addition).

Vo, y Vu,v (((z,y,u) ex +) A ((y,2,v) ex +) = u d v).

A10 (the right distributivity of the multiplication with respect the addition).

V%y:«z Vu1,u2,v1,v2,v3 (((y,z,u1) EX +) A ((x,ul,uQ) EX ')/\

A ((zyy,v1) ex ) A (7, 2,02) ex -) A ((v1,v2,03) Ex +) = ugz 6 v3).
The writing of this axiom in the common way: Vz,y,z (- (y +2)) 0 (x -y + x - 2)).
A11 (the left distributivity of the multiplication with respect the addition).

Va,y,z Yur,ue,v1,v2,v3 (((x,y,u1) ex +) A ((u1,2,u2) €x ) A

A (@, z,01) ex <) A ((y,2,02) ex +) A ((V1,02,08) ex +) = u2 0 v3).
A12 (the associativity of the multiplication).

V:L'7yyz VU1,U2,’U1,'U2 (((:‘C?yvul) EX ) A ((Ul,Z,’lLQ) EX ')/\

A ((y,z,v1) ex ) A ((z,01,02) €x +) = uz § v2).
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A13 (the neutrality of the unit).

Va Vu,v (((z,1,u) ex ) =udz) A (((1,z,v) ex -) = v d x)).

A14 (the elimination of the inversion).
Vo Vu,u2,vi,v2 (—(z60)= (((z,u1) e, /)A
A ((xvulaU’Q) EX ) =uz § 1) A (((mavl) Ep /) A ((’Ul,(L',’U2) EX ) =24 1))
The writing of A14 in the common way is the following:

Vo (=(zd0)= (z-(z ) d1) A ((z ") zd1).

A15 (the commutativity of the multiplication).
vxvy Vu,v (((x,y,u) EX ) A ((y,x,v) EX ) =ud U)'

Further, along with (z,y) £,< we shall write z < y as well. It gives the opportunity to write the
subsequent axioms in a more customary form.

A16 (the reflezivity of the order). Vo (z < ).
By E4 we get z d y = (v < * < x < y). Applying A16, we conclude that z § y - = < v.

A17 (the antisymmetry of the order). Va,y ((z <y) A (y <z)) =2z dy).
A18 (the transitivity of the order). Vz,y,z (zx < y) A (y < 2)) =z < 2).
A19 (the linearity of the order). Yz,y ((z <y) v (y < z)).

A20 (the compatibility of the addition and the order).

Va,y,z Vu,v (z <y = (((z,z,u) ex +) A ((y,2,0) ex +) = u < v)).

A21 (the compatibility of the multiplication and the order).

Ve,yVu (2 =0) A (y=0) = (((z,y,u) ex -) = u = 0)).

A22 (the ezistence of Dedekind cuts).

Vu* 0" (Fz (ze.u) A Ty (yexv™))A
AVz((zexu") v (ze ) AVa,y (xexu™) A (yexrv™) =2 <y)) =

= FzVa,y (ze. ) A (ye.v™)= (x<2) A (2<y)))).

Submodels of nonstandard reals described on a first-order language with some generalized Dedekind
completeness axiom stated in the form of an axiom scheme can be found in [18].

Consider the following generalized extensionality properties.

PE1l. Vu*,v* (u” 6, v* & Vz (T .. v & &, vF)).
PE2. Vuf, v? (u” 6, v° & Vz,y (z,y) e, v < (z,y) €, 7).

PE3. Vu*, 0™ (u 6y v* & Va,y,2 (x,y,2) ex vt < (z,9,2) ex vV)).
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The theory determined by the language L(X%,) and the set of axioms U§ = {E1-E4, A1-A22,
PE1-PE3} can be called the generalized second-order Dedekind theory of real numbers. It will be
denoted by Th%,.

Respectively, in the language L(X%,) we can write formulas E1°/-E4¢, A1'-A22°" PE1**-PE3*¢,
which are obtained from the corresponding formulas E1-E4, A1-A22, PE1-PE3 of the language
L(X2%,) by the substitution of the generalized type equalities and belongings 6, and &, by the
standard ones 6% and °%, respectively.

The theory determined by the language L(X%,) and axioms E1°*-E4°*, A15"-A22°", PE1°*-PE3**
can be called the standard second-order Dedekind theory of real numbers. It will be denoted by
Thil,.

4.3 The canonical generalized and standard second-order Dedekind
real axes

Consider the canonical set R of all real numbers constructed in the considered set theory ST (see,
e.g., [14, 1.4] for NBG set theory and [13] and [14, B.1] for the LTS).

For the set R and the signature X%, consider the collections
St = (se |weQx) = (50,51)s S =(s5 |we Q) =0,
SP = (st |we,) = (sh,s7,s5), and 52 = (s) | w e Q) = (s0,51)-
They compose the collection of constants structures
Se = (SI | 7€©) = ((s5.57): 2, (55, 57, 55, (50, 51))

containing the constant structures sj,s7 € m(R) = R which are the neutral real numbers, the
constant structures s§, s%, s5 € p(R) = P(R?), which are the ratio of negation, the ratio of inversion,
and the ratio of order on R, respectively, and the constant structures s, s} € AR) = P(RS) which
are the ratio of addition and the ratio of multiplication on R, respectively.

Further, along with s7, sT, s, s%, s5, s3, and s7 we shall simply write O, 1z, —&, /r, <, +&,
and -g, respectively.

Consider the collection of the equality ratios of the form
Se = (xr| 7€ 0) = (xr, 2, xp, 20 = (= [R%, = [P(R)?, = [P(R?)?, = [P(R?)?)

containing in the capacity of the first-order equality ratio ~, and of the second-order equality
ratios ~;, ~,, and ~, the restrictions on the indicated sets one and the same set-theoretical
equality in ST.

Consider the collection of the belonging ratios of the form
Sy = (€| 7€ ) = (€x, €, €) = (€ |(R x P(R)), € |(R* x P(R?)),€ |(R® x P(R?)))

containing in the capacity of the belonging ratios &.., €,, and € the restrictions on the indicated
sets one and the same set-theoretical belonging ratio € in ST.

Finally, take the collection of the terminals over the set R of the form

Su = (7(R) | 7 € ©) = (n(R), #(R), p(R), A(R)) = (R, P(R), P(R*), P(R?)).
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These collections compose the superstructure Srz = (Sc, Se, Sy, Sv) of the signature ¥%,. The
system (R, Sgz) of the signature 3%, can be called the canonical generalized second-order Dedekind
real axis in ST. It will be denoted by Rj.

Consider an evaluation ¢ on the system Rj such that ((z) € 7(R) = R, {(u”) € »(R) = P(R),
((u”) € p(R) = P(R?), and {(u*) € A(R) = P(R?).

Thus, we get the evaluated system (R, ().

The above constructed superstructure Sgo is also the superstructure of the signature 33,. Therefore
the system (R, Sg2) is also the system of the signature Y3,. It can be called the canonical standard
second-order Dedekind real axis in ST. It will be denoted by R3'.

The evaluation ¢ on the system RJ considered above is also an evaluation on the system R3‘.
Therefore we may consider the evaluated system (R$', ().

Let B be a set and Tg, be a superstructure on B of the signature X5,. Consider the system
V = (B,T35) and some evaluation n on V. For the evaluated system (V,7n) we shall use the
following designations: 05 = o [n], 1s = o7 [n], —5 = o4[n], /5 = o7 [n], <p= o4[nl, +5 = o0 [n],
and -p = a7 [n).

The (standard) satisfaction U s @[] of a formula ¢ of the language L(X%,) on the system V of
the signature Y5, with respect to the evaluation n differs from the (generalized) satisfaction from 3.2
only in the first two points:

1’. if ¢ and r are terms of a type 7 € © and ¢ = (q 6°' ), then V k4 ¢[n] is equivalent to
q[n] = rnl;

2'. if 70,..., 7 are types from © for k > 0, 7 = [70,...,7k] € ©, qo, - - - , g are terms of the types
To, - - - ,Tk, Tespectively, 7 is a term of the type 7, and ¢ = (qo, ..., qx) €% 7, then U E ¢[n]
iff (qo[n], - .., ar[n]) € r[n].

Let ® be a set of formulas of the language L(X%,). As in 3.3 the evaluated system (V,7) of the
signature 5%, is called a standard model for the set ® if V =g [n] for every ¢ € .

Now we can formulate some initial theorem about the standard R3' and the generalized R Dedekind
real axes.

Theorem 1.
1. The mathematical system R3' is a standard model for the theory Thil, in the language
L(3%,)-
2. The mathematical system Rj is a (generalized) model for the theory Th¥, in the language
L(%hs)-

Proof. 1. Note that all the axioms from the set ¥§ are closed formulas. Therefore the satisfaction
R§' = o] for a € U] means the deducibility of the relativization a” of o on R in the considered
axiomatic set theory ST. But the corresponding deducibility of every a" is very well demonstrated
in mathematical literature (see, for example, [19, 1, 20, 21, 22, 14]).

2. This assertion follows directly from assertion 1 by virtue of the inclusions = |7(R) x 7(R) c~,
and € |7(R) x 7(R) c&, from 3.2, where the left parts of the inclusions are the restrictions of the
usual set-theoretical ratios = and € on the indicated sets. O

The models from Theorem 1 are called canonical.

It is well known that the theory Thi, is categorical. On the contrary, we shall prove that the
theory Th¥%, is non-categorical. More exactly, using the initial canonical model RJ with the
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support R we shall prove the existence of some non-canonical models for the theory Th%, having
arbitrary large powers.

This statement can be proven with the help of the generalized infrafiltration theorem (see, e.g.,
[11] or [14, C.3.2]). But to make the paper self-contained we prefer to prove here some more simple
variant of the generalized infrafiltration theorem than it is presented in the indicated works.

5 The infraproduct construction of evaluated systems
of the signature X}

5.1 Infraproducts of collections of evaluated systems of the signature
5

Let F be a fixed non-empty set and (Uy | f € F) be a fixed collection of mathematical systems of

the signature ¥§ with true generalized equalities and belongings.

By definition, Uy = (Ay, S¢). Consider the set A=T[[(Ay | f € F).

Let 7 = [70,...,7k] be a second-order type and k > 0. If y € k + 1, then 7, = 0. Thus,
we see that 7,(A) = A =[[(Afs | f € F) = [[(ru(Ay) | f € F). For elements p € 7(A) =
T0(A)x---x7,(A) = A** and f € F define the element p(f) € 7(A;) = 7o(Af)x---x7k(Af) = A’;H
setting p(f)(u) = p(p)(f) for every pe k + 1.

For elements P < 7(A) and f € F define the element P{f) < 7(Ay) setting P{f) = {€ € 7(Ay) |
Ipe P (p(f) = &)}

Let D be a subset of the set P(F), i.e., an ensemble on F. Define some superstructure S of the
signature ¥§ over the set A.

First, define constant structures s/, € 7(A) for 7 € © and w € Q.

If 7 is a first-order type, then 7(A) = [[(r(Af) | f € F). Therefore define s, € 7(A) setting
so(f) = s;f for every f € F.

Put s, ={pe7(A)|VfeF (p(f)€s,y)}if 7 =[r0,...,7%] is a second-order type.
As a result, we obtain the collections S7 = (s, | w € ©;) and the collection S. = (S7 | 7 € ©).

Now define generalized equality ratios ~.c 7(A) x 7(A4). If 7 is the first-order type, then for
p,geT(A)put p~r qif IGED Vge G (p(g) ~rg a(9)).

If 7 = [70,...,7k] is a second-order type, then for P,Q < 7(A) put P ~, Q if 3G € D Vg €
G (PXg) ~7,9 QL9))-

As a result, we obtain the collection S. = (~-| 7 € ©).
Now define generalized belonging ratios €< 7(A) x 7(A).

By definition, 7 = [70,...,7%] for some 7o,...,7 € ©. For p € 7(A) and P < 7(A) put p €, P if
3G eDVgeG (p(g) €4 P{g)). Note that the usage of a generalized belonging ratio was explored
in the forcing method in the form z €, y (see, e.g., [17, 9.8]).

Thus, we obtain the collection S, = (&,] 7 € ©).
Consider also the collection S, = (7(A) | 7 € ©) consisting of the 7-terminals of the set A.

The constructed collections compose the superstructure S = (Se, Se, Sb, Su) over the set A. Therefore
we can consider the mathematical system U = (A4, S) of the signature X5. It will be called the infra-
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D-product of the collection of mathematical systems (Uy | f € F) of the generalized second-order
signature 3 and will be denoted by infra-D-prod(Uy | f € F).

An ensemble D on F is called a filter on F' if it has the following properties:
1. VG,HeD (Gn He D),
2. VGeDVYHeP(F) (Gc H= HEeD).
A filter D is called proper if D # P(F). A proper filter D is called an wltrafilter if for any proper

filter £ on F such that D < £ we have D = £, i.e., D is a maximal element in the set of all proper
filters on F'.

A pair (G, H) of subsets of F is called a binary partition of F if Gn H = @ and G U H = F.
A filter D is a ultrafilter iff it has the binary partition property, i.e., if for every binary partition
(G, H) of F either Ge D or H € D (see [2, Exercise 2.119]).

Further on, we assume that D is a filter.

Now let ((Uys,v¢) | f € F) be a collection of evaluated mathematical systems of the second-order
signature ¥§ with true generalized equalities and belongings.

Define an evaluation « on the system U = infra-D-prod(Us | f € F) in the following way.

Let « be a variable of a type 7. If 7 is the first-order type, then define v(z) € 7(A) setting
Y(x)(f) = vs(x) for every f € F. If 7 = [10,...,Tk] is a second-order type, then put v(z) = {p €
F(A) [Vf e F (p(f) € yr(2))}-

The evaluation v will be called the crossing of the collection of evaluations (s | f € F) and will be
denoted by i (v | f € F).

Lemma 1. Let (Ug,v¢) | f € F) be a collection of evaluated mathematical systems of the second-
order signature 33 and let every system (Uy,~s) be a model for equality azioms E1-E4. Then the
pair (infra-D-prod(Uy | f € F), > (v¢ | f € F)) is also a model for azioms E1-E4.

Proof. Let to,to € 10(A), ..., ts, t, € Ti(A), P,P' < #(A) = 70(A) x ... x 7(A4), p = (to,...,tx),
p = (ty,...,ty), p~+p,and P ~, P'.

Assume that p &€ P. According to the definition of the belonging, we get 3G1 € D Vg €
G1 (p(g) €r,9 P{g)). By the definition of the first-order equality, 3G2 € DV g € G2 (p(g) ~+,4 P'(9)).
Finally, by the definition of the second-order equalities 3G3 € D Vg € G (P{g) ~-,4 P'(g)). Since
every system (Uy,~,) satisfies E4, we see that p'(g) €, P'(g) for every g € G = G1 n G2 N G3.
Thus, p’ €, P’. Hence, p €& P = p’ @ P’. The inverse implication is checked quite similarly. This
proves axiom E4. The validity of axioms E1, E2, E3 is obvious. O

Further, for a formula ¢ € L(X) the set {f € F'| Uy k= ¢[v]} will be denoted by G,,.

Lemma 2. Let 7 = [70,...,7k] be a second-order type. Let sl, be the constants constructed above
for the support A=[](As | f € F). Then s,(f) = si,; for every f € F.

Proof. Let & € s,(f), i.e., & = p(f) for some p € s;,. By definition, £ = p(f) € s,;. Consequently,
5u(f) < sy

Conversely, let £ € s;,;. Using the axiom of choice we can find a collection (£, | g € F\{f}) such
that £, € s],. Define the element p € 7(A) setting p(u)(g) = &y(u) for every g € F and every
p € k+1. Then p(g) = & € s, for every g € F implies p € s;,. Since {; = p(f), we have &; € si,(f).
Hence, s, < so,{f)- O

Lemma 3. Let 7 = [10,...,7x] be a second-order type. Let x be a variable of the type T and v(x) be
the evaluation constructed above for the system U = (A, S). Then y(x){f) = vs(x) for every f € F.
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The proof is completely similar to the proof of the previous lemma.

An approach to constructing non-standard analysis avoiding ultraproducts as well as adding the
new axioms to set theory is presented in [23].

5.2 Infrafilteration of formulas of the second-order language L(X9)

Consider a non-empty set F' and a filter D on F'.

By analogy with the first order language (see [15, § 17], [16, 8.2]) a formula ¢ of the language L(23) of
the second-order signature 33 with generalized equalities and belongings will be called infrafiltrated
with respect to the filter D if for every collection ((Uys,~y) | f € F) of evaluated mathematical systems
of the second-order signature X§ with true generalized equalities and belongings the property
infra-D-prod(Uy | f € F) = @[ (v¢ | f € F)] is equivalent to the property {g € F' | Uy = [v4]} € D.

Lemma 1. Every atomic formula is infrafiltrated with respect to any filter D on the set F'.

Proof. First, consider an atomic formula ¢ of the form ¢”d,r". Assume that ¢" = 27 and " = o[
Then U & ¢[v] is equivalent to vy(z) ~, si,, and analogously for the pair (Uy,v¢).

Let 7 be the first-order type. Let G, € D, i.e., v4(x) ~r4 So4 for every g € G, € D. Then
vYg(x) = v(x) and s, = si,(g) implies v(x)(g) ~+ 4 55, (g) for every g € G, € D. Thus, v(z) ~- s,
e, Uk gll.

Conversely, let U = ¢[7], i.e., v(x) ~; sl,. Then there exists G € D such that y(z)(g) ~r4 s5(g)
for every g € G. But it means that v4(x) ~r 4 554, i.€., Uy = @[vy] for every g e G € D.

Since G < G, we have G, € D.

Now let 7 = [70,...,7&] be a second-order type. Let G, € D, i.e., v4(x) ~rq4 s,, for every
g € G, € D. According to Lemmas 2 and 3, the equalities si,;, = s.,{g) and ~v,(z) = v(x){g) are
correct. Therefore vy(z){g) ~- 4 s,{g) for every g € G, € D.

Consequently, v(z) ~, s, i.e., U E ¢[v].

Conversely, let U k& ¢[v], i.e., v(x) ~, si,. By the definition of the second-order equality,
Y(x)g) =~rg si{g) for some G € D and every g € G. Using Lemmas 2 and 3 we obtain
Vg(T) A7 g Sigs 1-€., Uy = @[v,] for every g € G € D. Since G < G, we infer that G, € D.

For the terms ¢” and 7" of other forms the reasons are quite similar.

Now consider an atomic formula ¢ of the form (¢;°,...,q*) e 77 for 7 = [710,...,7k] € On.
Assume that ¢* = 2}* and »” = u” for some variables z) and u. Then U £ ¢[7] is equivalent to
(v(z0),...,v(xk)) € v(u) and analogously for the pair (Uy,~y).

Let G, € D, i.e., (vg(xo),.--,vg(Tk)) €rg vg(u) for every ¢ € G,. Consider the elements
ff = (,Vf(xo)v s ,'Vf(mk)) and p = (7(:80), s ,’7(37k)) € %(A)

Let f e F. Then p(f)(n) = p(p)(f) = v(zu)(f) = v¢(zn) = & (n) for every pu € k+1. Consequently,
p(f) = &. By Lemma 2 v¢(u) = v(u){f). As a result, we obtain p(g) &,4 v(z){g) for every
g € G, € D. By definition, it means that p € y(z), i.e., U k= ¢[7].

Conversely, let U E ¢[v], i.e., (y(zo),...,7(zx)) € y(u). By the definition of the second-order
belonging, for p = (y(x0),...,7(zx)) there exists G € D such that p(g) €4 v(u){g) for every g € G.
By Lemma 3 v(u){g) = 74(u). By the previous subsection, £, = p(g). Consequently, {; & 4 v4(u),
i.e., Uy = ¢[vg] for every g € G. Since G < G, we infer that G, € D.

For the terms ¢, and r7 of other forms the reasons are quite similar. O
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A proof of the property of infrafiltration for the quantified formula 3z7¢ for the language L(X9)
of the generalized second-order signature 3§ is more delicate than for the first-order language.
Therefore we begin it with a subsidiary proposition.

Let (Us,vs) | f € F) be a collection of evaluated mathematical systems of the second-order
signature 3 with true generalized equalities and belongings. Let 8 be an evaluation on the system
U = infra-D-prod(Uy | f € F).

For the evaluation § and for every f € F' define the evaluation §; on the system Uy in the following
way. Let z be a variable of a type 7. If 7 is the first-order type, then put d;(z) = S(z)(f). If 7 is
a second-order type, then put é¢(x) = B(x){f). Consider the evaluation 6 = x(ds | f € F).

Propositon 1. The equalities §(z7) ~, B(z™) hold for any variable z7.

Proof. If 7 is the first-order type, then by the definition of the evaluations § and Jy we obtain
6(x)(f) = 05(x) = B(z)(f) for any f € F, i.e., 6(z) = B(x).

Let 7 be a second-order type. Lemma 3 implies §(z){f) = d;(z) = B(z){f) for any f € F. By the
definition of the second-order equality, we conclude that d(x) ~- B(x). O

Propositon 2. Let a formula v be infrafiltrated with respect to the filter D. Then the formula
Jz7 ) is infrafiltrated with respect to D as well.

Proof. Denote the formula 3z by ¢. Let G, € D, i.e., Uy k= ¢[v4] for every g € G, € D. Further,
we shall write simply G instead of G,.

The presented satisfaction property means that U, k&= 9[v;] for some evaluation 7, such that
/ o T : . — :
YY) = v4(y) for every y” # a7. For every f € F define the evaluation &y setting 6y = ~y if

feF\Gand 6y =~} if feG.

Check that the evaluated systems (Uy,ds) and (Ug,d,) are H-concordant for every f,g € F. If
f,g € F\G, then dy = v and §; = 4. Since the evaluations vy and -4 are H-concordant, our
assertion is true. Let f,g € G. Then dy = v} and §; = ;. Let = be a variable of a type 7.

Consider the evaluation 6§ = x(d; | f € F). Check that §(y) = v(y) for every y7 # z7.

Let o be the first-order type. Then 6(y)(g) = dg(y) = v5(y) = v9(y) = Y(y)(g) for g € G. If
fe F\G, then 6(y)(f) = d7(y) = v¢(y) = ¥(¥)(f). Consequently, 6(y) = (y)-

Let o be a second-order type. If f € G, then 6;(y) = v (y) = vs(y). If f € F\G, then 6;(y) = vs(y).
Let p € 6(y). By the definition of the crossing, p(f) € ds(y) for every f € F. By the above,
p(f) € v¢(y) for every f e F. This means that p € y(y), whence 6(y) < v(y). The inverse inclusion
is checked in the same way. Consequently, d(y) = v(y).

Thus, for every y # = we have §(y) = v(y).

By condition and construction, Uy = ¢[d4] for every g € G € D. Since the formula 1) is infrafiltrated,
the obtained property implies the property U &= ¢[8]. Since 6(y”) = v(y°) for every y” # =7, we
obtain the property U = ¢[7].

Conversely, let U = ¢[v]. It is equivalent to U = v[f] for some evaluation 8, H-concordant with
the evaluation v and such that 8(y) = v(y) for every y7 # z7.

Consider the evaluation § = x (05 | f € F) from Proposition 1, corresponding to the evaluation .
According to Proposition 1, 6(2°) ~, 3(2”) for every variable z”. It follows from Proposition 2 that
the property U k ¢[3] is equivalent to the property U & 9[d]. Since the formula v is infrafiltrated,
the property U k= v[d] is equivalent to the property G = {g € F | Uy = ¢[d,4]} € D.
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Let y” # 2. If o is the first-order type, then d4(y) = B(y)(9) = Y(y)(9) = v(y). If o is a
second-order type, then d4(y) = B(y){g) = ~(y){g). Since by Lemma 3 ~(y )( Y = v4(y), we
have d4(y) = v4(y). Consequently, in all the cases dq4(y) = 74(y) for every y° # z”. Therefore the
property Uy = 9[d4] is equivalent to the property Uy = ¢[vy]. Thus, {g€ F | Uy = ¢[v4]} = G € D.
This implies G, € D. O

The following two lemmas are the same as ones for the first-order language.

Lemma 2. Let formulas ¢ and £ be infrafiltrated with respect to the filter D. Then the formula
P A & is infrafiltrated with respect to D as well.

Proof. Denote the formula 1 A £ by ¢. Let G, € D, i.e., Uy = ¢|v4] for all g € G, € D. This
property is equivalent to the conjunction of the properties Uy, E ¥[v,] and Uy = &[vg]. Since
these formulas are infrafiltrated, it is equivalent to the conjunction of the properties U = 9[v] and
U E €[], but it is equivalent to the property U k= ¢[v].

Conversely, let U E ¢[y]. It is equivalent to the conjunction of the properties U E t[v] and
U &= €[v]. Then Gy € D and G¢ € D. Consider G = Gy N Ge. Then Uy = Y[v4] and Uy E £[7y]
implies Uy = ¢[vq] for every g € G € D. Hence, G, € D. O

Lemma 3. Let a formula i be infrafiltrated with respect to the ultrafilter D. Then the formula —
1s infrafiltrated with respect to D as well.

Proof. Denote the formula —1 by ¢. By assumption, the properties Gy € D and U £ ¥[v] are
equivalent.

By definition, F\G, = {g € F | the property U; & ¢[y4] does not hold}. But U, = ¢[v4] is
equivalent to the assertion that the property Uy E 9[v4] does not hold. Consequently the property
U, &= ¥[7,] is equivalent to the assertion that the property U, & ¢[v,] does not hold. It implies
F\G, =

Let G, € D. Since D is an ultrafilter, we have Gy, = F\G, ¢ D. So the property U k= v¢[v] does
not hold. By the definition of the satisfiability, it means that U = ¢[7].

Conversely, let U = ¢[y]. Then the property U k 9[v] does not hold. Therefore Gy, ¢ D. Since D
is an ultrafilter, we have G, = F\Gy € D. O

Theorem 1 (the generalized infrafiltration theorem). Fwvery formula ¢ of the language L(X3) of
the second-order signature %5 with generalized equalities and belongings is infrafiltrated with respect
to any ultrafilter D on the set F.

Proof. The set of all formulas ¢ of the language L(X9), constructed by induction from atomic
formulas by means of the connectives — and A and the quantifier 3, will be denoted by W. The
subset of the set W, consisting of all formulas containing at most n logical symbols —, A, and 3,
will be denoted by ¥,,. Obviously, ¥ = |J(U, | n € wo).

Using the complete induction principle we shall prove the following assertion A(n): every formula
p € VU, is infrafiltrated.

If n = 0, then ¢ is an atomic formula. By Lemma 1, it is infrafiltrated. Consequently, A(0) holds.
Assume that for every m < n the assertion A(m) holds.

Let ¢ € U,,. If ¢ = =), then ¢ € ¥,,_1. Therefore, ¥ is infrafiltrated. By Lemma 3, the formula
o is infrafiltrated as well. If ¢ = ¢ A &, then 9, & € U,,_1. Therefore, by the inductive assumption,
the formulas ¥ and £ are infrafiltrated. By Lemma 2, the formula ¢ is infrafiltrated as well.
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Finally, if ¢ = 3274, then 9 € ¥,,_;. Consequently, as above, the formula % is infrafiltrated. By
Proposition 2 the formula ¢ is infrafiltrated as well. Thus, the assertion A(n) holds.

By the complete induction principle the assertion A(n) holds for every n € wg. This means that
any formula ¢ € U is infrafiltrated.

Let ¢ be an arbitrary formula of the language L(X9). Consider for ¢ the accompanying formula
»* defined in 3.3. By the definition of the operation ¢ — ¢*, we have p* € ¥. By the proven
above, the formula ¢* is infrafiltrated, i.e., {g € F | Uy = ¢*[v4]} € D < U &= ¢*[v]. Proposition 1
implies the equivalences U = p*[v] & U E ¢[y] and Uy E ¢*[v,] © Uy E p[74]- As a result we
get the following chain of equivalences:

{9eF|UjeplvlleDe{ge F U =¥yl €D < Uk o*[v] < U = o]

It means that the formula ¢ is infrafiltrated. O

This theorem has one important corollary. Let @ be some set of formulas of the language L(X3) of
the generalized second-order signature ¥3. Let the set ® has a model (Uo,~0) of the signature X3
with true generalized equalities and belongings. Take an arbitrary set I’ and an arbitrary ultrafilter
D on F. Consider the collection of the models (Us,7vs) | f € F) such that (Uy,vs) = (Uo,70)-
The infra-D-product infra-D-prod(Uy | f € F) of the collection (Uy | f € F) will be called the
infra-D-power of the system Uy with the exzponent F and will be denoted by infra-D-power(Uo, F').
The crossing & (v¢ | f € F) of the collection (vf | f € F) will be called the crossing of the evaluation
o in the quantity F and will be denoted by > (vo, F).

Corollary 1. Let ® be some set of formulas of the language L(X%5). If the set ® has a model (Uo, o)
of the signature 33 with true generalized equalities and belongings, then for every set F' and every
ultrafilter D on F the set ® has also the model (infra-D-power(Uy, F), > (yo0, F)) of the signature ¥
with true generalized equalities and belongings.

5.3 Compactness theorem for formulas of the language L(3)

In the capacity of some pleasant complementary corollary to the infrafiltration theorem we deduce
the generalized compactness theorem for the language L(39). It is well-known that it does not hold
for the standard language L(235") [2, Appendix].

Theorem 1. Let ® and ¥ be some sets of formulas of the language L(X) of the generalized second-
order signature X9. Let for every finite subset f of the set ® the set of formulas f+(E1-E4)+¥ has
a model (Ug,~f) of the signature 9. Then the set of formulas ®+(E1-E4)+W¥ has a model (U,~)
of the signature ¥5.

Proof. Consider the set F = {f < ® |0 < |f| < w} of all finite non-empty subsets from ®.

For an element f € F consider the set Fy = {g€ F | f < g}. Since f € Fy, we have Fy # &. The
ensemble € = {Fy | f € F} has the finite intersection property, i.e., it is multiplicative. Hence,
there is some ultrafilter D on the set F' including the set €.

Consider the system U = infra-D-prod(Us | f € F) and the evaluation v = i (v¢ | f € F) on the
system U constructed in 5.1. By Lemma 1, U is a system with the true generalized equalities and
belongings.

Prove that the evaluated system (U, ) is a model for the set ®.

Suppose ¢ € ®. Consider the set Fi,y. By condition, Ui} E ¢[v(}]. Consider the set G, = {g €
F | Ug = ¢lyl}
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If g € Fy,, then {¢} < g implies ¢ € g. Therefore Uy = ¢[v4]. Consequently, Fi,; < G,. Since
F(,y € D, we have G, € D.

By Theorem 1 we infer the property U &= ¢[v]. Thus, (U,~) is a model for the set ®. The fact that
(U,~) is a model for the set ¥ follows immediately from Theorem 1. O

6 Inductive Sequence of Models of Non-canonical (Gene-
ralized Second-order Dedekind Real Axes with Expon-
entially Increasing Powers

6.1 The formulation of Final theorem

Final theorem.

(I) Let F be a fized non-empty set. Then there exist some sequence [HAQZ | i € wo) of sets R;, some
sequence (S; | @ € wo) of superstructures S; of the signature %, over the sets R, and some
sequence (u; | 1 € wo) of mappings u; : Ry — Ri1 such that:

(1) Ro = (Ro,So) = (R, Sra);
(2) every system R; = [HA&, Si) of the signature X%, is a model for the theory Th¥,;

(3) every mapping u; is an (~x,i, Xxi+1)-injective homomorphism of the signature X%,
from the system R; into the system R;i+1;

(4) the image of the system R; in the system R;y1 respectively to the homomorphism w; is
a submodel of the model Ri11;

(5) the support ]IA&-H of the system R;;+1 is the set I@f,

(6) (uip)(f) = p for every p € R; and every f € F, i.e., u;p is the {p}-valued function
on F.

(II) There exists some superstructure SWOAof the signature X%, over the set HA&JO = H[fR, | i € wo)
and some sequence of mappings w; : R; — Ry, such that:

(1) the system Ruy = (Ruy, Swy) of the signature %%, is a model for the theory Th%,;

(2) every mapping w; is an (Rxi, Xxw,)-injective homomorphism of the signature X%,
from the system R; into the system R ;

(3) the image of the system R; in the system R, respectively to the homomorphism w; is
a submodel of the model R, ;

(4) wi = wit1 0o, for every i € wo.

6.2 Detailed superstructures in Final theorem

Here we give the detailed description of the superstructures S; from Final theorem in the same
manner as it is given for the superstructure Sgs2 in 4.3.

The superstructure S; is the quadruple (Se,i, Se,i, Sb,i, Sv,i), where:

e the collection of constant structures Sc,; is the suit
((5701-’17 S;I',’i)’ @7 (88117 s?i7 8511)7 (Sé\,ia Si\’l)) = (027 11)5 @7 (71'7 /i7 gz)v (+17 1))7

e the collection of the equality ratios Se,; is the suit (Xx,i, Xs,i; Xp,i, x,i);
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e the collection of the belonging ratios Sy ; is the suit (€., €pi, €x,i);

e the collection of the terminals Sy,; over the set ]IAQZ is the suit

(m(Rq), (Ry), p(R), AR:)) = (Ri, P(R:), P(R?), P(R)).

6.3 The proof of Final theorem

(I) The construction of the infra-D-power of the system Up with the exponent F' from 5.2 gives the
opportunity to prove part I of the Final theorem.

Fix some ultrafilter D on F. We shall construct the necessary sequence of models by natural
induction. Take for the initial model Ry = []?Ro7 So) the canonical model R§ = (R, Sg2) from 4.3.
Assume that the model R; = [f&, S;) with some evaluation (; is constructed.

Take the system R;4+1 = [@Hl, Si+1) = infra-D-power(R;, F') and the evaluation (41 = > (¢, F)
defined in 5.1. According to Corollary to Theorem 1 the evaluated system (Rit1,Ci+1) is a model
for the theory Th%,. And the support Ri11 of this model is the set R = [[(Ris | f € F), where
@if =R, for every f € F. Since the set ¥§ of axioms of the theory Th%, from 4.2 consists of closed
formulas only, the system R;;1 is a model for this theory.

~

Define the mapping u; : R; — HA{Z-H setting (u;(p))(f) = p for every p € R, and every f € F. Check
that u; is (Rr,i, &r,i+1)-injective.

Take some p, q € ]IAQZ and suppose that u;(p) ~=+1 ui(q). By the construction from 5.1 there exists
G € D such that (ui(p))(g) ~rg,: (ui(q))(g) for every g € G. Since G # & we can take go € G.
Then (ui(p))(go) = p and (ui(q))(g0) = ¢ implies p ~x.; q.

The construction of constant structures presented in 5.1 implies immediately that u; is a homomor-
phism of the signature X%, from the system R; into the system R;;i.

(IT) The construction of the infra-D-product of the collection of mathematical systems from 5.1
gives the opportunity to prove part II of the Final theorem.

Fix some ultrafilter £ on wo. Take the system Ru, = (Ruy, Sw,) = infra-E-prod(R; | i € wo) and the
evaluation (,, = ™ ((; | ¢ € wo) defined in 5.1. According to part I and Theorem 1 the evaluated
system (Ruy, Cwo) is @ model for the theory Thra. Since the set U§ of axioms of this theory from 4.2
consists of closed formulas only, the system R.,, is a model for this theory.

Fix i € wo. Construct some mapping w; : HA%, — ]IA&,O by the inverse and direct natural inductions.
For the base of direct induction put (w;p)(i) = p and (w;p)(i + 1) = u;p. For the step of direct
induction put (w;p)(j + 1) = u;((wip)(5)) for j = i + 1. Fix some fo € F. Put (w;p)(i — 1) = p(fo)
for the base of inverse induction. For the step of inverse induction put (w;p)(j —1) = ((w:p)(4))(fo)
for 1 < j < i — 1. These constructions can be described in a more rigorous form based on [14,
Theorem 1(1.2.8)].

By the natural induction in ST it can be proved that w; is a homomorphism of the signature 3%,
from the system R; into the system R, (see the example of scrupulous arguments below).

Check that w; is (Rr,i, X w )-injective. Take some p,q € f& and suppose that w;(p) ~x,w, wi(q).
By the construction from 5.1 there exists J € £ such that (wip)(j) ~x,; (wiq)(y) for every j € J.
Consider the binary partition (i,wo\i) of wo. Since £ is a ultrafilter, we infer that either ¢ € £ or
wo\i € £. If i € €, then wo € € but it is not so. Hence, wo\i € £. This implies J N (wo\i) € €, and,
therefore, there is j € J such that j > i. Take ko = j — i.
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If j = ¢, then by the definition of w; we have (w;p)(i) = p and (wiq)(i) = q. Hence, p ~5; ¢q. If
j =1+1, then (wip)(i+1) = usp and (wiq) (¢ +1) = uiq imply (uip)(i+1) ~xit1 (uig)(i+1). Since
by assertion 3 of part I the mapping u; is (~x,:, &= i+1)-injective, we infer that p ~; g. Consider
in ST the set K ={k e N | (wip)(i + k) ~ritrr (wiq)(i + k)) = p ~x; q}. Let Psr be a totality of
axioms of the theory ST, i.e., ®gr consists of all explicit proper axioms of this theory, all implicit
proper axioms of this theory, and all implicit logical axioms of the predicate calculus (see, e.g., [14,
1.1.3-1.1.11 and A.1.2]). Denote the first formula in the definition of K by ¢(i + k) and the second
one by 1. We have proved in ST the existence of deduction ®sr, (i + 1) - 9. Since ST is the
first-order theory, we conclude that ®s7r - (i + 1) = @ by virtue of the deduction theorem (see,
for example, [2, Proposition 2.5] or [14, 1.1.3]). Hence, 1 € K.

Suppose that k € K and (wip)(i + k + 1) ~ritr+1 (wiq)(i + k + 1). By the definition of w; we
have (wip)(i + k + 1) = w11 ((wsp)(i + k)) and the same for g. Since by assertion 3 of part I
the mapping wit+x i8S (Xr itk, Xr,itk+1)-injective, we infer that (w;p)(i + k) ~x itk (wiq)(i + k).
Now from k € K we deduce that p ~; q. Thus, we have proved the existence of deduction
Dsr,p(i + k+ 1) - 1. As above this implies ®sr + ¢(i + k + 1) = 1, and, therefore, k + 1 € K.
By the principle of natural induction in ST (see [14, 1.2.6]) we get K = N.

This means that for our j = 7 + ko we have ko € K. Since j € J, we conclude that p ~; g. This
proves assertion 2.

Now we must only prove assertion 4. Fix p € R;. Then (uip)(f) ~ p for every f € F. By the
definition we have (wit1(uip))(i+1) ~ u;p ~ (wsp)(i + 1). For the base of direct induction we have

(wit1(wip)) (@ + 2) ~ vip1 ((wirr (wip)) (i + 1)) & w1 ((wip) (i + 1)) ~ (wip)(i + 2).
For the base of inverse induction we have

(wit1(uip)) (i) ~ (uip)(fo) ~ p ~ (wip)(7).

Then by the direct and inverse inductions we check that (wit1(uip))(j) ~x; (wip)(j) for every
j € wo. Hence, (wit1 0 u;)(p) ~rw, wi(p) for every p € R;. O

Remark 1. Since every set R, = ]IAQf_l for i > 1 consists of “real”’-valued functions p : F' — HAR,-A,
it is necessary to clarify directly the satisfaction of non-evident axioms A3 (the existence and
functionality of the inversion) and A19 (the linearity of the order) on the systems R;.

In case of A3 take any function p € ]IAQZ such that p #,; 0;, where 0; denotes the null in ]IAQZ
Consider the binary partition of F' consisting of the sets zer(p) = {f € F' | p(f) ~nr,f,i—1 0;—1} and
coz(p) = F\ zer(p).

Since D has the binary partition property, we have either zer(p) € D or coz(p) € D. In the
first case we conclude that p ~,; 0; but it contradicts our assumption. Hence, coz(p) € D and
p(g9) %ri-1 0;—1 for every g € coz(p). By A3 for every g € coz(p) there exists p(g)~" such that
(p(9),p(9)™") €p,i—1 [i—1. Define p~" setting p~'(g) = p(g)~" for every g € coz(p) and p~'(f) =
p(f) for every f € zer(p).

By the definition of p-belonging &, ; from 5.1 (p,p~') €, /;- Thus, we deduced the existence of
the inversion in R; from the existence of the inversion in R;_1 using the binary partition property
of the ultrafilter D.

In case of A19 take any functions p,q € R;. Since R,_; is linearly ordered with respect to the
order <;_1, we can take the binary partition of F' consisting of the sets

G={geF|(p(g)q9) €,i-1<i-1} and
H' ={he F|((qgh),p(h) € i-1<i-1) A (q(h) %x,i-1 p(h))}.
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By binary partition property of D we have either G € D or H' € D. In the first case we conclude that
(p,q) €p,i<i. In the second case we can see that H' ¢ H = {h € F | (q(h),p(h)) €p,i—1<i—1} €D
implies (¢,p) €,,i<;. Thus, we deduced the linearity of the order in R; from the linearity of the
order in R;_1 using again the binary partition property of the ultrafilter D.

Open question 1. Part II of Final theorem shows that the model R, can be considered as some
pretender for the inductive limit of the inductive sequence s = (R; | i € wo) in the sense of [24, 11.8].
But this is an open question.

Open question 2 (about transfinite extension of the inductive sequence s). Let A be an ordinal
number such that A > wp and £ be an ultrafilter on A. Since £ has the binary partition property,
we can consider the ultrafilters £, = {E£ < o | 3G € £ (E = G n a)} for every ordinal number
a € N\wo = [wo, A[. Starting from R.,, we can construct by the transfinite procedure some collection
t = (Ra | @ € N\wo) of models for the theory Th%, such that: 1) Ry = infra-E,-prod(Ry | v € a\wo)
for limit ordinal number « and 2) Ray1 = infra-Eq-power(Rq, F). Is the collection t is inductive
with respect to some injective homomorphisms uag : @Q — @5 for every a < 8 and does t extend s?
Supplement 1. In [14, C.3.4] the generalized second-order Peano— Landau theory ThS, of natural
numbers is considered. It is clear that some inductive sequence (N; | 4 € wo) of models of this
theory can be constructed, which is similar to the inductive sequence s = (R; | i € wo) constructed
above. And also the inductive “quasilimit” NV, of this sequence can be constructed similarly to to
the inductive “quasilimit” R.,. Moreover, its own Final theorem can be proved for the generalized
models N; and N, of the theory Th%,. Besides, open questions 1 and 2 are valid for these
hypothetical models.
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