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Abstract

The paper is devoted to construction of some closed inductive sequence of models of the generalized
second-order Dedekind theory of real numbers with exponentially increasing powers. These
models are not isomorphic whereas all models of the standard second-order Dedekind theory
are. The main idea in passing to generalized models is to consider instead of superstructures
with the single common set-theoretical equality and the single common set-theoretical belonging
superstructures with several generalized equalities and several generalized belongings for first
and second orders. The basic tools for the presented construction are the infraproduct of
collection of mathematical systems different from the factorized Loś ultraproduct and the
corresponding generalized infrafiltration theorem. As its auxiliary corollary we obtain the
generalized compactness theorem for the generalized second-order language.
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1 Introduction

It is well known that all standard models of the standard second-order Dedekind theory of real
numbers are isomorphic (see, for example, [1, 7.2]). The paper is devoted to the exposition of some
generalized second-order Dedekind theory of real numbers with non-isomorphic generalized models.

More precisely, the paper is devoted to construction of some closed inductive sequence Ri (1 ď i ď
ω0) of models of the generalized second-order Dedekind theory of real numbers with exponentially
increasing powers. The models Ri (0 ď i ă ω0) are embedded in each other as submodels and at
the same time they all are embedded in the limit-closer model Rω0 as extending submodels. These
generalized models are completely different from mathematical systems presented in [2, 2.14] under
the name of non-standard analysis (for the current state of this field see e.g. [3, 4]).

The main idea in passing to generalized models is to consider the generalized second-order language
LpΣg2q of some generalized signature Σg2 containing, in addition to individual and predicative constants
and variables, some symbols δτ of generalized equalities and some symbols ετ of generalized belongings
for first-order types τ and second-order types τ ” rτ0, . . . , τks.

Correspondingly, in the capacity of initial formulas of the language LpΣg2q the formulas of the
following two forms are taken: the formula yσ δσ z

σ and the formula pxτ00 , . . . , x
τk
k q ετ u

τ , where yσ

and zσ are the variables of the first- or the second-order type σ and xτii and uτ are the variables of
the first-order types τi and the second-order type τ ” rτ0, . . . , τks, respectively.

These atomic formulas are interpreted on an evaluated system ppA,Sg2 q, γq (with a superstructure
Sg2 of the signature Σg2 over a support A and an evaluation γ on the system U ” pA,Sg2 q) in
the following generalized way: γpyσq «σ γpz

σ
q and pγpxτ00 q, . . . , γpx

τk
k qq Aτ γpuτ q, where «σ is a

generalized ratio of equality and Aτ is a generalized ratio of belonging. Generalized equalities and
generalized belongings are connected with each other by the initial principle of change of equals
(see axiom E4 from 2.3).

With respect to the signature Σg2 formulas ϕ in the language LpΣg2q are defined by common induction,
when we start from the above-mentioned atomic formulas.

To give a semantics of the language LpΣg2q a satisfaction of a formula ϕ on the system U with
respect to the evaluation of variables γ is defined according to the above-mentioned generalized
interpretation of the atomic formulas.

The semantics for the language LpΣg2q differs both from the standard semantics (see [2, Appendix],
[5, §16]) and from the Henkin semantics (see [2, Appendix], [5, §21], [6, 4], and [7, 8, 9]), which
restricts the range of values of the evaluation γpxτ q for a variable xτ of a second-order type τ by
some subset of the set PpτpAqq of the terminal τpAq.

The general material about second-order notions mentioned above is presented in Sections 2 and 3
of the paper. More specific material about the generalized second-order Dedekind theory of real
numbers ThgR2 and about the canonical model R0 ” Rg2 ” pR, SR2q is presented in Section 4.

In Section 5 we construct some inductive sequence of non-canonical models Ri ” ppRi, Siq, 1 ď i ď ω0,
with exponentially increasing powers. The basic tool for construction of these systems is the
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infraproduct of collection of systems of the signature Σg2, different from the factorized ultraproduct
à la Loś. To prove that the systems Ri are models for ThgR2 we use the simplified variant of
the generalized infrafiltration theorem for the generalized second-order language LpΣg2q presented
in [10, 11]. Note that the corresponding proof of the infrafiltration property for the standard second-
order language LpΣst2 q do not “pass”.

The main results of this paper were announced in [12].

Further, to shorten the writings we use for the designation of a symbol-string ρ by a symbol-string σ
the symbol-strings σ ” ρ or ρ ” σ (σ is a designation for ρ).

2 The Type Theory in the Language of the Signature
with Generalized Equalities and Belongings

2.1 Types

Fix the canonical set ω0 of all natural numbers and its subset N ” ω0zt0u constructed in the
Neumann – Bernays – Gödel (NBG) or Zermelo – Fraenkel (ZF) set theories or in the local theory of
sets (LTS) (see [13] and [14, 1.1, A.2, B.1]). Hereinafter ST denotes any of these set theories.

Define by induction the semitypes and the types:

1. 0 is the semitype and the type;

2. if τ is a type, then τ is the semitype:

3. if τ is a semitype, then rτ s is the type;

4. if τ0, . . . , τk are semitypes and k ě 1, then pτ0, . . . , τkq is the semitype.

This definition is a slight modification of the corresponding definition from [5, § 20].

Further, instead of rpτ0, . . . , τkqs we shall write simply rτ0, . . . , τks; then the notation rτ0, . . . , τks
may be used for k ě 0.

Semantics of semitypes and types will be explained in the subsection 2.3.

Types 0 will be called the first-order type. If τ0, . . . , τk are first-order types and k ě 0 then
rτ0, . . . , τks will be called the second-order type.

For a type τ ” rτ0, . . . , τks with k ě 0 the types τ0, . . . , τk will be called the parents of the type τ
and will be denoted by p0τ, . . . , pkτ , respectively.

Consider the set P pτq ” tp0τ, . . . , pkτu of all parents of the type τ .

For the first-order type τ put formally pτ ” τ and P pτq ” tpτu “ tτu.

With any type τ we associate the semitype τ̌ of the type τ as follows:

1. if τ is the first-order type, then τ̌ ” τ ;

2. if τ “ rτ1s and τ1 is a semitype, then τ̌ ” τ1.

In other words, the semitype of a type is obtained by omitting the square brackets.

2.2 Terminals over set and mappings

Define the terminals τpAq of the semitypes τ over a set A by induction:
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1. 0pAq ” A;

2. if τ is a semitype, then rτ spAq ” PpτpAqq, where P denotes the operation of taking power-set
of the intended set;

3. if τ0, . . . , τk are semitypes, k ě 1, then pτ0, . . . , τkqpAq ” τ0pAq ˆ . . .ˆ τkpAq.

Thus, for semitypes τ0, . . . , τk with k ě 1, for the type τ ” rτ0, . . . , τks, and for its semitype
τ̌ “ pτ0, . . . , τkq the equalities τpAq “ Ppτ0pAq ˆ . . . ˆ τkpAqq and τ̌pAq “ τ0pAq ˆ . . . ˆ τkpAq are
fulfilled.

Let u : A Ñ B be a mapping from the set A to the set B. Define the terminals τmpuq of the
semitypes τ over the mapping u : AÑ B by induction:

1. 0mpuq ” u : AÑ B;

2. if τ is a semitype, then rτ smpuq : PpτpAqq Ñ PpτpBqq is the mapping such that rτ smpuqpP q ”
pτmpuqqrP s ” tq P τpBq | D p P P pq “ τmpuqppqqu for every P P PpτpAqq;

3. if τ0, . . . , τk are semitypes and k ě 1, then

pτ0, . . . , τkq
m
puq : τ0pAq ˆ . . .ˆ τkpAq Ñ τ0pBq ˆ . . .ˆ τkpBq

is the mapping such that

ppτ0, . . . , τkq
m
puqqpp0, . . . , pkq ” pτ

m
0 pp0q, . . . , τ

m
k ppkqq

for every pp0, . . . , pkq P τ0pAq ˆ . . .ˆ τkpAq.

2.3 The signature with generalized equalities and belongings and
its language

A non-empty set Θ of types τ will be called the type domain if τ P Θ implies pτ P Θ for every
parent pτ of the type τ . In the type domain Θ select the belonging type subdomain Θb ” tτ P Θ |

D k P ω0 Dτ0, . . . , τk P Θ pτ “ rτ0, . . . , τksqu.

A collection Σc ” pΣτc | τ P Θq of collections Στc ” pστω | ω P Ωτ q of constants στω of the types τ
will be called the signature of constants of the type domain Θ. Sets Ωτ may be empty, and then
Στc “ ∅.

The constants σ0
ω of the first-order type 0 are called individual or objective. The constants of other

types are called predicate.

A collection Σe ” pδτ | τ P Θq of binary predicate symbols of (generalized) equalities δτ of the types τ
will be called the signature of (generalized) equalities of the type domain Θ. It follows from the
definition of the type domain that for every equality symbol δτ the collection Σe contains necessarily
the equality symbols δpτ for every parent pτ of the type τ .

A collection Σb ” pετ | τ P Θbq of binary predicate symbols of (generalized) belongings ετ of the
types τ will be called the signature of (generalized) belongings of the type domain Θ.

A collection Σv ” pΣτv | τ P Θq of denumerable sets Στv of variables xτ , yτ ,. . . of the types τ will be
called the signature of variables of the type domain Θ. The sets Στv may be empty. The variables
x0, y0, . . . of the first-order type 0 are called individual or objective. The variables of other types
are called predicate.

Further, we shall always assume that for every type τ P Θ there are either constants or variables of
this type.
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The quadruple Σg ” Σc|Σe|Σb|Σv will be called the generalized signature or the signature with
generalized equalities and belongings.

The language LpΣgq of the generalized signature Σg consists of:

1. all types τ from the type domain Θ;

2. all members of all signatures from Σg;

3. the logical symbols  , _, ^, ñ, @, and D;

4. parenthesis.

If the type domain Θ contains first- and second-order types only and at least one second-order
type, then we shall say that the signature Σg and the language LpΣgq have the second order (see [2,
Appendix], [6, 4]). In this case the notations Σg2 and LpΣg2q will be used.

2.4 Terms, formulas, and the type theory for the language of the
generalized signature

Constants and variables of a type τ are called terms of the type τ of the language LpΣgq.

The atomic formulas of the language LpΣgq are defined in the following way:

1. if q and r are terms of a type τ P Θ, then q δτ r is an atomic formula;

2. if τ0,. . . , τk are types from Θ for k ě 0, τ ” rτ0, . . . , τks P Θb, q
τ0
0 , . . . , q

τk
k are terms of the

types τ0, . . . , τk, respectively, and rτ is a term of the type τ , then pqτ00 , . . . , q
τk
k q ετ r

τ is
the atomic formula; in particular, for k “ 0 the symbol-string qτ00 εrτ0s r

rτ0s is the atomic
formula.

The formulas of the language LpΣgq are constructed from atomic ones with the use of connectives
_, ^,  , ñ, quantifiers Dxτ and @xτ with respect to the variables xτ , and parenthesis.

The logical axiom schemes of the type theory in the language LpΣgq of the generalized signature Σg

are the schemes of the predicate calculus, where variables and terms substituting each other must
be of the same type τ P Θ.

In addition to these axiom schemes, consider the following equality axioms for the types τ P Θ.

E1. @xτ px δτ xq.
E2. @xτ , yτ px δτ y ñ y δτ xq.
E3. @xτ , yτ , zτ px δτ y ^ y δτ z ñ x δτ zq
E4. (The initial principle of change of equals.)

@xτ00 , y
τ0
0 , . . . , x

τk
k , y

τk
k , u

τ , vτ
`

x0 δτ0 y0 ^ . . .^ xk δτk yk ^ u δτ v ñ

ñ ppx0, . . . , xkq ετ uô py0, . . . , ykqετvqq
˘

, where τ ” rτ0, . . . , τks.

The inference rules in the depicted type theory are:

ϕ, ϕñ ψ

ψ
pMP q and

ϕpxτ q

@xτ ϕpxτ q
pGenq.

If there are non-logical axioms or axiom schemes written by second-order formulas of the language
LpΣg2q, then we shall say that a (mathematical) generalized second-order theory is given.
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3 Mathematical Systems of the Signature Σg with Gene-
ralized Equalities and Belongings

3.1 The definition of mathematical systems and their homomor-
phisms of the generalized signature Σg

Generalized systems. Let Σg be a fixed signature defined in 2.3. Fix also a set A. For the
set A and the signature Σg consider the following collections:

1. Sc ” pSτc | τ P Θq of collections Sτc ” psτω | ω P Ωτ q of constant structures sτω P τpAq of the
types τ ;

2. Se ” p«τ | τ P Θq of generalized ratios of equality «τĂ τpAq ˆ τpAq of the types τ on the
sets τpAq, containing the usual set-theoretic ratios of equality “ on the sets τpXq, i. e., such
ratios «τ that for every elements r, s P τpAq the equality r “ s implies the generalized
equality r «τ s;

3. Sb ” pAτ | τ P Θbq of generalized ratios of belonging AτĂ τ̌pAqˆτpAq of the types τ , containing
the usual set-theoretic ratios of belonging P from the sets τ̌pXq into the sets τpXq, i. e., such
ratios Aτ that for every elements p P τ̌pAq and P P τpAq the belonging p P P implies the
generalized belonging p Aτ P ;

4. Sv ” pτpAq | τ P Θq of the terminals τpAq of the types τ over the set A.

The quadruple S ” pSc, Se, Sb, Svq of the above-mentioned collections will be called a superstructure
of the signature Σg over the set A.

The pair U ” pA,Sq will be called a mathematical system of the generalized signature Σg with the
support (carrier) A and the superstructure S. This notion is a generalization of the notion of an
algebraic system of the signature Σ1 (see [15, § 15]).

The mathematical system U ” pA,Sq will be called also an interpretation of the signature Σg on
the support A.

Further, for a type τ “ rτ0, . . . , τks and elements p ” ppp0q, . . . , ppkqq, q ” pqp0q, . . . , qpkqq P τ̌pAq “
τ0pAq ˆ . . .ˆ τkpAq along with

pp0q «τ0 qp0q ^ . . .^ ppkq «τk qpkq

we shall also write p «τ̌ q.

The generalized equalities «τ and the generalized belongings Aτ admit some additional conditions.

A system U will be called balanced if

@P,Q P τpAq pP «τ Qô @ p P P D q P Q pq «τ̌ pq ^ @ q P Q D p P P pp «τ̌ qqq,

where τ0, . . . , τk P Θ, k ě 0 and τ ” rτ0, . . . , τks P Θ.

A system U will be called regular if @ p P τ̌pAq @P P τpAq pp Aτ P ô D q P P pp «τ̌ qqq, where
τ0, . . . , τk P Θ, k ě 0, and τ ” rτ0, . . . , τks P Θ. A system U will be called extensional if

@P,Q P τpAq pP «τ Qô @ p pp Aτ P ñ p Aτ Qq ^ @ q pq Aτ Qñ q Aτ P qq,

where τ P Θb.
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Generalized homomorphisms. Let U ” pA,Sq and V ” pB, T q be systems of the
signature Σg from 3.1. A mapping u : A Ñ B in the considered set theory ST from the set A
to the set B is called a homomorphism of the signature Σg from the system U into the system V
if for every type τ P Θ, every index ω P Ωτ , every corresponding constant structure sτω P τpAq of
the collection Sc, and every corresponding constant structure tτω P τpBq of the collection Tc the
following properties are fulfilled:

1. if τ “ 0, then τmpuqpsτωq “ upsτωq “ tτω;

2. if τ P Θb, then every generalized belonging p Aτ,A sτω implies the corresponding generalized
belonging τ̌mpuqppq Aτ,B tτω for every p P τ̌pAq.

3.2 Evaluations and models

An evaluation on a system U ” pA,Sq of the signature Σg is a mapping γ defined on the set of all
variables of the signature Σg and associating with the variable xτ of the type τ P Θ the element
γpxτ q of the terminal τpXq (see [15, § 16], [5, 16.17]). The pair pU, γq consisting of the system U of
the signature Σg and the evaluation γ on U will be called an evaluated mathematical system of the
signature Σg.

Define the value qrγs of a term q with respect to the evaluation γ on the system U in the following
way (see [15, § 16], [16, § 6], [2, 2.2], [17, 2.5]): for a constant στω of a type τ P Θ put στωrγs ” sτω
and for a variable xτ of a type τ P Θ put xτ rγs ” γpxτ q.

Define the satisfaction (translation) of a formula ϕ of the language LpΣg2q on a system U of the
signature Σg2 with respect to an evaluation γ (in notation, U ( ϕrγs) by induction in the following
way (see [2, 2.2], [17, 2.5], [5, 16.17], [14, A.1.3]):

1. if q and r are terms of a type τ P Θ and ϕ ” pq δτ rq, then U ( ϕrγs is equivalent to
qrγs «τ rrγs;

2. if τ0, . . . , τk are types from Θ for k ě 0, τ ” rτ0, . . . , τks P Θ, q0, . . . , qk are terms of the types
τ0, . . . ,τk, respectively, r is a term of the type τ , and ϕ ” pq0, . . . , qkq ετ r, then U ( ϕrγs
iff pq0rγs, . . . , qkrγsq Aτ rrγs;

3. if ϕ ”  ψ, then U ( ϕrγs iff U ( ψrγs is not true;

4. if ϕ ” pψ _ ξq, then U ( ϕrγs iff U ( ψrγs or U ( ξrγs;

5. if ϕ ” pψ ^ ξq, then U ( ϕrγs iff U ( ψrγs and U ( ξrγs;

6. if ϕ ” pψ ñ ξq, then U ( ϕrγs iff that U ( ψrγs implies U ( ξrγs;

7. if ϕ ” Dxτψ, then U ( ϕrγs is equivalent to U ( ψrγ1s for some evaluation γ1 such that
γ1pyσq “ γpyσq for every variable yσ ‰ xτ ;

8. if ϕ ” @xτψ, then U ( ϕrγs is equivalent to U ( ψrγ1s for every evaluation γ1 such that
γ1pyσq “ γpyσq for every variable yσ ‰ xτ .

Let Φ be a set of formulas of the language LpΣg2q. An evaluated mathematical system pU, γq of the
signature Σg2 will be called an (evaluated) model for the set Φ if U ( ϕrγs for every formula ϕ P Φ
(see [15, § 17]). A mathematical system U of the signature Σg2 will be called a model for the set Φ
if an evaluated mathematical system pU, γq is a model for the set Φ for every evaluation γ on U .

A model pU, γq will be called balanced, regular, extensional, etc. if the system U is the same.

A model pU, γq for a set Φ will be called second-order if at least one formula from Φ contains at
least one second-order variable.
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Remark that if a system U ” pA,Sq is considered in an axiomatic set theory, then the satisfaction of
a closed formula ϕ of the language LpΣg2q with respect to any evaluation γ is reduced to correctness
of the relativization ϕr of ϕ on the corresponding terminals of the support A in this set theory.
Here the correctness of ϕr means that ϕr is a deducible formula in this axiomatic set theory.

Thus, if Φ consists of closed formulas only, then U is a model for Φ iff pU, γq is a model for Φ for
some (and, consequently, for any) evaluation γ.

In particular, since equality axioms E1–E4 are closed formulas, their relativizations E1r–E4r take
the following forms:

E1r ” @x P τpAq px «τ xq;

E2r ” @x, y P τpAq px «τ y ñ y «τ xq;

E3r ” @x, y, z P τpAq px «τ y ^ y «τ z ñ x «τ zq;

E4r ” @x0, y0 P τ0pAq . . .@xk, yk P τkpAq @u, v P τpAq px0 «τ0 y0 ^ . . .^

^ xk «τk yk ^ u «τ v ñ ppx0, . . . , xkq Aτ uô py0, . . . , ykq Aτ vqq,
where τ ” rτ0, . . . , τks, k ě 0, and all types are in Θ.

The satisfaction of formulas E1r–E3r means that all generalized equalities «τ are equivalence
relations on corresponding sets τpAq, and the satisfaction of formula E4r means the initial principle
of change of equals in the atomic formula with the generalized belonging Aτ .

Further on, we shall say that a system U of the signature Σg2 has true generalized equalities and
belongings if axioms E1–E4 from 2.3 are satisfied on U with respect to some (and, consequently, to
any) evaluation γ. This means that formulas E1r–E4r are correct for the system U in the used set
theory.

3.3 The generalized equality of values of evaluations and satisfiability

For every formula ϕ of the language LpΣg2q we define the formula ϕ˚ by induction:

1. ϕ˚ ” ϕ for every atomic formula ϕ;

2. pψ ^ ξq˚ ” ψ˚ ^ ξ˚;

3. p ψq˚ ”  ψ˚;

4. pDxτψq˚ ” Dxτψ˚;

5. pψ _ ξq˚ ”  p ψ˚ ^ ξ˚q;

6. pψ ñ ξq˚ ”  pψ˚ ^ ξ˚q;

7. p@xτψq˚ ”  pDxτ p ψ˚qq.

A formula ϕ is said to be normalizable if for every mathematical Σg2-system U and every evaluation γ
on U the following condition holds: U ( ϕrγs ô U ( ϕ˚rγs.

Lemma 1. Let formulas ψ and ξ be normalizable. Then formulas ψ^ ξ,  ψ, ψ_ ξ, ψ ñ ξ, @xτψ,
and Dxτψ are normalizable as well.

The proof of this lemma uses the definition of satisfiability and some well known tautologies only,
so it is omitted.

Propositon 1. Every formula of the language LpΣg2q of the generalized second-order signature Σg2
is normalizable.
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Proof. Denote by Φ the set of all formulas of the language LpΣg2q. The subset of the set Φ consisting
of formulas containing at most n P ω0 logical symbols  , ^, ñ, _, D, @, denote by Φn. It is clear
that Φ “

Ť

pΦn | n P ω0q.

Prove by the complete induction principle the following assertion Apnq: every formula ϕ P Φ is
normalizable.

If n “ 0, then the formula ϕ is atomic, and so by the definition of the operation ϕ ÞÑ ϕ˚ we have
ϕ˚ ” ϕ. Consequently, the assertion Ap0q is true.

Suppose that for all m ă n the assertion Apmq is true. Let ϕ P Φn. If ϕ ” ψ ^ ξ, ϕ ”  ψ,
ϕ ” Dxτψ, ϕ ” ψ _ ξ, ϕ ” ψ ñ ξ, or ϕ ” @xτψ, then ψ, ξ P Φn´1. Therefore by the induction
hypothesis, the formulas ψ and ξ are normalizable. By Lemma 1 the formula ϕ is normalizable.
Hence the assertion Apnq is true.

Propositon 2. Let U be a mathematical system of the second-order signature Σg2 with true generalized
equalities and belongings. Then for every formula ϕ of the language LpΣg2q and every evaluations γ
and δ on the system U such that γpxτ q «τ δpx

τ
q for every variable xτ of every type τ P Θ the

properties U ( ϕrγs and U ( ϕrδs are equivalent.

Proof. The set of all formulas ϕ of the language LpΣg2q constructed by induction from the atomic
formulas with the use of connectives  and ^ and quantifier D denote by Ψ. The subset of the set
Ψ consisting of formulas containing at most n P ω0 logical symbols  , ^, and D denote by Ψn. It
is clear that Ψ “

Ť

pΨn | n P ω0q.

Prove by the complete induction principle the assertion Apnq: for every formula ϕ P Ψn and every
mentioned evaluations γ and δ the assertion of the Proposition holds.

Let n “ 0 and ϕ P Ψ0. Then ϕ is an atomic formula.

At first consider the atomic formula ϕ of the form qτδτr
τ . Suppose that qτ “ xτ and rτ “ στω.

Then U ( ϕrγs is equivalent to γpxq «τ s
τ
ω and U ( ϕrδs is equivalent to δpxq «τ s

τ
ω.

Since, by our condition, γpxq «τ δpxq, then assuming U ( ϕrγs and using axioms E2r and E3r we
infer U ( ϕrδs. The inverse inference is checked in the same way. For the terms qτ and rτ of other
forms the reasons are quite similar.

Now, consider the atomic formula ϕ of the form pqτ00 , . . . , q
τk
k qετr

k for the type τ ” rτ0, . . . , τks P Θb.
Assume that q

τλ
λ “ x

τλ
λ and rτ “ uτ for some variables xλ and u. Then U ( ϕrγs is equivalent to

pγpx0q, . . . , γpxkqq Aτ γpuq and U ( ϕrδs is equivalent to pδpx0q, . . . , δpxkqq Aτ δpuq.

Suppose U ( ϕrγs. Since, by our condition, γpx
τλ
λ q «τλ δpx

τλ
λ q, then using axiom E4r, we infer

U ( ϕrδs. The inverse inference is checked in the same way. For the terms q
τλ
λ and rτ of other

kinds the reasons are quite similar.

Assume that assertion Apmq is true for every m ă n. Let ϕ ” Dxτψ. Then ψ P Ψn´1. Let be given
some evaluations γ and δ such that γpxτ q «τ δpx

τ
q.

Suppose U ( ϕrγs. It is equivalent to U ( ψrγ1s for some evaluation γ1 such that γ1pyq “ γpyq for
any yσ ‰ xτ .

Define an evaluation δ1 on U setting δ1pyq ” δpyq for every yσ ‰ xτ and δ1pxq ” γ1pxq. Then
δ1pyq “ δpyq «σ γpyq “ γ1pyq and δ1pxq “ γ1pxq, i. e., δ1pxq «τ γ

1
pxq.
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Since δ1 « γ1 in the above indicated sense, by our condition, we conclude that U ( ψrγ1s ô U (
ψrδ1s. Consequently, we obtain the property U ( ψrδ1s. By construction, δ1pyq “ δpyq for every
yσ ‰ xτ .

By the definition of satisfiability, we conclude that U ( ϕrδs. The inverse inference of U ( ϕrγs
from U ( ϕrδs is established quite analogously.

Now, let ϕ ” ψ ^ ξ. Then ψ, ξ P Ψn´1, whence U ( ψrγs ô U ( ψrδs and U ( ξrγs ô U ( ξrδs.
Hence pU ( ψrγs ^ U ( ξrγsq ô pU ( ψrδs ^ U ( ξrδsq. Thus, U ( ϕrγs ô U ( ϕrδs.

Finally, let ϕ ”  ψ. Then ψ P Ψn´1. Consequently, U ( ψrγs ô U ( ψrδs. From here U (

ϕrγs ô  pU ( ψrγsq ô  pU ( ψrδsq ô U ( ϕrδs.

This proves that the assertion Apnq is true. By the complete induction principle, the assertion
Apnq is true for every natural number n P ω0, i. e., the assertion of the Proposition holds for every
formula ϕ P Ψ.

Now let ϕ be an arbitrary formula of the language LpΣg2q. By virtue of Proposition 1 we have
U ( ϕrγs ô U ( ϕ˚rγs and U ( ϕrδs ô U ( ϕ˚rδs. By the definition of the operation ϕ ÞÑ ϕ˚, we
have ϕ˚ P Ψ. As was shown above, U ( ϕ˚rγs ô U ( ϕ˚rδs. As a result, we obtain the equivalence
U ( ϕrγs ô U ( ϕrδs.

3.4 Examples of good models for the second-order equality axioms

Construct for axioms E1–E4 two regular, balanced, extensional, second-order models.

Take ρ ” 0, σ ” rρs, Θ ” tρ, σu, Ωρ “ ∅, Ωσ “ ∅, Σρc “ ∅, and Σσc “ ∅. Then Σe ” pδρ, δσq,
Θb “ tσu, Σb ” pετ | τ P Θbq, i. e., Σb consists of the symbol εσ “ εrρs only, and the collection
Σv ” pΣ

τ
v | τ P Θq consists of a denumerable set Σρv of variables xρ, yρ, . . . of the first-order type ρ

and a denumerable set Σσv of variables uσ, vσ, . . . of the second-order type σ.

Consider the signature Σ ” Σc | Σe | Σb | Σv. This language contains the three atomic formulas:
xρδρy

ρ, uσδσv
σ and xρεσu

σ.

Example 1. Take the set Q ” Z ˆ pZzt0uq of all rational fractions p ” m
s

as the set A1. Since
Ωρ “ Ωσ “ ∅, there are no constants.

For fractions p ” m
s

and p ” n
t

put p «ρ q if mt “ ns in Z. For sets P,Q P PpA1q put P «σ Q
if p@ p P P D q P Q pp «ρ qqq ^ p@ q P Q D p P P pq «ρ pqq. It is clear that the generalized ratio
of equality «σ is wider than the usual set-theoretical ratio of equality “ in ST. For example, for
P0 ” t

3
8
, 2

3
u and Q0 ” t

6
16
, 2

3
, 4

6
u we have P0 «σ Q0 but P0 ‰ Q0.

For a fraction p P A1 and a set P P PpA1q put p Aσ P if D q P A1 pq «ρ p^ q P P q.

It is clear that the generalized ratio of belonging Aσ is wider than the usual set-theoretical ratio of
belonging P in ST. For example, 6

16
Aσ P0 and 6

9
Aσ P0 but 6

16
R P0 and 6

9
R P0.

The collection of terminals S1
v ” pτpA1q | τ P Θq consists of the terminal ρpA1q “ A1 and the

terminal σpA1q “ PpA1q.

The constructed collections form the superstructure S1 over the set A1. Consider the mathematical
system U1 ” pA1, S1q of the signature Σ.

Example 2. Take the set of all closed segments p of straight lines on the plane as the set A2. Since
Ωρ “ Ωσ “ ∅, there are no constants.
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For segments p, q P A2 put p «ρ q if q is obtained from p by some parallel transfer. For sets
P,Q P PpA2q of segments put P «σ Q if

p@ p P P D q P Q pp «ρ qqq ^ p@ q P Q D p P P pq «ρ pqq.

For a segment p P A2 and a set of segments P P PpA2q put p Aσ P if D q P A2 pq «ρ p ^ q P P q,
i. e., the segment p can be transferred into the set P by some parallel transfer.

The collection of terminals S2
v ” pτpA2q | τ P Θq consists of the terminal ρpA2q “ A2 and the

terminal σpA2q “ PpA2q.

The constructed collections form the superstructure S2 over the set A2.

Consider the mathematical system U2 ” pA2, S2q of the signature Σ.

Propositon 1. The above-constructed mathematical systems U1 and U2 are the regular, balanced,
extensional, second-order models for equality axioms E1–E4.

Proof. The correctness of the equality axioms is evident. The regularity follows from the definition.
The same is true for the balance property.

Check the extensionality property. Let P,Q P σpAq “ PpAq. Assume p P P . Then p Aσ P . Suppose
the right side of the extensionality formula. By condition we conclude p Aσ Q. By the regularity
property there exists an element q P Q such that q «ρ p. The inverse finding of an element p P P
for a given element q P Q such that p «ρ q is established quite similarly. In accordance with the
definition of the equality «σ we conclude that P «σ Q. Thus, we have inferred the left side of the
extensionality formula. It follows from the correctness of axiom E4r that the left side implies the
right one.

4 The Generalized Second-order Dedekind Theory of
Real Numbers

4.1 The signature for the generalized and the standard second-
order Dedekind theories of real numbers

Consider the first-order type π ” 0, the second-order types κ ” rπs, ρ ” rπ, πs, and λ ” rπ, π, πs
and the type domain Θ ” Θg

R2 ” tπ,κ, ρ, λu with the belonging type subdomain Θb ” tκ, ρ, λu.

Put Ωπ ” 2, Ωκ ” ∅, Ωρ ” 3, Ωλ ” 2, and consider the collections

Σπc ” pσ
π
ω | ω P Ωπq “ pσ

π
0 , σ

π
1 q, Σκ

c ” pσ
κ
ω | ω P Ωκq “ ∅,

Σρc ” pσ
ρ
ω | ω P Ωρq “ pσ

ρ
0 , σ

ρ
1 , σ

ρ
2q, and Σλc ”

´

σλω | ω P Ωλ
¯

“ pσλ0 , σ
λ
1 q.

They compose the signature of constants of the type domain Θ of the form Σc “ pΣ
τ
c | τ P Θq “

ppσπ0 , σ
π
1 q,∅, pσρ0 , σ

ρ
1 , σ

ρ
2q, pσ

λ
0 , σ

λ
1 qq containing the objective first-order constants σπ0 and σπ1 for

denoting the real numbers 0 (null) and 1 (unit), respectively, the predicate second-order constants σρ0 ,
σρ1 , and σρ2 for denoting the ratio of negation, the ratio of inversion, and the ratio of order,
respectively, and the predicate second-order constants σλ0 and σλ1 for denoting the ratio of addition
and the ratio of multiplication, respectively.

Further, along with σπ0 , σπ1 , σρ0 , σρ1 , σρ2 , σλ0 , and σλ1 we shall simply write 0, 1, ´, {, ď, `, and ¨,
respectively.
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Take the signature of the generalized equalities of the type domain Θ of the form Σe ” pδτ | τ P Θq “
pδπ, δκ , δρ, δλq containing the first-order equality δπ, and the second-order equalities δrπs, δrπ,πs,
and δrπ,π,πs.

Take the signature of the generalized belongings of the type domain Θ of the form Σb ” pετ | τ P Θbq “

pεκ , ερ, ελq.

Finally, take a denumerable set Σπv of objective variables xπ, yπ, . . . of the first-order type π and
denumerable sets Σκ

v , Σρv, and Σλv of predicate variables uκ , vκ , . . ., uρ, vρ, . . ., and uλ, vλ, . . . of the
second-order types κ, ρ, and λ, respectively.

They form the signature Σv ” pΣ
τ
v | τ P Θq “ pΣπv ,Σ

κ
v ,Σ

ρ
v,Σ

λ
v q of variables of the type domain Θ.

Consider the generalized signature ΣgR2 ” Σc|Σe|Σb|Σv and the corresponding language LpΣgR2q.
Terms p, q, r, s, . . . of this language are constants and variables only; the atomic equality formulas
have the forms qπ δπ rπ, qκ δκ rκ , qρ δρ r

ρ, and qλ δλ rλ. Respectively, the atomic belonging
formulas have the forms qπ εκ r

κ , ppπ, qπq ερ r
ρ, and ppπ, qπ, rπq ελ s

λ.

Further, along with xπ, yπ, and δπ we shall simply write x, y, and δ, respectively.

Along with the generalized signature ΣgR2 we consider the standard signature ΣstR2 ” Σc|Σ
st
e |Σ

st
b |Σv,

where in the signature of the standard equalities Σste ”
`

δτ
st
| τ P Θ

˘

the type equalities δτ
st are

one and the same standard equality δst and in the signature of the standard belongings Σstb ”
`

ετ
st
| τ P Θb

˘

the type belongings ετ
st are one and the same standard belonging εst.

Respectively, this signature ΣstR2 generates the standard language LpΣstR2q with atomic equality
formulas of the forms qπ δst rπ, qκ δst rκ , qρ δst rρ, and qλ δst rλ and with atomic belonging
formulas of the forms qπ εst rκ , ppπ, qπq εst rρ, and ppπ, qπ, rπq εst sλ for all terms p, q, r, s, . . ..

4.2 The axiomatics for the generalized and the standard second-
order Dedekind theories of real numbers

The signature ΣgR2 gives the opportunity to define the language LpΣgR2q and to construct the
desired models of the generalized second-order theory of real numbers, but the absence of functional
variables in this signature makes the writing of generalized axioms for this theory very unusual.
Only the names of these axioms placed in round brackets clarify their customary sense.

The axioms of the generalized second-order Dedekind theory of real numbers are the following ones.

A1 (the existence and functionality of the negation).

p@x D y ppx, yq ερ ´qq ^ p@x, y, y
1
ppx, yq ερ ´q ^ ppx, y

1
q ερ ´q ñ y δ y1q.

A2 (the existence and functionality of the addition).

p@x, y D z ppx, y, zq ελ `qq ^ p@x, y, z, z
1
ppx, y, zq ελ `q ^ ppx, y, z

1
q ελ `q ñ z δ z1q.

A3 (the existence and functionality of the inversion).

p@x p px δ 0q ñ D y ppx, yq ερ {qqq ^ p@x, y pppx, yq ερ {q ñ  px δ 0qqq^

^ p@x, y, y1 ppx, yq ερ {q ^ ppx, y
1
q ερ {q ñ y δ y1q.
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A4 (the existence and functionality of the multiplication).

p@x, y D z ppx, y, zq ελ ¨qq ^ p@x, y, z, z
1
ppx, y, zq ελ ¨q ^ ppx, y, z

1
q ελ ¨q ñ z δ z1q.

The appearance of axioms A1–A4 in this list is directly impelled by the absence of functional
variables in the signature ΣgR2.

A5 (the non-equality of the unit and the null).  p1 δ 0q.

A6 (the associativity of the addition).

@x, y, z @u1, u2, v1, v2 pppx, y, u1q ελ `q ^ ppu1, z, u2q ελ `q^

^ ppy, z, v1q ελ `q ^ ppx, v1, v2q ελ `q ñ u2 δ v2q.

The writing of axiom A6 in the common way: @x, y, z pppx` yq ` zq δ px` py ` zqqq.

A7 (the neutrality of the null).

@x @u, v ppppx, 0, uq ελ `q ñ u δ xq ^ ppp0, x, vq ελ `q ñ v δ xqq.

A8 (the elimination of the negation).

@x @u1, u2, v1, v2 ppppx, u1q ερ ´q ^ ppx, u1, u2q ελ `q ñ u2 δ 0q^

^ pppx, v1q ερ ´q ^ ppv1, x, v2q ελ `q ñ v2 δ 0qq.

A9 (the commutativity of the addition).

@x, y @u, v pppx, y, uq ελ `q ^ ppy, x, vq ελ `q ñ u δ vq.

A10 (the right distributivity of the multiplication with respect the addition).

@x, y, z @u1, u2, v1, v2, v3 pppy, z, u1q ελ `q ^ ppx, u1, u2q ελ ¨q^

^ ppx, y, v1q ελ ¨q ^ ppx, z, v2q ελ ¨q ^ ppv1, v2, v3q ελ `q ñ u2 δ v3q.

The writing of this axiom in the common way: @x, y, z ppx ¨ py ` zqq δ px ¨ y ` x ¨ zqq.

A11 (the left distributivity of the multiplication with respect the addition).

@x, y, z @u1, u2, v1, v2, v3 pppx, y, u1q ελ `q ^ ppu1, z, u2q ελ ¨q^

^ ppx, z, v1q ελ ¨q ^ ppy, z, v2q ελ ¨q ^ ppv1, v2, v3q ελ `q ñ u2 δ v3q.

A12 (the associativity of the multiplication).

@x, y, z @u1, u2, v1, v2 pppx, y, u1q ελ ¨q ^ ppu1, z, u2q ελ ¨q^

^ ppy, z, v1q ελ ¨q ^ ppx, v1, v2q ελ ¨q ñ u2 δ v2q.
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A13 (the neutrality of the unit).

@x @u, v ppppx, 1, uq ελ ¨q ñ u δ xq ^ ppp1, x, vq ελ ¨q ñ v δ xqq.

A14 (the elimination of the inversion).

@x @u1, u2, v1, v2 p px δ 0q ñ pppx, u1q ερ {q^

^ ppx, u1, u2q ελ ¨q ñ u2 δ 1q ^ pppx, v1q ερ {q ^ ppv1, x, v2q ελ ¨q ñ v2 δ 1qq.

The writing of A14 in the common way is the following:

@x p px δ 0q ñ px ¨ px´1
q δ 1q ^ ppx´1

q ¨ x δ 1q.

A15 (the commutativity of the multiplication).

@x, y @u, v pppx, y, uq ελ ¨q ^ ppy, x, vq ελ ¨q ñ u δ vq.

Further, along with px, yq ερď we shall write x ď y as well. It gives the opportunity to write the
subsequent axioms in a more customary form.

A16 (the reflexivity of the order). @x px ď xq.

By E4 we get x δ y ñ px ď xô x ď yq. Applying A16, we conclude that x δ y $ x ď y.

A17 (the antisymmetry of the order). @x, y pppx ď yq ^ py ď xqq ñ x δ yq.
A18 (the transitivity of the order). @x, y, z pppx ď yq ^ py ď zqq ñ x ď zq.
A19 (the linearity of the order). @x, y ppx ď yq _ py ď xqq.
A20 (the compatibility of the addition and the order).

@x, y, z @u, v px ď y ñ pppx, z, uq ελ `q ^ ppy, z, vq ελ `q ñ u ď vqq.

A21 (the compatibility of the multiplication and the order).

@x, y @u ppx ě 0q ^ py ě 0q ñ pppx, y, uq ελ ¨q ñ u ě 0qq.

A22 (the existence of Dedekind cuts).

@uκ , vκ ppDx px εκ u
κ
qq ^ pD y py εκ v

κ
qq^

^ p@ z ppz εκ u
κ
q _ pz εκ v

κ
qqq ^ p@x, y ppx εκ u

κ
q ^ py εκ v

κ
q ñ x ď yqq ñ

ñ pD z @x, y ppx εκ u
κ
q ^ py εκ v

κ
q ñ px ď zq ^ pz ď yqqqq.

Submodels of nonstandard reals described on a first-order language with some generalized Dedekind
completeness axiom stated in the form of an axiom scheme can be found in [18].

Consider the following generalized extensionality properties.

PE1. @uκ , vκ puκ δκ v
κ
ô @x px εκ u

κ
ô x εκ v

κ
qq.

PE2. @uρ, vρ puρ δρ v
ρ
ô @x, y ppx, yq ερ u

ρ
ô px, yq ερ v

ρ
qq.

PE3. @uλ, vλ puλ δλ v
λ
ô @x, y, z ppx, y, zq ελ u

λ
ô px, y, zq ελ v

λ
qq.
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The theory determined by the language LpΣgR2q and the set of axioms Ψg
2 ” tE1–E4, A1–A22,

PE1–PE3u can be called the generalized second-order Dedekind theory of real numbers. It will be
denoted by ThgR2.

Respectively, in the language LpΣstR2q we can write formulas E1st–E4st, A1st–A22st, PE1st–PE3st,
which are obtained from the corresponding formulas E1–E4, A1–A22, PE1–PE3 of the language
LpΣgR2q by the substitution of the generalized type equalities and belongings δτ and ετ by the
standard ones δst and εst, respectively.

The theory determined by the language LpΣstR2q and axioms E1st–E4st, A1st–A22st, PE1st–PE3st

can be called the standard second-order Dedekind theory of real numbers. It will be denoted by
ThstR2.

4.3 The canonical generalized and standard second-order Dedekind
real axes

Consider the canonical set R of all real numbers constructed in the considered set theory ST (see,
e. g., [14, 1.4] for NBG set theory and [13] and [14, B.1] for the LTS).

For the set R and the signature ΣgR2 consider the collections

Sπc ” psπω | ω P Ωπq “ psπ0 , s
π
1 q, Sκ

c ” psκω | ω P Ωκq “ ∅,

Sρc ” psρω | ω P Ωρq “ psρ0, s
ρ
1, s

ρ
2q, and Sλc ” psλω | ω P Ωλq “ psλ0 , s

λ
1 q.

They compose the collection of constants structures

Sc “ pSτc | τ P Θq “
v

psπ0 , s
π
1 q,∅, psρ0, s

ρ
1, s

ρ
2q, psλ0 , s

λ
1 q
w

containing the constant structures sπ0 , s
π
1 P πpRq “ R which are the neutral real numbers, the

constant structures sρ0, s
ρ
1, s

ρ
2 P ρpRq “ PpR2

q, which are the ratio of negation, the ratio of inversion,
and the ratio of order on R, respectively, and the constant structures sλ0 , s

λ
1 P λpRq “ PpR3

q which
are the ratio of addition and the ratio of multiplication on R, respectively.

Further, along with sπ0 , sπ1 , sρ0, sρ1, sρ2, sλ0 , and sλ1 we shall simply write 0R, 1R, ´R, {R, ďR, `R,
and ¨R, respectively.

Consider the collection of the equality ratios of the form

Se ” p«τ | τ P Θq “ p«π,«κ ,«ρ,«λq ” p“ |R2,“ |PpRq2,“ |PpR2
q
2,“ |PpR3

q
2
q

containing in the capacity of the first-order equality ratio «π and of the second-order equality
ratios «κ , «ρ, and «λ the restrictions on the indicated sets one and the same set-theoretical
equality in ST.

Consider the collection of the belonging ratios of the form

Sb ” pAτ | τ P Θq “ pAκ ,Aρ,Aλq ” pP |pRˆ PpRqq, P |pR2
ˆ PpR2

qq, P |pR3
ˆ PpR3

qqq

containing in the capacity of the belonging ratios Aκ , Aρ, and Aλ the restrictions on the indicated
sets one and the same set-theoretical belonging ratio P in ST.

Finally, take the collection of the terminals over the set R of the form

Sv ” pτpRq | τ P Θq “ pπpRq,κpRq, ρpRq, λpRqq “ pR,PpRq,PpR2
q,PpR3

qq.
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These collections compose the superstructure SR2 ” pSc, Se, Sb, Svq of the signature ΣgR2. The
system pR, SR2q of the signature ΣgR2 can be called the canonical generalized second-order Dedekind
real axis in ST. It will be denoted by Rg2.

Consider an evaluation ζ on the system Rg2 such that ζpxq P πpRq “ R, ζpuκ
q P κpRq “ PpRq,

ζpuρq P ρpRq “ PpR2
q, and ζpuλq P λpRq “ PpR3

q.

Thus, we get the evaluated system pRg2, ζq.

The above constructed superstructure SR2 is also the superstructure of the signature ΣstR2. Therefore
the system pR, SR2q is also the system of the signature ΣstR2. It can be called the canonical standard
second-order Dedekind real axis in ST. It will be denoted by Rst2 .

The evaluation ζ on the system Rg2 considered above is also an evaluation on the system Rst2 .
Therefore we may consider the evaluated system pRst2 , ζq.

Let B be a set and T stR2 be a superstructure on B of the signature ΣstR2. Consider the system
V ” pB, T stR2q and some evaluation η on V . For the evaluated system pV, ηq we shall use the
following designations: 0B ” σπ0 rηs, 1B ” σπ1 rηs, ´B ” σρ0 rηs, {B ” σρ1 rηs, ďB” σρ2 rηs, `B ” σλ0 rηs,
and ¨B ” σλ1 rηs.

The (standard) satisfaction U (st ϕrηs of a formula ϕ of the language LpΣstR2q on the system V of
the signature ΣstR2 with respect to the evaluation η differs from the (generalized) satisfaction from 3.2
only in the first two points:

11. if q and r are terms of a type τ P Θ and ϕ ” pq δst rq, then V (st ϕrηs is equivalent to
qrηs “ rrηs;

21. if τ0, . . . , τk are types from Θ for k ě 0, τ ” rτ0, . . . , τks P Θ, q0, . . . , qk are terms of the types
τ0, . . . ,τk, respectively, r is a term of the type τ , and ϕ ” pq0, . . . , qkq ε

st r, then U ( ϕrηs
iff pq0rηs, . . . , qkrηsq A rrηs.

Let Φ be a set of formulas of the language LpΣstR2q. As in 3.3 the evaluated system pV, ηq of the
signature ΣstR2 is called a standard model for the set Φ if V (st ϕrηs for every ϕ P Φ.

Now we can formulate some initial theorem about the standard Rst2 and the generalized Rg2 Dedekind
real axes.

Theorem 1.

1. The mathematical system Rst2 is a standard model for the theory ThstR2 in the language
LpΣstR2q.

2. The mathematical system Rg2 is a (generalized) model for the theory ThgR2 in the language
LpΣgR2q.

Proof. 1. Note that all the axioms from the set Ψg
2 are closed formulas. Therefore the satisfaction

Rst2 ( αrζs for α P Ψg
2 means the deducibility of the relativization αr of α on R in the considered

axiomatic set theory ST. But the corresponding deducibility of every αr is very well demonstrated
in mathematical literature (see, for example, [19, 1, 20, 21, 22, 14]).

2. This assertion follows directly from assertion 1 by virtue of the inclusions “ |τpRq ˆ τpRq Ă«τ
and P |τ̌pRq ˆ τpRq ĂAτ from 3.2, where the left parts of the inclusions are the restrictions of the
usual set-theoretical ratios “ and P on the indicated sets.

The models from Theorem 1 are called canonical.

It is well known that the theory ThstR2 is categorical. On the contrary, we shall prove that the
theory ThgR2 is non-categorical. More exactly, using the initial canonical model Rg2 with the
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support R we shall prove the existence of some non-canonical models for the theory ThgR2 having
arbitrary large powers.

This statement can be proven with the help of the generalized infrafiltration theorem (see, e. g.,
[11] or [14, C.3.2]). But to make the paper self-contained we prefer to prove here some more simple
variant of the generalized infrafiltration theorem than it is presented in the indicated works.

5 The infraproduct construction of evaluated systems
of the signature Σg

2

5.1 Infraproducts of collections of evaluated systems of the signature
Σg

2

Let F be a fixed non-empty set and pUf | f P F q be a fixed collection of mathematical systems of
the signature Σg2 with true generalized equalities and belongings.

By definition, Uf ” pAf , Sf q. Consider the set A ”
ś

pAf | f P F q.

Let τ ” rτ0, . . . , τks be a second-order type and k ě 0. If µ P k ` 1, then τµ “ 0. Thus,
we see that τµpAq “ A “

ś

pAf | f P F q “
ś

pτµpAf q | f P F q. For elements p P τ̌pAq ”
τ0pAqˆ¨ ¨ ¨ˆτkpAq “ Ak`1 and f P F define the element ppfq P τ̌pAf q “ τ0pAf qˆ¨ ¨ ¨ˆτkpAf q “ Ak`1

f

setting ppfqpµq ” ppµqpfq for every µ P k ` 1.

For elements P Ă τ̌pAq and f P F define the element P xfy Ă τ̌pAf q setting P xfy ” tξ P τ̌pAf q |
D p P P pppfq “ ξqu.

Let D be a subset of the set PpF q, i. e., an ensemble on F . Define some superstructure S of the
signature Σg2 over the set A.

First, define constant structures sτω P τpAq for τ P Θ and ω P Ωτ .

If τ is a first-order type, then τpAq “
ś

pτpAf q | f P F q. Therefore define sτω P τpAq setting
sτωpfq ” sτωf for every f P F .

Put sτω ” tp P τ̌pAq | @ f P F pppfq P s
τ
ωf qu if τ ” rτ0, . . . , τks is a second-order type.

As a result, we obtain the collections Sτc ” psτω | ω P Ωτ q and the collection Sc ” pSτc | τ P Θq.

Now define generalized equality ratios «τĂ τpAq ˆ τpAq. If τ is the first-order type, then for
p, q P τpAq put p «τ q if DG P D @ g P G pppgq «τ,g qpgqq.

If τ ” rτ0, . . . , τks is a second-order type, then for P,Q Ă τ̌pAq put P «τ Q if DG P D @ g P
G pP xgy «τ,g Qxgyq.

As a result, we obtain the collection Se ” p«τ | τ P Θq.

Now define generalized belonging ratios AτĂ τ̌pAq ˆ τpAq.

By definition, τ “ rτ0, . . . , τks for some τ0, . . . , τk P Θ. For p P τ̌pAq and P Ă τ̌pAq put p Aτ P if
DG P D @ g P G pppgq Aτ,g P xgyq. Note that the usage of a generalized belonging ratio was explored
in the forcing method in the form x Pp y (see, e. g., [17, 9.8]).

Thus, we obtain the collection Sb ” pAτ | τ P Θbq.

Consider also the collection Sv ” pτpAq | τ P Θq consisting of the τ -terminals of the set A.

The constructed collections compose the superstructure S ” pSc, Se, Sb, Svq over the setA. Therefore
we can consider the mathematical system U ” pA,Sq of the signature Σg2. It will be called the infra-
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D-product of the collection of mathematical systems pUf | f P F q of the generalized second-order
signature Σg2 and will be denoted by infra-D-prodpUf | f P F q.

An ensemble D on F is called a filter on F if it has the following properties:

1. @G,H P D pGXH P Dq;
2. @G P D @H P PpF q pG Ă H ñ H P Dq.

A filter D is called proper if D ‰ PpF q. A proper filter D is called an ultrafilter if for any proper
filter E on F such that D Ă E we have D “ E , i. e., D is a maximal element in the set of all proper
filters on F .

A pair pG,Hq of subsets of F is called a binary partition of F if G X H “ ∅ and G Y H “ F .
A filter D is a ultrafilter iff it has the binary partition property, i. e., if for every binary partition
pG,Hq of F either G P D or H P D (see [2, Exercise 2.119]).

Further on, we assume that D is a filter.

Now let ppUf , γf q | f P F q be a collection of evaluated mathematical systems of the second-order
signature Σg2 with true generalized equalities and belongings.

Define an evaluation γ on the system U ” infra-D-prodpUf | f P F q in the following way.

Let x be a variable of a type τ . If τ is the first-order type, then define γpxq P τpAq setting
γpxqpfq ” γf pxq for every f P F . If τ “ rτ0, . . . , τks is a second-order type, then put γpxq ” tp P
τ̌pAq | @f P F pppfq P γf pxqqu.

The evaluation γ will be called the crossing of the collection of evaluations pγf | f P F q and will be
denoted by ’ pγf | f P F q.

Lemma 1. Let ppUf , γf q | f P F q be a collection of evaluated mathematical systems of the second-
order signature Σg2 and let every system pUf , γf q be a model for equality axioms E1–E4. Then the
pair pinfra-D-prodpUf | f P F q,’ pγf | f P F qq is also a model for axioms E1–E4.

Proof. Let t0, t
1
0 P τ0pAq, . . . , tk, t

1
k P τkpAq, P, P

1
Ă τ̌pAq “ τ0pAq ˆ . . . ˆ τkpAq, p ” pt0, . . . , tkq,

p1 ” pt10, . . . , t
1
kq, p «τ̌ p

1, and P «τ P
1.

Assume that p Aτ P . According to the definition of the belonging, we get DG1 P D @ g P
G1 pppgq Aτ,g P xgyq. By the definition of the first-order equality, DG2 P D @ g P G2 pppgq «τ̌ ,g p

1
pgqq.

Finally, by the definition of the second-order equalities DG3 P D @ g P G3 pP xgy «τ,g P
1
xgyq. Since

every system pUg, γgq satisfies E4, we see that p1pgq Aτ,g P 1xgy for every g P G ” G1 X G2 X G3.
Thus, p1 Aτ P 1. Hence, p Aτ P ñ p1 Aτ P 1. The inverse implication is checked quite similarly. This
proves axiom E4. The validity of axioms E1, E2, E3 is obvious.

Further, for a formula ϕ P LpΣq the set tf P F | Uf ( ϕrγf su will be denoted by Gϕ.

Lemma 2. Let τ “ rτ0, . . . , τks be a second-order type. Let sτω be the constants constructed above
for the support A ”

ś

pAf | f P F q. Then sτωxfy “ sτωf for every f P F .

Proof. Let ξ P sτωxfy, i. e., ξ “ ppfq for some p P sτω. By definition, ξ “ ppfq P sτωf . Consequently,
sτωxfy Ă sτωf .

Conversely, let ξf P s
τ
ωf . Using the axiom of choice we can find a collection pξg | g P F ztfuq such

that ξg P s
τ
ωg. Define the element p P τ̌pAq setting ppµqpgq ” ξgpµq for every g P F and every

µ P k`1. Then ppgq “ ξg P s
τ
ωg for every g P F implies p P sτω. Since ξf “ ppfq, we have ξf P s

τ
ωxfy.

Hence, sτωf Ă sτωxfy.

Lemma 3. Let τ “ rτ0, . . . , τks be a second-order type. Let x be a variable of the type τ and γpxq be
the evaluation constructed above for the system U ” pA,Sq. Then γpxqxfy “ γf pxq for every f P F .
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The proof is completely similar to the proof of the previous lemma.

An approach to constructing non-standard analysis avoiding ultraproducts as well as adding the
new axioms to set theory is presented in [23].

5.2 Infrafilteration of formulas of the second-order language LpΣg
2q

Consider a non-empty set F and a filter D on F .

By analogy with the first order language (see [15, § 17], [16, 8.2]) a formula ϕ of the language LpΣg2q of
the second-order signature Σg2 with generalized equalities and belongings will be called infrafiltrated
with respect to the filter D if for every collection ppUf , γf q | f P F q of evaluated mathematical systems
of the second-order signature Σg2 with true generalized equalities and belongings the property
infra-D-prodpUf | f P F q ( ϕr’ pγf | f P F qs is equivalent to the property tg P F | Ug ( ϕrγgsu P D.

Lemma 1. Every atomic formula is infrafiltrated with respect to any filter D on the set F .

Proof. First, consider an atomic formula ϕ of the form qτδτr
τ . Assume that qτ “ xτ and rτ “ στω.

Then U ( ϕrγs is equivalent to γpxq «τ s
τ
ω, and analogously for the pair pUf , γf q.

Let τ be the first-order type. Let Gϕ P D, i. e., γgpxq «τ,g s
τ
ωg for every g P Gϕ P D. Then

γgpxq “ γpxq and sτωg “ sτωpgq implies γpxqpgq «τ,g s
τ
ωpgq for every g P Gϕ P D. Thus, γpxq «τ s

τ
ω,

i. e., U ( ϕrγs.

Conversely, let U ( ϕrγs, i. e., γpxq «τ s
τ
ω. Then there exists G P D such that γpxqpgq «τ,g s

τ
ωpgq

for every g P G. But it means that γgpxq «τ,g s
τ
ωg, i. e., Ug ( ϕrγgs for every g P G P D.

Since G Ă Gϕ, we have Gϕ P D.

Now let τ ” rτ0, . . . , τks be a second-order type. Let Gϕ P D, i. e., γgpxq «τ,g sτωg for every
g P Gϕ P D. According to Lemmas 2 and 3, the equalities sτωg “ sτωxgy and γgpxq “ γpxqxgy are
correct. Therefore γpxqxgy «τ,g s

τ
ωxgy for every g P Gϕ P D.

Consequently, γpxq «τ s
τ
ω, i. e., U ( ϕrγs.

Conversely, let U ( ϕrγs, i. e., γpxq «τ sτω. By the definition of the second-order equality,
γpxqxgy «τ,g sτωxgy for some G P D and every g P G. Using Lemmas 2 and 3 we obtain
γgpxq «τ,g s

τ
ωg, i. e., Ug ( ϕrγgs for every g P G P D. Since G Ă Gϕ, we infer that Gϕ P D.

For the terms qτ and rτ of other forms the reasons are quite similar.

Now consider an atomic formula ϕ of the form pqτ00 , . . . , q
τk
k q ετ rτ for τ ” rτ0, . . . , τks P Θb.

Assume that q
τλ
λ “ xτλλ and rτ “ uτ for some variables xλ and u. Then U ( ϕrγs is equivalent to

pγpx0q, . . . , γpxkqq Aτ γpuq and analogously for the pair pUf , γf q.

Let Gϕ P D, i. e., pγgpx0q, . . . , γgpxkqq Aτ,g γgpuq for every g P Gϕ. Consider the elements
ξf ” pγf px0q, . . . , γf pxkqq and p ” pγpx0q, . . . , γpxkqq P τ̌pAq.

Let f P F . Then ppfqpµq ” ppµqpfq “ γpxµqpfq “ γf pxµq “ ξf pµq for every µ P k`1. Consequently,
ppfq “ ξf . By Lemma 2 γf puq “ γpuqxfy. As a result, we obtain ppgq Aτ,g γpxqxgy for every
g P Gϕ P D. By definition, it means that p Aτ γpxq, i. e., U ( ϕrγs.

Conversely, let U ( ϕrγs, i. e., pγpx0q, . . . , γpxkqq Aτ γpuq. By the definition of the second-order
belonging, for p ” pγpx0q, . . . , γpxkqq there exists G P D such that ppgq Aτ,g γpuqxgy for every g P G.
By Lemma 3 γpuqxgy “ γgpuq. By the previous subsection, ξg “ ppgq. Consequently, ξg Aτ,g γgpuq,
i. e., Ug ( ϕrγgs for every g P G. Since G Ă Gϕ, we infer that Gϕ P D.

For the terms q
τλ
λ and rτ of other forms the reasons are quite similar.
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A proof of the property of infrafiltration for the quantified formula Dxτϕ for the language LpΣg2q
of the generalized second-order signature Σg2 is more delicate than for the first-order language.
Therefore we begin it with a subsidiary proposition.

Let ppUf , γf q | f P F q be a collection of evaluated mathematical systems of the second-order
signature Σg2 with true generalized equalities and belongings. Let β be an evaluation on the system
U ” infra-D-prodpUf | f P F q.

For the evaluation β and for every f P F define the evaluation δf on the system Uf in the following
way. Let x be a variable of a type τ . If τ is the first-order type, then put δf pxq ” βpxqpfq. If τ is
a second-order type, then put δf pxq ” βpxqxfy. Consider the evaluation δ ” ’pδf | f P F q.

Propositon 1. The equalities δpxτ q «τ βpx
τ
q hold for any variable xτ .

Proof. If τ is the first-order type, then by the definition of the evaluations δ and δf we obtain
δpxqpfq ” δf pxq “ βpxqpfq for any f P F , i. e., δpxq “ βpxq.

Let τ be a second-order type. Lemma 3 implies δpxqxfy “ δf pxq “ βpxqxfy for any f P F . By the
definition of the second-order equality, we conclude that δpxq «τ βpxq.

Propositon 2. Let a formula ψ be infrafiltrated with respect to the filter D. Then the formula
Dxτψ is infrafiltrated with respect to D as well.

Proof. Denote the formula Dxτψ by ϕ. Let Gϕ P D, i. e., Ug ( ϕrγgs for every g P Gϕ P D. Further,
we shall write simply G instead of Gϕ.

The presented satisfaction property means that Ug ( ψrγ1gs for some evaluation γ1g such that
γ1gpyq “ γgpyq for every yσ ‰ xτ . For every f P F define the evaluation δf setting δf ” γf if
f P F zG and δf ” γ1f if f P G.

Check that the evaluated systems pUf , δf q and pUg, δgq are H-concordant for every f, g P F . If
f, g P F zG, then δf “ γf and δg “ γg. Since the evaluations γf and γg are H-concordant, our
assertion is true. Let f, g P G. Then δf “ γ1f and δg “ γ1g. Let x be a variable of a type τ .

Consider the evaluation δ ” ’pδf | f P F q. Check that δpyq “ γpyq for every yσ ‰ xτ .

Let σ be the first-order type. Then δpyqpgq “ δgpyq “ γ1gpyq “ γgpyq “ γpyqpgq for g P G. If
f P F zG, then δpyqpfq “ δf pyq “ γf pyq “ γpyqpfq. Consequently, δpyq “ γpyq.

Let σ be a second-order type. If f P G, then δf pyq “ γ1f pyq “ γf pyq. If f P F zG, then δf pyq “ γf pyq.
Let p P δpyq. By the definition of the crossing, ppfq P δf pyq for every f P F . By the above,
ppfq P γf pyq for every f P F . This means that p P γpyq, whence δpyq Ă γpyq. The inverse inclusion
is checked in the same way. Consequently, δpyq “ γpyq.

Thus, for every y ‰ x we have δpyq “ γpyq.

By condition and construction, Ug ( ψrδgs for every g P G P D. Since the formula ψ is infrafiltrated,
the obtained property implies the property U ( ψrδs. Since δpyσq “ γpyσq for every yσ ‰ xτ , we
obtain the property U ( ϕrγs.

Conversely, let U ( ϕrγs. It is equivalent to U ( ψrβs for some evaluation β, H-concordant with
the evaluation γ and such that βpyq “ γpyq for every yσ ‰ xτ .

Consider the evaluation δ ” ’ pδf | f P F q from Proposition 1, corresponding to the evaluation β.
According to Proposition 1, δpzρq «ρ βpz

ρ
q for every variable zρ. It follows from Proposition 2 that

the property U ( ψrβs is equivalent to the property U ( ψrδs. Since the formula ψ is infrafiltrated,
the property U ( ψrδs is equivalent to the property G ” tg P F | Ug ( ψrδgsu P D.
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Let yσ ‰ xτ . If σ is the first-order type, then δgpyq “ βpyqpgq “ γpyqpgq “ γgpyq. If σ is a
second-order type, then δgpyq “ βpyqxgy “ γpyqxgy. Since by Lemma 3 γpyqxgy “ γgpyq, we
have δgpyq “ γgpyq. Consequently, in all the cases δgpyq “ γgpyq for every yσ ‰ xτ . Therefore the
property Ug ( ψrδgs is equivalent to the property Ug ( ϕrγgs. Thus, tg P F | Ug ( ϕrγgsu “ G P D.
This implies Gϕ P D.

The following two lemmas are the same as ones for the first-order language.

Lemma 2. Let formulas ψ and ξ be infrafiltrated with respect to the filter D. Then the formula
ψ ^ ξ is infrafiltrated with respect to D as well.

Proof. Denote the formula ψ ^ ξ by ϕ. Let Gϕ P D, i. e., Ug ( ϕrγgs for all g P Gϕ P D. This
property is equivalent to the conjunction of the properties Ug ( ψrγgs and Ug ( ξrγgs. Since
these formulas are infrafiltrated, it is equivalent to the conjunction of the properties U ( ψrγs and
U ( ξrγs, but it is equivalent to the property U ( ϕrγs.

Conversely, let U ( ϕrγs. It is equivalent to the conjunction of the properties U ( ψrγs and
U ( ξrγs. Then Gψ P D and Gξ P D. Consider G ” Gψ X Gξ. Then Ug ( ψrγgs and Ug ( ξrγgs
implies Ug ( ϕrγgs for every g P G P D. Hence, Gϕ P D.

Lemma 3. Let a formula ψ be infrafiltrated with respect to the ultrafilter D. Then the formula  ψ
is infrafiltrated with respect to D as well.

Proof. Denote the formula  ψ by ϕ. By assumption, the properties Gψ P D and U ( ψrγs are
equivalent.

By definition, F zGϕ “ tg P F | the property Ug ( ϕrγgs does not holdu. But Ug ( ϕrγgs is
equivalent to the assertion that the property Ug ( ψrγgs does not hold. Consequently the property
Ug ( ψrγgs is equivalent to the assertion that the property Ug ( ϕrγgs does not hold. It implies
F zGϕ “ Gψ.

Let Gϕ P D. Since D is an ultrafilter, we have Gψ “ F zGϕ R D. So the property U ( ψrγs does
not hold. By the definition of the satisfiability, it means that U ( ϕrγs.

Conversely, let U ( ϕrγs. Then the property U ( ψrγs does not hold. Therefore Gψ R D. Since D
is an ultrafilter, we have Gϕ “ F zGψ P D.

Theorem 1 (the generalized infrafiltration theorem). Every formula ϕ of the language LpΣg2q of
the second-order signature Σg2 with generalized equalities and belongings is infrafiltrated with respect
to any ultrafilter D on the set F .

Proof. The set of all formulas ϕ of the language LpΣg2q, constructed by induction from atomic
formulas by means of the connectives  and ^ and the quantifier D, will be denoted by Ψ. The
subset of the set Ψ, consisting of all formulas containing at most n logical symbols  , ^, and D,
will be denoted by Ψn. Obviously, Ψ “

Ť

pΨn | n P ω0q.

Using the complete induction principle we shall prove the following assertion Apnq: every formula
ϕ P Ψn is infrafiltrated.

If n “ 0, then ϕ is an atomic formula. By Lemma 1, it is infrafiltrated. Consequently, Ap0q holds.

Assume that for every m ă n the assertion Apmq holds.

Let ϕ P Ψn. If ϕ “  ψ, then ψ P Ψn´1. Therefore, ψ is infrafiltrated. By Lemma 3, the formula
ϕ is infrafiltrated as well. If ϕ “ ψ ^ ξ, then ψ, ξ P Ψn´1. Therefore, by the inductive assumption,
the formulas ψ and ξ are infrafiltrated. By Lemma 2, the formula ϕ is infrafiltrated as well.
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Finally, if ϕ “ Dxτψ, then ψ P Ψn´1. Consequently, as above, the formula ψ is infrafiltrated. By
Proposition 2 the formula ϕ is infrafiltrated as well. Thus, the assertion Apnq holds.

By the complete induction principle the assertion Apnq holds for every n P ω0. This means that
any formula ϕ P Ψ is infrafiltrated.

Let ϕ be an arbitrary formula of the language LpΣg2q. Consider for ϕ the accompanying formula
ϕ˚ defined in 3.3. By the definition of the operation ϕ ÞÑ ϕ˚, we have ϕ˚ P Ψ. By the proven
above, the formula ϕ˚ is infrafiltrated, i. e., tg P F | Ug ( ϕ˚rγgsu P D ô U ( ϕ˚rγs. Proposition 1
implies the equivalences U ( ϕ˚rγs ô U ( ϕrγs and Ug ( ϕ˚rγgs ô Ug ( ϕrγgs. As a result we
get the following chain of equivalences:

 

g P F | Ug ( ϕrγgs
(

P D ô
 

g P F | Ug ( ϕ˚rγgs
(

P D ô U ( ϕ˚rγs ô U ( ϕrγs.

It means that the formula ϕ is infrafiltrated.

This theorem has one important corollary. Let Φ be some set of formulas of the language LpΣg2q of
the generalized second-order signature Σg2. Let the set Φ has a model pU0, γ0q of the signature Σg2
with true generalized equalities and belongings. Take an arbitrary set F and an arbitrary ultrafilter
D on F . Consider the collection of the models ppUf , γf q | f P F q such that pUf , γf q ” pU0, γ0q.
The infra-D-product infra-D-prodpUf | f P F q of the collection pUf | f P F q will be called the
infra-D-power of the system U0 with the exponent F and will be denoted by infra-D-powerpU0, F q.
The crossing ’ pγf | f P F q of the collection pγf | f P F q will be called the crossing of the evaluation
γ0 in the quantity F and will be denoted by ’ pγ0, F q.

Corollary 1. Let Φ be some set of formulas of the language LpΣg2q. If the set Φ has a model pU0, γ0q

of the signature Σg2 with true generalized equalities and belongings, then for every set F and every
ultrafilter D on F the set Φ has also the model pinfra-D-powerpU0, F q,’ pγ0, F qq of the signature Σg2
with true generalized equalities and belongings.

5.3 Compactness theorem for formulas of the language LpΣg
2q

In the capacity of some pleasant complementary corollary to the infrafiltration theorem we deduce
the generalized compactness theorem for the language LpΣg2q. It is well-known that it does not hold
for the standard language LpΣst2 q [2, Appendix].

Theorem 1. Let Φ and Ψ be some sets of formulas of the language LpΣg2q of the generalized second-
order signature Σg2. Let for every finite subset f of the set Φ the set of formulas f`(E1–E4)`Ψ has
a model pUf , γf q of the signature Σg2. Then the set of formulas Φ`(E1–E4)`Ψ has a model pU, γq

of the signature Σg2.

Proof. Consider the set F ” tf Ă Φ | 0 ă |f | ă ωu of all finite non-empty subsets from Φ.

For an element f P F consider the set Ff ” tg P F | f Ă gu. Since f P Ff , we have Ff ‰ ∅. The
ensemble C ” tFf | f P F u has the finite intersection property, i. e., it is multiplicative. Hence,
there is some ultrafilter D on the set F including the set C.

Consider the system U ” infra-D-prodpUf | f P F q and the evaluation γ ” ’ pγf | f P F q on the
system U constructed in 5.1. By Lemma 1, U is a system with the true generalized equalities and
belongings.

Prove that the evaluated system pU, γq is a model for the set Φ.

Suppose ϕ P Φ. Consider the set Ftϕu. By condition, Utϕu ( ϕrγtϕus. Consider the set Gϕ ” tg P
F | Ug ( ϕrγgsu.
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If g P Ftϕu, then tϕu Ă g implies ϕ P g. Therefore Ug ( ϕrγgs. Consequently, Ftϕu Ă Gϕ. Since
Ftϕu P D, we have Gϕ P D.

By Theorem 1 we infer the property U ( ϕrγs. Thus, pU, γq is a model for the set Φ. The fact that
pU, γq is a model for the set Ψ follows immediately from Theorem 1.

6 Inductive Sequence of Models of Non-canonical Gene-
ralized Second-order Dedekind Real Axes with Expon-
entially Increasing Powers

6.1 The formulation of Final theorem

Final theorem.

(I) Let F be a fixed non-empty set. Then there exist some sequence ppRi | i P ω0q of sets pRi, some

sequence pSi | i P ω0q of superstructures Si of the signature ΣgR2 over the sets pRi, and some

sequence pui | i P ω0q of mappings ui : pRi Ñ pRi`1 such that:

p1q R0 ” ppR0, S0q ” pR, SR2q;

p2q every system Ri ” ppRi, Siq of the signature ΣgR2 is a model for the theory ThgR2;

p3q every mapping ui is an p«π,i,«π,i`1q-injective homomorphism of the signature ΣgR2

from the system Ri into the system Ri`1;

p4q the image of the system Ri in the system Ri`1 respectively to the homomorphism ui is
a submodel of the model Ri`1;

p5q the support pRi`1 of the system Ri`1 is the set pRFi ;

p6q puipqpfq “ p for every p P pRi and every f P F , i. e., uip is the tpu-valued function
on F .

(II) There exists some superstructure Sω0 of the signature ΣgR2 over the set pRω0 ”
ś

ppRi | i P ω0q

and some sequence of mappings wi : pRi Ñ pRω0 such that:

p1q the system Rω0 ” ppRω0 , Sω0 q of the signature ΣgR2 is a model for the theory ThgR2;

p2q every mapping wi is an p«π,i,«π,ω0q-injective homomorphism of the signature ΣgR2

from the system Ri into the system Rω0 ;

p3q the image of the system Ri in the system Rω0 respectively to the homomorphism wi is
a submodel of the model Rω0 ;

p4q wi “ wi`1 ˝ ui for every i P ω0.

6.2 Detailed superstructures in Final theorem

Here we give the detailed description of the superstructures Si from Final theorem in the same
manner as it is given for the superstructure SR2 in 4.3.

The superstructure Si is the quadruple pSc,i, Se,i, Sb,i, Sv,iq, where:

• the collection of constant structures Sc,i is the suit

`

psπ,i0 , sπ,i1 q,∅, psρ,i0 , sρ,i1 , sρ,i2 q, ps
λ,i
0 , sλ,i1 q

˘

“
`

0i, 1iq,∅, p´i, {i,ďiq, p`i, ¨iq
˘

;

• the collection of the equality ratios Se,i is the suit p«π,i,«κ,i,«ρ,i,«λ,iq;
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• the collection of the belonging ratios Sb,i is the suit pAκ,i,Aρ,i,Aλ,iq;

• the collection of the terminals Sv,i over the set pRi is the suit

pπppRiq,κppRiq, ρppRiq, λppRiqq “ ppRi,PppRiq,PppR2
i q,PppR3

i qq.

6.3 The proof of Final theorem

(I) The construction of the infra-D-power of the system U0 with the exponent F from 5.2 gives the
opportunity to prove part I of the Final theorem.

Fix some ultrafilter D on F . We shall construct the necessary sequence of models by natural
induction. Take for the initial model R0 ” ppR0, S0q the canonical model Rg2 ” pR, SR2q from 4.3.

Assume that the model Ri ” ppRi, Siq with some evaluation ζi is constructed.

Take the system Ri`1 ” ppRi`1, Si`1q ” infra-D-powerpRi, F q and the evaluation ζi`1 ” ’ pζi, F q
defined in 5.1. According to Corollary to Theorem 1 the evaluated system pRi`1, ζi`1q is a model

for the theory ThgR2. And the support pRi`1 of this model is the set pRFi ”
ś

ppRif | f P F q, where
pRif ” pRi for every f P F . Since the set Ψg

2 of axioms of the theory ThgR2 from 4.2 consists of closed
formulas only, the system Ri`1 is a model for this theory.

Define the mapping ui : pRi Ñ pRi`1 setting puippqqpfq ” p for every p P pRi and every f P F . Check
that ui is p«π,i,«π,i`1q-injective.

Take some p, q P pRi and suppose that uippq «π,i`1 uipqq. By the construction from 5.1 there exists
G P D such that puippqqpgq «π,g,i puipqqqpgq for every g P G. Since G ‰ ∅ we can take g0 P G.
Then puippqqpg0q ” p and puipqqqpg0q ” q implies p «π,i q.

The construction of constant structures presented in 5.1 implies immediately that ui is a homomor-
phism of the signature ΣgR2 from the system Ri into the system Ri`1.

(II) The construction of the infra-D-product of the collection of mathematical systems from 5.1
gives the opportunity to prove part II of the Final theorem.

Fix some ultrafilter E on ω0. Take the system Rω0 ” ppRω0 , Sω0 q ” infra-E-prodpRi | i P ω0q and the
evaluation ζω0 ” ’ pζi | i P ω0q defined in 5.1. According to part I and Theorem 1 the evaluated
system pRω0 , ζω0 q is a model for the theory ThR2. Since the set Ψg

2 of axioms of this theory from 4.2
consists of closed formulas only, the system Rω0 is a model for this theory.

Fix i P ω0. Construct some mapping wi : pRi Ñ pRω0 by the inverse and direct natural inductions.
For the base of direct induction put pwipqpiq ” p and pwipqpi ` 1q ” uip. For the step of direct
induction put pwipqpj ` 1q ” ujppwipqpjqq for j ě i` 1. Fix some f0 P F . Put pwipqpi´ 1q ” ppf0q

for the base of inverse induction. For the step of inverse induction put pwipqpj´1q ” ppwipqpjqqpf0q

for 1 ď j ď i ´ 1. These constructions can be described in a more rigorous form based on [14,
Theorem 1(1.2.8)].

By the natural induction in ST it can be proved that wi is a homomorphism of the signature ΣgR2

from the system Ri into the system Rω0 (see the example of scrupulous arguments below).

Check that wi is p«π,i,«π,ω0q-injective. Take some p, q P pRi and suppose that wippq «π,ω0 wipqq.
By the construction from 5.1 there exists J P E such that pwipqpjq «π,j pwiqqpjq for every j P J .
Consider the binary partition pi, ω0ziq of ω0. Since E is a ultrafilter, we infer that either i P E or
ω0zi P E . If i P E , then ω0 P E but it is not so. Hence, ω0zi P E . This implies J X pω0ziq P E , and,
therefore, there is j P J such that j ě i. Take k0 ” j ´ i.
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If j “ i, then by the definition of wi we have pwipqpiq “ p and pwiqqpiq “ q. Hence, p «π,i q. If
j “ i`1, then pwipqpi`1q ” uip and pwiqqpi`1q ” uiq imply puipqpi`1q «π,i`1 puiqqpi`1q. Since
by assertion 3 of part I the mapping ui is p«π,i,«π,i`1q-injective, we infer that p «π,i q. Consider
in ST the set K ” tk P N | ppwipqpi` kq «π,i`k pwiqqpi` kqq ñ p «π,i qu. Let ΦST be a totality of
axioms of the theory ST, i. e., ΦST consists of all explicit proper axioms of this theory, all implicit
proper axioms of this theory, and all implicit logical axioms of the predicate calculus (see, e. g., [14,
1.1.3–1.1.11 and A.1.2]). Denote the first formula in the definition of K by ϕpi` kq and the second
one by ψ. We have proved in ST the existence of deduction ΦST , ϕpi ` 1q $ ψ. Since ST is the
first-order theory, we conclude that ΦST $ ϕpi ` 1q ñ ψ by virtue of the deduction theorem (see,
for example, [2, Proposition 2.5] or [14, 1.1.3]). Hence, 1 P K.

Suppose that k P K and pwipqpi ` k ` 1q «π,i`k`1 pwiqqpi ` k ` 1q. By the definition of wi we
have pwipqpi ` k ` 1q ” ui`kppwipqpi ` kqq and the same for q. Since by assertion 3 of part I
the mapping ui`k is p«π,i`k,«π,i`k`1q-injective, we infer that pwipqpi ` kq «π,i`k pwiqqpi ` kq.
Now from k P K we deduce that p «π,i q. Thus, we have proved the existence of deduction
ΦST , ϕpi` k ` 1q $ ψ. As above this implies ΦST $ ϕpi` k ` 1q ñ ψ, and, therefore, k ` 1 P K.
By the principle of natural induction in ST (see [14, 1.2.6]) we get K “ N.

This means that for our j “ i ` k0 we have k0 P K. Since j P J , we conclude that p «π,i q. This
proves assertion 2.

Now we must only prove assertion 4. Fix p P pRi. Then puipqpfq « p for every f P F . By the
definition we have pwi`1puipqqpi` 1q « uip « pwipqpi` 1q. For the base of direct induction we have

pwi`1puipqqpi` 2q « ui`1ppwi`1puipqqpi` 1qq « ui`1ppwipqpi` 1qq « pwipqpi` 2q.

For the base of inverse induction we have

pwi`1puipqqpiq « puipqpf0q « p « pwipqpiq.

Then by the direct and inverse inductions we check that pwi`1puipqqpjq «π,j pwipqpjq for every

j P ω0. Hence, pwi`1 ˝ uiqppq «π,ω0 wippq for every p P pRi.

Remark 1. Since every set pRi ” pRFi´1 for i ě 1 consists of “real”-valued functions p : F Ñ pRi´1,
it is necessary to clarify directly the satisfaction of non-evident axioms A3 (the existence and
functionality of the inversion) and A19 (the linearity of the order) on the systems Ri.

In case of A3 take any function p P pRi such that p ffπ,i 0i, where 0i denotes the null in pRi.
Consider the binary partition of F consisting of the sets zerppq ” tf P F | ppfq «π,f,i´1 0i´1u and
cozppq ” F z zerppq.

Since D has the binary partition property, we have either zerppq P D or cozppq P D. In the
first case we conclude that p «π,i 0i but it contradicts our assumption. Hence, cozppq P D and
ppgq ffπ,i´1 0i´1 for every g P cozppq. By A3 for every g P cozppq there exists ppgq´1 such that
pppgq, ppgq´1

q Aρ,i´1 {i´1. Define p´1 setting p´1
pgq ” ppgq´1 for every g P cozppq and p´1

pfq ”
ppfq for every f P zerppq.

By the definition of ρ-belonging Aρ,i from 5.1 pp, p´1
q Aρ,i {i. Thus, we deduced the existence of

the inversion in Ri from the existence of the inversion in Ri´1 using the binary partition property
of the ultrafilter D.

In case of A19 take any functions p, q P pRi. Since pRi´1 is linearly ordered with respect to the
order ďi´1, we can take the binary partition of F consisting of the sets

G ” tg P F | pppgq, qpgqq Aρ,i´1ďi´1u and

H 1 ” th P F | ppqphq, pphqq Aρ,i´1ďi´1q ^ pqphq ffπ,i´1 pphqqu.
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By binary partition property of D we have either G P D or H 1 P D. In the first case we conclude that
pp, qq Aρ,iďi. In the second case we can see that H 1 Ă H ” th P F | pqphq, pphqq Aρ,i´1ďi´1u P D
implies pq, pq Aρ,iďi. Thus, we deduced the linearity of the order in Ri from the linearity of the
order in Ri´1 using again the binary partition property of the ultrafilter D.

Open question 1. Part II of Final theorem shows that the model Rω0 can be considered as some
pretender for the inductive limit of the inductive sequence s ” pRi | i P ω0q in the sense of [24, 11.8].
But this is an open question.

Open question 2 (about transfinite extension of the inductive sequence s). Let λ be an ordinal
number such that λ ą ω0 and E be an ultrafilter on λ. Since E has the binary partition property,
we can consider the ultrafilters Eα ” tE Ă α | DG P E pE “ G X αqu for every ordinal number
α P λzω0 “ rω0, λr. Starting from Rω0 we can construct by the transfinite procedure some collection
t ” pRα | α P λzω0q of models for the theory ThgR2 such that: 1) Rα ” infra-Eα-prodpRγ | γ P αzω0q

for limit ordinal number α and 2) Rα`1 ” infra-Eα-powerpRα, F q. Is the collection t is inductive

with respect to some injective homomorphisms uαβ : pRα Ñ pRβ for every α ă β and does t extend s?

Supplement 1. In [14, C.3.4] the generalized second-order Peano – Landau theory ThgN2 of natural
numbers is considered. It is clear that some inductive sequence pNi | i P ω0q of models of this
theory can be constructed, which is similar to the inductive sequence s ” pRi | i P ω0q constructed
above. And also the inductive “quasilimit” Nω0 of this sequence can be constructed similarly to to
the inductive “quasilimit” Rω0 . Moreover, its own Final theorem can be proved for the generalized
models Ni and Nω0 of the theory ThgN2. Besides, open questions 1 and 2 are valid for these
hypothetical models.
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