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It is crucial for financial providers, investment groups, resource developers, and

exploration companies to rate new geothermal projects in terms of resources

and reserves. In general, the existing volumetric method is constrained by

limited information when projects are at the early stage of development. The

main objective of this study is to estimate the probabilistic potential thermal

energy of the M research area in the Maichen Sag, a geothermal prospect in

South China, through stochastic methodologies. The probabilistic assessment

methodology provides a way to embody the uncertainty and risk in geothermal

projects and to quantify the power potential in a probable range. In this study,

proxy numerical models were built by combining the Experimental Design (ED)

and Response Surface Methodology (RSM) with the Monte Carlo Simulation

technique. An improved workflow for combined ED-RSM that uses two-level

Full Factorial and Box–Behnken designs was proposed. For comparative

analysis, the typical volumetric technique was also implemented in this

study. The ED-RSM results show that the M area has P10, P50, and

P90 reserves of 5.7 × 1014 J, 5.3 × 1014 J, and 5 × 1014 J, respectively, and

these numbers from the typical volumetric method are 1.5 × 1015 J, 9 × 1014 J,

and 5.1 × 1014 J, respectively. In this study, the operability, applicability, and

accessibility of ED-RSM in the assessment of geothermal potential and its ability

to provide a reliable output are demonstrated.
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1 Introduction

Global energy demand has soared tremendously because of rapid industrial

advancement and human activities, at the same time, it has been found that the

available geothermal resources are adequate to meet this energy demand. At present,

80 countries have geothermal resources that are being harnessed for direct use

applications; however, currently, only 24 countries are using geothermal resources for

generating electricity (Bertani, 2012; Bertani, 2016; Lund and Boyd, 2016). Resource

evaluation, which is the first step toward improvement of the commercial development of
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geothermal resources, is the practice of characterizing a

geothermal system and estimating its potential power or

thermal energy capacity (Ciriaco et al., 2018; Ciriaco A. E.

et al., 2020). The estimated capacity of the resource is usually

calculated by using volumetric heat storage method or numerical

models. Of these two methods, numerical modeling has been

widely used in various industries and can provide more reliable

estimates (Ciriaco A. E. et al., 2020). It can be used to simulate the

fluid flow and heat transfer of actual complex geothermal

systems, and its performance is better than that of the heat

storage method (Quinao and Zarrouk, 2018). However,

numerical modeling of geothermal systems still cannot

provide error-free results and cannot make subjective

predictions on its modeling parameters. Therefore,

quantification of the mismatches and errors in numerical

modeling predictions is not only necessary, but also

challenging because these models produce deterministic

results (Santner et al., 2003; Ciriaco et al., 2018). The

quantification of uncertainty in numerical model predictions

requires a series of simulation experiments. These steps

include the construction of multiple versions of the calibrated

reservoir model through reverse modeling. However, under

normal circumstances, simulation experiments require intense

labor and time (Doherty et al., 2017). The method involving

combination of Experimental design (ED) and Response surface

methodology (RSM), together denoted as ED-RSM method has

been employed to build polynomial models rather than

numerical models and several authors have verified the

techniques (Pasikki et al., 2016; Quinao and Zarrouk, 2018).

The ED-RSMmethod allows for the consideration of uncertainty

in numerical model predictions in a more practical manner

(Ciriaco A. E. et al., 2020).

In experimental research, ED and RSM are two separate

statistical techniques that are used to describe the

relationship between input variables and specific output

variables (Ciriaco A. E. et al., 2020). The output variable is

the parameter of interest, which is the goal or product of the

experiment. On the other hand, the input variables are

variables that affect output. ED uses the least number of

simulations to understand the impact of input variables on

output variables, while RSM optimizes output variables by

conducting sequential experiments (Ciriaco et al., 2018).

Notably, ED was first introduced in the 1920s mainly to

provide a method for systematic planning and research

(Box, 1979; Box et al., 1978; Myers and Montgomery,

2002). Nowadays, the ED-RSM framework has been

applied in many fields such as metallurgy, transportation,

medicine, industrial machinery, and oil and gas. However, in

the geothermal industry, only a few published studies on this

technology are available. For example, Acuna et al., 2002 and

Hoang et al. (2005) described the relationship between factors

that affected power capacity, by considering one factor at a

time and created a simple equation as a function of important

reservoir parameters, including rock permeability, boundary

conditions of aquifers, productivity (Ciriaco A. E. et al.,

2020), upwelling velocity, and deep reservoir temperature.

Pasikki et al., 2016 evaluated green fields by developing a

polynomial model for calculating the average decline rate of

MWe using ED. Quinao and Zarrouk (2018) succeeded in

estimating oil reserves by adopting a stochastic method to

construct a surrogate model used in the oil industry for

estimating oil reserves and revealed that Plackett–Burman

and Full Factorial designs were sufficient to evaluate

Ngatamariki Reservoir of New Zealand. Recently, the use

of Full Factorial design and Box–Behnken design was

investigated to screen and construct a second-order

polynomial model and the ED-RSM method was applied to

the Rotorua geothermal model (Ciriaco et al., 2018). The

screening phase not only reduced the number of required

simulation runs by removing insignificant variables, but also

provided insights into the next experimental setup (Ciriaco

et al., 2018). The results also confirmed that the second-order

polynomial model is the most suitable for simulating

experimental data. The results of the two studies

mentioned above show that Full Factorial,

Plackett–Burman, and Box–Behnken designs work well for

creating geothermal reservoir models. The polynomial

surrogate model from the ED-RSM method also provides a

way to evaluate probabilistic resources by applying the Monte

Carlo method, thus each parameter in the polynomial model

can be described by using a probability distribution (Ciriaco

A. E. et al., 2020).

The main objective of this study was to optimize the ED-

RSM workflow to quantify uncertainty screening parameters

before constructing a proxy model. The experiment involved a

case study of a potential hydrothermal field in the Beibuwan

Basin in China. The reservoir models of this field were

established according to the natural conditions. Six

reservoir parameters were selected to build the

experimental design reservoir model. These parameters

were horizontal (kx and ky) and vertical (kz) permeability,

porosity, volumetric specific heat, and volume of a single rock

type. For each reservoir model, two-level Full Factorial design

and Box–Behnken design were implemented. The

Box–Behnken design requires three levels; therefore, the

final regression model was combined with the Monte Carlo

method to generate the heat storage probability distribution,

and the result was compared with the result obtained from the

traditional volumetric heat storage method (Ciriaco A. E.

et al., 2020). These six parameters were selected based on

expert knowledge and experimental requirement. These

specific rock parameters (kx, ky, kz, porosity, volumetric

specific heat) and different lithology rock volumes exhibit a

significant impact on amount of stored geothermal energy (q).

Although other model parameters could also be included in

the survey (such as upstream location parameters and
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reservoir model boundaries), based on experience, it was

concluded herein that these six selected parameters were

the most suitable for this study. It is strongly believed that

this new type of numerical simulation-Monte Carlo method

for probabilistic resource assessment is a useful and

convenient method. Therefore, it is very important to use

the ED-RSM framework to establish a powerful working

framework to construct polynomial models for numerical

modeling.

2 Methodology

A predictive model is a statistical model constructed from a

collection of data for a system of interest, which is then used to

predict the future behavior of the system (Ciriaco A. E. et al.,

2020). In this study, a prediction model was created to predict

the geothermal capacity of potential geothermal fields by using

detailed geological models and numerical temperature fields.

Three important components were identified to improve the

geothermal ED-RSM workflow to predict geothermal capacity:

1) experimental design, 2) model parameters and parameter

values, and 3) modeling acceptance criteria. In this

experimental design process, two ED methods were fully

utilized, and the key influencing parameters were identified

by the two-level Full Factorial method, and then several types of

parameters exhibiting the greatest impact on the results were

selected as the basis of numerical simulation for geothermal

energy. Based on obtaining the simulation calculation results,

the second-order Fractional Factor experimental design

method, i.e., Box–Behnken method was used to establish the

proxy model. After the proxy model was established, it was

judged whether it was reasonable through a set model

acceptance standard. In case, it was unreasonable, the

simulation sets for proxy model were optimized again until

they reached the standard, and the probability distribution of

geothermal energy was calculated by using the proxy model and

via the Monte Carlo method. Use of this approach not only

solves the problem of too many experimental parameters and

cumbersome calculations, but also retains the characteristics of

each parameter to the greatest extent. Moreover, the process of

numerical calculation using a computer system can be omitted

(Figure 1).

2.1 Experimental design

In the ED-RSM workflow, the parameters in the reservoir

model are changed simultaneously according to the

experimental design (Amudo et al., 2009). In this study,

two experimental designs, namely, Full Factor and

Fractional Factor were considered to simultaneously

evaluate the response of a given output parameter to

changes in input variables. The main advantage of Full

Factorial design is that it allows for the evaluation of all

possible parameter combinations and the collection of

every possible data point, thus providing a simple method

for selecting the best conditions. When using the Fractional

Factorial design, part of the factorial design can

simultaneously change and evaluate various factors

(Walpole et al., 2012). The two most commonly used

Fractional factorial designs are the Plackett–Burman design

and the Box–Behnken design. The Plackett–Burman design is

the most widely used in geothermal applications (Hoang et al.,

2005; Quinao and Zarrouk, 2014, 2018). However, in this

study, it was decided to perform a two-level Full Factorial

design instead of a Plackett–Burman design to obtain more

detailed factor information. Box–Behnken design is a high-

order design that can be used to estimate interaction and

quadratic effects. It is an independent quadratic design, with

each factor requiring three levels, and it can be achieved with

fewer model runs. Previous studies have shown that the fitting

of modeling results requires a second-order polynomial model

(Simpson et al., 1998), and this model has been successfully

applied in the model of the Rotorua geothermal field (Ciriaco

et al., 2018).

FIGURE 1
The ED-RSM workflow used in this study for probabilistic resource assessment by using numerical models.
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2.2 Simulation parameters and parameter
values

The next step after selecting the most appropriate experimental

design is the determination of the parameters or factors, their values,

and their levels. The level of the factor refers to the setting of the

parameter value. Each parameter is assigned a minimum (low)

setting and amaximum (high) setting, and in a factorial design, these

settings are assigned codes of −1 and +1, respectively. This range of

values illustrates the possible uncertainty of parameters. Table 1

summarizes all the parameters and their values used in this study.

The low range and high range are initially based on expert

knowledge, and the range of consideration is very wide. The

number of factors and their levels affects the number of

simulation runs required to execute a particular design.

Box–Behnken design requires a three-level factorial

design (Friedmann et al., 2003; Hoang et al., 2005; Ciriaco et al.,

2018; Fukuda et al., 2018). To evaluate the performance of the Full

Factorial design, two-level setting was carried out.

2.3 Acceptance criteria

A residual graph was used to verify the effectiveness of the

regression model (Quinao and Zarrouk, 2014). The polynomial

model was evaluated based on the goodness of fit. The two

measures of goodness of fit are R-squared (R2) and adjusted R2.

For a given set of predictors, a higher R2 value usually indicates

that the polynomial model is better able to explain the change in

response surface. However, even if the added predictor variable is

not significant, R2 increases naturally with the number of

predictor variables. The adjusted R2 performs better than R2

because it adds independent variables that do not contribute

to the explanatory power of the model. Monte Carlo simulation

was performed on the final regression model. A simple triangular

distribution based on the most probable minimum and

maximum value was assigned to each important variable. A

simple triangular distribution is usually sufficient to describe

the uncertainty level of key reservoir parameters (Parini and

Riedel, 2000). Thus, 8,000 random samples were created to

generate the probability distribution of thermal energy q.

2.4 Thermal energy calculation

The thermal energy q stored in a reservoir can be calculated

by dividing the reservoir into n different regions of volume Vi

and temperature Ti, where i = 1, 2, ..., n, using the equation

(Muffler and Cataldi, 1978):

q � ∑n

i�1ρiciVi(Ti − Tf) (1)

where:

ρici is the volumetric specific heat capacity of the saturated

rock, J (°Cm3)−1.

Vi is the volume of the ith region of n numbers of lithology.

Ti is the initial temperature of the ith lithology, °C, and Tf is

the cut-off or final abandoned reservoir temperature, °C.

This study considers the influence of porosity on the above-

mentioned equation. Therefore, the thermal energy in the rock

(qr) and in the fluid (qf) was calculated separately by introducing

porosity φ.
According to the geological model of a geothermal reservoir

and the results of three-dimensional (3D) temperature field finite

element model, the energy calculation of the finite element grid

can be carried out by the above-mentioned method, and the

energy of partition, layering, and rock-splitting type can be

obtained. Further, the relationship among different geological

parameters can be established by the ED method introduced

herein, and an estimate of the geothermal reservoir’s energy can

be obtained quickly, and other favorable targets can be evaluated

more quickly and easily.

3 Case studies

In order to improve the existing methods of constructing

polynomial models, the ED-RSM workflow was applied to the

geothermal potential field in the Beibuwan Basin in South China.

The geothermal systems are in the South China Volcanic Zone,

and their hot geothermal fluids are used for residential and

commercial energy purposes.

TABLE 1 Input parameters applied in the experimental design model.

Parameter/Variable Unit Low (−1) Mid (0) High (+1)

Permeability (x and y) 10–3 μm2 0.5 1 1.5

Permeability (z) μm2 0.05 0.1 0.15

Porosity % 10 15 20

Volumetric specific heat 106 J (k·m3)−1 2 2.5 3

Sandstone volume 108 m3 400 900 1,500

Mudstone volume 108 m3 3,000 2,500 1900
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3.1 Research area background

The research area, which is in the easternmost part of the

Maichen depression of the Beibuwan Basin, is an oil and gas

exploration block. The area, which spans 6,256 km2, is located in

the Leizhou Peninsula, Guangdong Province, China. The

structural location belongs to the eastern part of the Beibuwan

Basin on the continental shelf of the South China Sea (Figure 2).

In the Cenozoic, the Beibuwan Basin underwent extensional

faulting to form the basin; there is a double-layer structure of

a vertical superimposed Paleogene faulted (or rifted) basin and a

Neogene depression basin. In the Paleogene, extensional

structures with twisted structures mainly developed, while in

the Neogene-Quaternary period, extensional structures mainly

developed. Huge, thick Paleogene sands and mudstone strata

(Changliu Formation, Liushagang Formation, and Weizhou

FIGURE 2
Location of the research area.

FIGURE 3
Section view and stratigraphy of the research area.
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Formation) have been deposited in the various depressions in the

Beibuwan Basin (Figure 3). Among them, the Liushagang

Formation is a set of shallow and middle-deep lacustrine

mudstone deposits. The reservoirs are mainly sandstones of

the Liushagang and Weizhou Formations, and the regional

caprock is a large set of dark mudstone and shale of the

Liushagang Formation (Figure 4). The Maichen depression

can be divided into five structural units: the southern steep

slope zone, the deep depression zone, the inner gentle slope

zone, the outer gentle slope zone, and the western depression.

Faults (mainly normal faults) are developed in the area. The

depression-controlling faults mainly have NE strike. The

boundary faults at both ends of the depression (X fault and

M2 fault) have NW strikes. The secondary faults have mostly NE

strikes in the deep part and NE strikes in the shallow part. In

general, in the Paleogene, the Beibuwan Basin experienced the

initial fault-sag period of the Paleocene, the strong fault-sag

period of the Eocene, and the stable subsidence period of the

Oligocene. The tectonic activity indicates a weak–strong–weak

change. More importantly, the Maichen depression experienced

a strong tectonic inversion in the late period of the first stage, and

the strata suffered strong denudation.

According to the previous studies, the land heat flow value of

the South China Sea coast varies between 60 and 80 mWm−2

(Zhao et al., 2019), and the heat flow value increases in the

direction of the ocean basin. The surface heat flow value of each

basin is different. The scale of the Beibuwan Basin is relatively

small. The panoramic view of the basin is near the east to the

Hainan and Leizhou areas, which are separated by the Hainan

uplift and Qiongdongnan depression. The average surface heat

flow value of the Beibuwan Basin is 61.2 mWm−2 (Chen et al.,

2014). The geothermal energy in the area mainly comes from

mantle-source heat and crustal reflective elements. According to

a previous study, the temperature of the Moho in the Beibuwan

Basin varies in the range of 700–800°C, the heat flow composition

of the Beibuwan Basin is stable, and the heat flow of the crust

surface varies between 38% and 42%. This previous study used

the Mckenzie model and the Hutchison heat balance formula to

comprehensively study the heat flow history of the Beibuwan

Basin since the Cenozoic, based on measured ground

temperature data. The corresponding time of the Himalayan

movement leading to the thermal event is the period of intense

volcanic activity since the Neogene. Previous studies have shown

that the Beibuwan Basin has a relatively high current geothermal

gradient, with an average value of 3.72°C/100 m, and there is a

relatively low geothermal gradient in the Maichen Sag. In this

study, the ground temperature was obtained and calculated from

well temperature logging data in the study area. Then, a profile

diagram of the relationship between underground temperature

and depth was drawn (Figure 5); the temperature values were

obtained from both well temperature logging data and actual

measured underground temperature data. The measured data are

generally higher than the well temperature data, and the

measured data more truly reflect the underground

temperature; however, the well temperature logging data

exhibit better continuity and can better reflect the change of

temperature with depth. In the temperature logging curve ofWell

W1, there are abnormal temperature areas that are distributed in

the middle of the Liushagang Formation, and the characteristics

of the measured well temperature data are not obvious. The

temperature logging curve of Well W6 exhibits an increasing

inflection point at the depth of 2,800 m, which may be related to

the presence of the top layer containing the oil and gas reservoir.

Herein, the current ground temperature gradient was calculated

by plotting the measured ground temperature and depth profile.

According to statistics, the annual average temperature of the

surface in the Maichen depression is 22–26°C, and the average

temperature is 24°C. The average temperature gradient is 3.19°C/

100 m, which is calculated based on the reference surface.

FIGURE 4
Sedimentary column of the research area.
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3.2 Geological model

The 3D information of the configuration of the underground

structure was compiled, visualized, and interpolated (Ebong

et al., 2019). The model is 18 km wide from east to west and

20 km wide from north to south (Figure 6). The model has seven

formation layers, two sedimentary facies, and two lithological

characteristics, thus the vertical grid spacing of the 3D model

incorporates the number of layers and their respective thickness

changes. The bottom of the model extends down to the

Lithosphere–Asthenosphere Boundary (LAB) at a depth of

nearly 30 km. In the horizontal direction, the 3D structure of

each geological layer is defined with 170,392 grid nodes,

corresponding to a grid spacing of 50 m.

The lithological model of the research area was also created

by combining geostatistical and geological information

(Figure 7) (Ebong et al., 2020; Ebong et al., 2021). In the 3D

geological model, there are two sets of sandstone reservoirs in

the target layers Weizhou and Liushagang; in the southern part

of the research area, sandstone is mainly distributed locally in

the ascending plate of the fault, and the deep depression of the

settlement center at the descending plate contains some

turbidite sandstone. In the gentle slope to the north, there

are mainly deposits of river sand bodies, with obvious belt

distribution characteristics, and the other locations mainly

contain delta front mud and shallow lacustrine mudstone.

The sand body is unevenly distributed and has great

variability in lithology, porosity, and permeability. Therefore,

the thermal storage correlation coefficients related to lithology

and horizontal rock spatial structure also exhibit great

variability. In this study, the thermal conductivity (TC),

thermal diffusivity (TD), and specific heat capacity of a

single well were calculated by using logging calculation

methods and acoustic wave, neutron, density, natural

gamma, and resistivity curves (Fuchs et al., 2015). Therefore,

geostatistical method was used herein to build the geological

model based on information of rocks from various single wells.

FIGURE 5
Temperature gradient from the measured and logging data.

FIGURE 6
Geological model of the research area.
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The thermal correlation coefficient can be used to form a 3D

thermal correlation coefficient attribute model, which is of great

significance for temperature calculation. The model reveals that

the TC of sandstone is higher, with an average value of 3.01 W

(m·K)−1, and the average TC of the mudstone is 2.1 W (m·K)−1,
with a large spatial variation. The general rule is that the TC of

sandstone is greater; however, it is affected by different

lithofacies of sandstone, thus the TC of the sandstone also

varies in space. The general rule is that the TC of river sand

bodies is better than that of turbidite sand bodies, and the TC of

lacustrine mudstone is larger than that of delta mudstone

(Chen, 1988; Qiu et al., 2004; Guo et al., 2020).

3.3 Thermal modeling approaches

To predict the temperature distribution at depth, the steady-

state conduction heat field was calculated at the scale of the entire

lithosphere.

For purely conductive temperature calculations, it was

assumed that heat is mainly transmitted through conduction

throughout the Earth’s lithosphere. The formula of the related

equation is as follows (Sippel et al., 2013):

(ρc)(b)
zT

zt
� −∇× (λ(b)∇T) + S (2)

Under the assumption of thermal equilibrium, the first term

on the left side of Eq. 2 can be ignored (i.e., zTzt � 0). Therefore, Eq.

2 takes the simplified form of:

∇× (λ(b)∇T) � S (3)

Eq. 3 indicates that the calculated temperature is only

sensitive to the radiogenic heat generation (S), the bulk

thermal conductivity (λ(b)), and the boundary conditions.

To calculate the 3D heat conduction field, each unit of the 3D

geological model is provided with radiant heat generation values

and bulk (solid and fluid) thermal conductivity. The lateral

boundary conditions of the model are considered to be closed,

and a constant temperature of 24°C at the topographic surface of

the Earth is defined as the upper boundary condition. The lower

boundary condition for the purely conductive thermal modeling

corresponds to a temperature of 1,300°C at the LAB.

3.4 Results and discussion

3.4.1 Temperature simulation result
Figure 8A,B shows the temperature field distribution result

calculated by using numerical simulation under the Mid value

of the six main influencing factors (permeability (x and y),

permeability (z), porosity, volumetric specific heat, sandstone

volume, mudstone volume) selected according to ED. The

temperature distribution results indicate that the Weizhou

and Liushagang target layers have similar overall

temperature distributions. The highest temperatures are

concentrated in the subsidence center of the descending disk

of the fault and the temperatures increase unevenly to the north.

However, the overall temperature of the ascending disk is

FIGURE 7
Lithological model of Weizhou and Liushagang layers of the research area (the yellow area is sand and the dark gray area is mudstone).
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relatively low. Specifically, for the Weizhou group, the highest

temperature reaches 168°C and the lowest temperature is 96°C;

nonetheless, the highest temperatures exhibit a very small

distribution range, and it is difficult to use the areas with

these high temperatures as an effective thermal reservoir.

The geothermal energy in the area where the temperature is

above 130°C can be used as a geothermal resource for power

generation, but overall, there are fewer geothermal resources.

However, the overall temperature of the Liushagang group is

higher, reaching a maximum of 219°C, which is distributed in

the fault descending disk and the range of high temperature is

small. The temperature of the nearby area is above 130°C, and

the range of the temperature is wide. If Liushagang group is

used as a geothermal reservoir for power generation, significant

amount of energy can be obtained. Therefore, the Liushagang

group can be considered as the main layer for geothermal

reservoir power generation development, and the shallower

Weizhou formation can be used to provide energy for

refrigeration, heating, and other purposes. Furthermore, 3D

multi-layer well pattern development should be implemented to

obtain the maximum recovery rate.

3.4.2 Thermal energy
Thermal energy is a vital factor in the evaluation process.

Various evaluation methods are available for exploration of

geothermal resources. So far, the main calculation methods

can be divided into two categories, namely, volumetric

method and numerical simulation method. For geothermal

projects that have not yet been developed or are in the early

stages of development, the volumetric method is the

recommended method. In contrast, numerical simulation is

more suitable for predicting sustainable production capacity

after exploration drilling. Obviously, this study is related to

long-term geothermal resource estimation for untapped

geothermal projects, thus the volumetric method is used in

thermal energy calculations. The thermal energy q generated

in the rock can be calculated by dividing the model into n

different elements of volume Vi [m³] and the temperature of

the elements Ti.

Similar to the above-mentioned temperature field

calculation, the Mid values of several main parameters were

considered and the thermal energy was calculated according

to the volumetric method (Figure 8C,D). Compared with the

FIGURE 8
(A) The temperature distribution of the bottom ofWeizhou Formation, (B) The temperature distribution of the bottomof Liushagang Formation,
(C) The thermal energy of the bottom of Weizhou Formation and (D) The thermal energy of the bottom of Liushagang Formation.
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traditional simplified calculation method, by using the

calculated finite element model, all elements were assigned

with heterogeneous volumetric specific heat capacity and

temperature, which is more convincing than the results

obtained by assuming that the volumetric specific heat

capacity and temperature of each layer are homogeneous.

The calculated result shows that the total thermal energy

of the sand geothermal reservoirs is 5.6 × 1014 J. According

to the conversion standard that 1 ton of standard coal can

generate energy of 2.9 × 1010 J, the amount of geothermal

resources is equivalent to 1.9 × 104 tons of standard coal.

Taking the depth of the reservoir into consideration, herein it

was initially believed that the reservoir has a certain economic

value.

The above-mentioned results are only the numerical

simulation calculation results when each parameter takes

the Mid value. When the ED-RSM method was employed,

it was required to design experiments according to the

numerical values of different experimental designs and

corresponding simulation result was calculated. Then, the

parameters and results were analyzed by the response

surface method, which is direct correspondence analysis

and forms surrogated numerical models.

3.4.3 Two-level full factorial
Out of 64 runs, a total of five possible outliers were identified

and extracted from Regression analysis, which is indicated in

normal Q–Q plot and Box plot, and a skewed histogram plot of q

was generated from all successful runs (Figure 9). A review of the

outlier input parameters shows that the horizontal and vertical

permeability values for all failed runs were set at 10–16 m2, which

is the lowest meaningful value. Moreover, in all failed cases, the

lithology volume was set to a low value, while the volumetric

specific heat was set to a Mid value (Table 1). These early

indications suggest that permeability, lithology volume, and

volumetric specific heat could have a significant impact on the

resource potential of the M field (Table 2). Plots without outliers

are shown in Figure 10 (a). Regression analysis was performed

after removing the outliers from the result to construct: 1) The

first-order main effect, and 2) the first-order with interaction. A

higher R2 and adjusted R2 values were obtained from the latter, as

presented in Table 2. Figure 10 (a) shows the curvature that

indicates the need to build a second-order polynomial model

(Simpson, 1998). According to the results of R2 and adjusted R2,

and compared with the subsequent second-order Box–Behnken

calculation results, a second-order simulation better fits the data

based on the residual plots (Figure 11).

FIGURE 9
Diagnostic plots for all 64 successful two-level Full Factorial design simulation runs.

TABLE 2 The p-value of parameters applied in a first-order regression model with interactions.

kx ky kz Porosity Volume
heat

Lithology
volume

R2 Adjusted
R2

<1 × 10–18 <1 × 10–18 <1 × 10–18 <2.1 × 10–10 0.0504 <1 × 10–18

kx — <1 × 10–18 <3.1 × 10–18 0.0312 0.0705 <1 × 10–18

ky <1 × 10–18 — 0.2812 0.0329 0.9751 <1 × 10–18

kz <3.1 × 10–18 0.2812 — <4.1 × 10–10 0.6512 <1 × 10–18

porosity 0.0312 0.0329 <4.1 × 10–10 — 0.4555 0.2311

volume specific
heat

0.0201 0.8173 0.6512 0.4555 — 0.2411

lithology volume <1 × 10–18 <1 × 10–18 <1 × 10–18 0.2311 0.2411 —

0.9875 0.9867
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FIGURE 10
Diagnostic plots for the (A) two-level Full Factorial simulation without outliers and (B) Box–Behnken simulation runs.

FIGURE 11
Residual plots of the (A) first-order regression model with interactions and (B) Box–Behnken second-order regression model with interactions
among significant parameters plus kz.
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3.4.4 Box–Behnken
Based on the result of the two-level Full Factorial, further,

three significant parameters and kz were adopted for the

subsequent second-order model with interaction regression

analysis (Figure 11). The multi-factor relationship of

Box–Behnken design second-order model with interaction is

presented in Table 3, and the R2 and adjusted R2 shows a

better fit than that of the two-level Full Factorial design. The

experiment exhibited a total of 29 runs and three of the results

were outliers [Figure 10 (b)]. Table 2 summarizes that the

lithology volume was a significant predictor and the R2 and

the adjusted R2 were 0.9875 and 0.9867, respectively. The results

(Table 3) from the second-order polynomial models provided a

higher R2 and adjusted R2 values and indicated that a second-

order model better fitted the data based on the residual plots

[Figure 11B]. A p-value of less than 0.05 indicates that the

parameter is a significant predictor of the response variable,

so the first and second order of kx, ky, kz, porosity, volumetric

specific heat, lithology volume, and their interactions turned out

to be significant predictors of q. The residuals are not distributed

normally as shown in Figure 11 (b), so a polynomial equation can

also be included in the design and a probabilistic distribution of q

was formed by using the Monte Carlo method. A simple

triangular distribution was assigned to each parameter. The

result of the ED-RSM method improved by two-level Factorial

and Box–Behnken designs is presented in Figure 12. Clearly, the

M geothermal field consists of a thermal energy resource of 5 ×

1014 J (90th percentile), 5.3 × 1014 J (50th percentile), and 5.7 ×

1014 J (10th percentile). The potential energy is also calculated by

the volumetric stored heat method (Muffler P and Caraldi R,

1978), and the resultsare 5.1 × 1014 J (90th percentile), 9 × 1014 J

(50th percentile), and 1.5 × 1015 J (10th percentile). By comparing

the results obtained by the two methods, the ED-RSM results

have a significantly narrower distribution than that of the

volumetric method, which can be attributed to the

constrained reservoir model.

4 Conclusion

The current evaluation process of a favorable target requires long-

term geological research and model establishment and calculation. In

many cases, project evaluation is facedwithmany uncertain parameters

and incomplete geological understanding. The commonly usedMonte-

Carlomethod for uncertainty evaluation often offers awide range result,

which makes it difficult to obtain appropriate decisions. In this study,

two-level Full Factorial and Box–Behnken designs were combined to

simplify the three-level experimental design and strengthen the

two-level experimental design, then integrated with RSM, a proxy

modelwas built to carry out evaluation. The results are reliable andhave

a narrow interval, and can provide better guidance than that of the

simple Monte–Carlo method.

The proxy polynomial model of the ED-RSM workflow was

derived from the calibrated numerical temperature field and the

geological model, a 3D geological model of M geothermal field

was established, and the 3D uneven temperature field is built

horizontally and vertically in the model. The geological model

can accurately predict the petrophysical and thermal properties

of sandstone reservoirs. The 3D temperature field model is

extremely important for characterizing geothermal reservoirs

because temperature is the primary resource of geothermal

reservoirs; the higher the temperature, the better the

evaluation result. The establishment of the comprehensive

model provides a scientific basis for ED-RSM.

TABLE 3 The p-value of parameters applied in building a Box–Behnken design second-order model with interactions.

kz Porosity Volumetric heat Lithology volume R2 Adjusted R2

<2.1 × 10–13 <1.4 × 10–10 <2.4 × 10–5 <1.6 × 10–12

kz — — — —

porosity — — 0.0105 0.1322

volumetric specific heat — 0.0305 — 0.0411

lithology volume — 0.1322 0.0411 —

0.9944 0.9921

FIGURE 12
Geothermal probabilistic resource assessment.
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Three-level Full Factorial design is not applicable for multi-

factor implementation in geothermal projects, because the

numerical simulation is very time-consuming. Therefore, we

are looking to combine two-level Full Factorial design and

three-level Fractional Factorial design methods. Through first-

order regression analysis, effective parameters are optimized and

the number of insignificant parameters are reduced, then the

maximum information can be obtained by the simulation of

three-level Fractional Factorial design with least work. Finally,

the improved ED-RSM method with two-stage design, which

combined two-level Full Factorial design and Box–Behnken

design, is proposed. The proposed method more quickly and

accurately provides a narrower interval of probabilistic

geothermal resource than that provided by the volumetric

method, thus it provides more valuable information. In

addition, the permeability does not much affect the thermal

energy, partially because only a conductive thermal model was

used to calculate the temperature.
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