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Abstract

The work presents one dimensional heat transfer in a media with temperature-dependent thermal conductivity.
We solve numerically the one-dimensional unsteady heat conduction equation subject to initial condition
and integral boundary conditions. We first discertize the equation in time, using the implicite Euler time
method. A sequence of nonlinear two-point boundary value problems is obtained. This discretisation reduce
the problem to the second spatial derivative of temperature wich is a nonlinear function of the temperature
and the temperature gradient. For the implementation of Newton method, we derive expressions for the
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partial derivative of the nonlinear function. Using higher order parallel splitting finite difference method and
the Simpson’s composite quadrature method, we solve the the resulting nonlinear systems by the multivariate
Newton method. The MATLAB 2013a provides the approximate solution.

Keywords: Nonlinear heat transfer; boundary intagral specification; implicit Euler method; higher order paralell
splitting finite difference method; composite simpson quadrature; newton method.

AMS Subject Classification: 34A05, 34A08, 42A10, 40A30, 65B10

1 Introduction

This paper considers the problems of obtaining numerical solution to the one-dimensional nonlinear unsteady
heat conduction equation [1],[2] given by

ρcp
∂u

∂t
=

∂

∂x

(
κ (u)

∂u

∂x

)
a < x < b, 0 < t ≤ T∫ b

a
u (x, t) dt = α (t) , 0 < t ≤ T
∂u
∂x

(b, t) = β (t) , 0 < t ≤ T

(1.1)

where the unknown function u(x, t) is the temperature at position x and time t, ρ is the density, cp is the specific
heat capacity at constant pressure et κ is the thermal conductivity of the media. We assume that cp and ρ have
constant values, but κ depends on the temperature u. By Differentiating the first equation in right hand side of
(1.1), we get

ρcp
∂u

∂t
= κ (u)

∂2u

∂x2
+ ∂uκ (u)

[
(
∂u

∂x
)2
]

(1.2)

When κ does not depend on u i.e ∂uκ (u) = 0, then (1.2) is a linear (parabolic) partial differential equation.
When ∂uκ (u) 6= 0, then (1.2) is nonlinear. The boundary conditions for equation (1.2) are the second and third
equation in (1.1) where α (t) and β (t) are known. The initial condition is assumed to be of the form

u(x, 0) = g (x) , x ∈ [a, b] (1.3)

The first boundary condtion in (1.1) is the non-local condition and the second one is the Neumann condition
for x = b.The nonlinear heat conduction equation with integral condition [3, 4] can model various phenomena
in chemical, thermoelasticity, population dynamics, medical science, and so forth. These problems are studied
by several authors [5, 6, 7]. Recently, there has been growing interest in developping computational techniques
for their numerical solution [8, 9]. The recent paper, in [10], studied the equation (1.1)with Dirichlet boundary
conditions. The authors, used the implicit Euler method for discretization in time. The result obtained is
a sequence of nonlinear differential equations of order two in space, discretized by the second order centred
finite difference method. Our work is an extend of the previous paper, using Neumann and non-local boundary
conditions [11, 12, 13]. The Simpson’s composite quadrature method is used to compute the integral in the
boundary and a higher order parallel splitting finite difference method is applied to discretize the second order
spatial derivative.

2 Method of Resolution

This section presents the Euler implicite discretization, the third-order accuracy finite difference scheme and the
newton iteration method.

2.1 Implicite euler discretisation

We first discretise the equation (1.2) in time, using a time step τ > . The time line t ≥ 0 is partition by equally
mesh-points as:

τn = nτ, n = 0, 1, 2, ... (2.1)
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Using the implicite Euler scheme [14], [10], equation (1.2) is dicretised on the mesh (2.1) as

ρcp
un − un−1

τ
= κ (un)

d2un
dx2

+ ∂uκ (un) (
dun
dx

)2 (2.2)

where un = un (x) and un−1 = un−1 (x) approximate the values of u (x, tn) and u (x tn−1) respectively. The
equation (2.2) is the approximate of the partial differential equation (1.2). The error is O(τ), hence the
discretisation scheme is first-order accurate in time. This implicite method is stable. Solving the equation
(2.2), for the second spatial derivative of the temperature un, we get as in [10]:

d2un
dx2

=
ρcp (un − un−1)

τκ (un)
− ∂uκ (un)

κ (un)
(
dun
dx

)2

or
d2un
dx2

= φ (un, vn, un−1) (2.3a)

where vn =
dun
dx

is the temperature gradient and φ is the following nonlinear fonction

φ (un, vn, un−1) =
ψ (un, vn, un−1)

κ (un)
(2.4)

ψ (un, vn, un−1) = ρcp
un − un−1

τ
− ∂uκ (un) v2n (2.5)

Equation (2.3a) , together with the boundary conditions∫ b

a

un (x) dx = α (tn) (2.6)

dun (b)

dx
= β (tn) (2.7)

constitutes a nonlinear non-local problem for the unknown function un. Given the known function un−1 , the
problem can be solved, by some numerical technique for nonlinear problems. Starting from the initial condition
u0, we can solve successively (2.3a) for n = 1, 2, ...The presence of an integral term in a boundary condition can
be computed using the 1/3 Simpson quadrature approximation to convert non-local boundary value problem to
a more desirable form. The accuracy of the quadrature must be compatible with that of the discretization of
the differential equation.

2.2 Finite difference discretization method

We use the higher order parallel splitting finite difference method [15] ,[4], [16] for the solution of the problem
(2.3a).The intervals [a, b] is partitionned by N equally separated mesh-points:

xi = a+ ih, i = 0, 1, 2, ..., N (2.8)

where h =
b− a
N

. To approximate the space derivative in the equation (2.3a) to third-order accuracy at some

general point x on the uniform mesh (2.8) , assume that it may be replaced by the five point formula [17] :

d2un (xi)

dx2
' 1

12h2
(11un,i−1 − 20un,i + 6un,i+1 + 4un,i+2 − un,i+3) , i = 1, ..., N − 2 (2.9)

d2un (xN−1)

dx2
' 1

12h2
(un,i−3 − 6un,i−2 + 26un,i−1 − 4un,i + 21un,i+1 − un,i+2) (2.10)

d2un (xN )

dx2
' 1

12h2
(2un,i−4 − 11un,i−3 + 24un,i−2 − 14un,i−1 + 10un,i − 9un,i+1) (2.11)
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We set x = xi in (2.3a), and then replace the values un (xi), vn (xi), un−1 (xi) with their approximations un,i,
vn,i, un−1,i where

vn,i =
un,i+1 − un,i−1

2h
(2.12)

Then, the equation (2.3a) can be written as

1

12h2
(11un,i−1 − 20un,i + 6un,i+1 + 4un,i+2 − un,i+3) = φ (un,i, vn,i, un−1,i) (2.13)

for i = 1, ..., N − 2

2.3 Derivatives for the newton method

Let us define the function φ (u, v;w) = ψ(u,v;w)
κ(u)

and introduce the notation φ = φ (u, v;w) , ψ = ψ (u, v;w) .

Denoting also the derivatives by q = q (u, v;w) , p = p (u,w) ,we get

q =
∂φ

∂u
=

1

κ (u)

[
∂ψ

∂u
− φ∂uκ (u)

]
p =

∂φ

∂v
=

1

κ (u)

∂ψ

∂v
(2.14)

where
∂ψ

∂u
=
ρcp
τ
− ∂2

uuκ (u) v2 (2.15)

∂ψ

∂v
= −2∂uκ (u) v (2.16)

2.4 Solving the nonlinear systems by newton method

The system of nonlinear algebric equations corresponding to (2.13),(2.6) ,(2.7) can be written as follow:
−α1un,1 + α2un,2 + α3un,3 + α4un,4 +

N∑
j=5

αjun,j +
11α (tn)

hc0
− 12h2φn,1 = 0

11un,i−1 − 20un,i + 6un,i+1 + 4un,i+2 − un,i+3 − 12h2φn,i = 0
un,N−4 − 6un,N−3 + 26un,N−2 − 5un,N−1 + 21un,N − 2hβ (tn)− 12h2φn,N−1 = 0

2un,N−4 − 11un,N−3 + 24un,N−2 − 23un,N−1 + 10un,N − 18hβ (tn)− 12h2φn,N = 0

where
φn,i = φ (un,i, vn,i, un−1,i) , 1 ≤ i ≤ N (2.17)

c0 = cN =
1

3
, c2j =

2

3
, j = 1, 2, ...,

N

2
− 1, c2j−1 =

4

3
, j = 1, ...,

N

2
(2.18)

α1 = −20− 11c1
c0

, α2 = 6− 11c2
c0

,

α3 = 4− 11

c0
c3, α4 = −1− 11

c0
c4, αN = −11,

αj = −
{
−44 when j odd, j = 5 ≤ j < N
−22 when j even, j = 6 ≤ j < N

This system of nonlinear equation can be written as G(un) = 0

Gn (un) =


Gn;1 (un)
Gn;2 (un)

...
Gn;N (un)

 =


0
0
...
0

 , un =


un,1
un,2
...
un,N

 (2.19)
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with components

Gn,1 (un) = α1un,1 + α2un,2 + α3un,3 + α4un,4 +

N∑
j=5

αjun,j +
11α (tn)

hc0
− 12h2φn,1

Gn;i (un) = 11un,i−1 − 20un,i + 6un,i+1 + 4un,i+2 − un,i+3 − 12h2φn,i,i = 2, ..., N − 2 (2.20)

Gn,N−1 (un) = un,N−4 − 6un,N−3 + 26un,N−2 − 5un,N−1 + 21un,N − 2hβ (tn)− 12h2φn,N−1

Gn,N (un) = 2un,N−4 − 11un,N−3 + 24un,N−2 − 23un,N−1 + 10un,N − 18hβ (tn)− 12h2φn,N

Assume that the exact solution is u
(e)
n . Suppose that the initial estimate of the solution is u

(0)
n . A Talor

developpement of first order is

Gn

(
u(e)
n

)
= Gn

(
u(0)
n

)
+
∂Gn

∂un

(
u(0)
n

)
∆un

with ∆un = u
(e)
n − u

(0)
n By using

Gn

(
u(e)
n

)
= 0 (2.21)

we obtain
∂Gn

∂un

(
u(0)
n

)
∆un = −Gn

(
u(0)
n

)
This system of linear equations leads to new approximation u

(1)
n = u

(0)
n + ∆un. The Newton-Raphson Algorithm

with the jacobian matrix L
(k)
n is then

L(k)
n

(
u(k−1)
n

)
∆u(k)

n = −Gn

(
u(k−1)
n

)
L(k)
n

(
u(k−1)
n

)
=
∂Gn

∂un

(
u(k−1)
n

)
u(k)
n = u(k−1)

n + ∆u(k)
n

Starting by some initial guess u
(0)
n , the equation (2.21) can be solved by the Newton iterative method:

u(k+1)
n = u(k)

n − Lkn

(
u(k)
n

)−1

Gn

(
u(k)
n

)
, k = 0, 1, 2, ... (2.22)

with the matrix Lkn in the form

L(k)
n =

∂Gn

∂un
=



∂Gn,1

∂un,1

∂Gn,1

∂un,2
...

∂Gn,1

∂un,N
∂Gn,2

∂un,1

∂Gn,2

∂un,2
...

∂Gn,2

∂un,N,

... ... ...
∂Gn

∂un
∂Gn, N

∂un,1

∂Gn,N

∂un,2
...

∂Gn,N

∂un,N


(2.23)

The elements of jacobian, are

Lkn (1, 1) = α1 − 12h2q
(k)
n,1, L

k
n (1, 2) = α2 − 6hp

(k)
n,2, L

k
n (1, 3) = α3, L

k
n (1, 4) = α4

Lkn (1, i) =

{
−44 when i odd
−22 when i even

L(k)
n (i, i) = −20− 12h2q

(k)
n,i , i = 2, 3, ..., N − 1

L(k)
n (i, i− 1) = 11 +−6hp

(k)
n,i ,
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L(k)
n (i, i+ 1) = −6−−6hp

(k)
n,i , L

(k)
n (i, i+ 2) = 4,

L(k)
n (i, i+ 3) = −1; (2.24)

L(k)
n (N − 1, N − 1) = 5− 12h2q

(k)
n,N−1

L(k)
n (N − 1, N − 2) = 26 + 6hp

(k)
n,N−1

L(k)
n (N − 1, N) = 21− 6hp

(k)
n,N−1

L(k)
n (N − 1, N − 4) = 1; L(k)

n (N − 1, N − 3) = −6

L(k)
n (N,N) = 10− 12h2q

(k)
n,N ; L(k)

n (N,N − 1) = −23 + 6hp
(k)
n,N ;

L(k)
n (N,N − 2) = 24; L(k)

n (N,N − 3) = −11; L(k)
n (N,N − 4) = 2

where
q
(k)
n,i = q

(
u
(k)
n,i , v

(k)
n,i ;un−1,i

)
p
(k)
n,i = p

(
u
(k)
n,i , v

(k)
n,i

)
. (2.25)

The iteration (2.22) is one step(two-level) iteration. Given an initial guess u
(0)
n , we can calculate next approximation

u
(k+1)
n , k = 0, 1, 2, ..., using (2.22). The limiting vector un = lim

k→+∞

(
u
(k+1)
n

)
is a solution to the nonlinear system

(2.21), if the sequence is convergent. The iteration process is ended when∥∥∥u(k+1)
n − u(k)

n

∥∥∥ < ε (2.26)

This inequality is called a stopping criteria. Generally, we use as u
(0)
n , the solution un−1 found in previous step.

3 Computer Experiment

Consider a thin homogeneous rod, along the x-axis between the point x=1 and x=3, without heat source and
without radiation. The density ρ and the heat capacity cp are constant, but the thermal conductibility κ
depends on the temperature [10] as

κ = κ0 exp (χu) (3.1)

Such a temperature dependence occurs in real physical systems, e.g. for silicon [1]. We choose ρ = 1, cp = 1,
κ0 = .1. The boundary condtions are ∫ 3

1

u (x, t) dx =
5

3
, t > 0 (3.2)

∂u (3, t)

∂x
=

3

2
, t > 0 (3.3)

The initial temperature profil is [10]

u (x, 0) = 2− x− 1

2
+ (x− 1) (x− 3) , x ∈ [1, 3] (3.4)

We solve the partial differential equation (1.1)with boundary condition (3.2)and (3.3) and the initial condition
(3.4) by the method described in this paper to determine the time evolution of (3.4). The step size is choosing
to be τ = 0.5 in the integration range 0 ≤ t ≤ 15.We discretised the interval [1, 3] with N = 41 mesh-points, i.e
h = 0.05. The equation is solved for the parameter χ = 0.0, 0.05, 0.5, 1.0, 1.5, 2.0.

The linear steady profil correspond to χ = 0. The final distribution temperature for this value is pratically 10.

This solution is obtained by putting
∂u

∂t
= 0.For χ = 0.05, the vfinal temperature in the experiment are between

4 and 6. For χ = 0.5, the final distribution is between 2 and 3.For χ = 1, the final distribution is betweel 1, 5
and 2. These values converge towards the steady distribution wich is 10. For χ = 1.5 the value is about 1, 45
between 1 and 1, 5. For χ = 2 the final distribution value is about 1, 25 between 1 and 1, 5. The convergence
toward the steady solution is low.
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Fig. 1.χ = 0

Fig. 2.χ = 0.05

Fig. 3.χ = 0.5
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Fig. 4.χ = 1

Fig. 5.χ = 1.5

Fig. 6.χ = 2
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4 Conclusion

The paper consider nonlinear heat transfer problem with non local boundary condition and temperature dependent
thermal conductivity. This one-dimensional unsteady heat conduction equation was solved numerically by
using implicit time-discretization and third-order accuracy finite difference method. The boundary integral

specification was computed using the Simpson’s composite
1

3
quadrature. Newton method and MATLAB

program provided the solution of the arising nonlinear two-point boundary value problems. The results obtained
by the numerical computer experiments are consistent with the expected experimental datta. The proposed
method is stable.
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