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1. Introduction

Measurements of the size distribution of drops, bubbles, and 
particles are very common in the chemical engineering and 
process industry due to the importance that these distribu-
tions have on the evaluation of mass, heat, and momentum 
exchange between the different phases of a multiphase system 
(Clift et al 1978), or on the quality of the final product in crys-
tallization and polymerization (Myerson 2001). Moreover, 
the important role played by experimentally measured size 
distribution in the validation of predictive models, mainly 
based on the Computational Fluid Dynamics and Population 
Balance approach, is worth mentioning (Laakkonen et al 
2007, Marchisio and Fox 2013, Buffo and Marchisio 2014). 
Another example that deserves a mention is the case of grain 
size distribution affecting the yield stresses of polycrystalline 
metals/alloys (Berbenni et al 2007).

Nowadays, many experimental techniques are available for 
characterizing the size distribution of a dispersed phase: light 
scattering for solid particles (for a review of the methodology, 
see Xu 2015), capillary suction probes (Greaves and Kobbacy 
1984, Barigou and Greaves 1991, 1992a, Barigou and 
Greaves 1992b, Alves et al 2002), phase Doppler anemometry 
(Mudde et al 1997, Kulkarni et al 2001) and digital imaging 
(Honkanen et al 2010, Maaß et al 2011, Lau et al 2013, 
Panckow et al 2015) for fluid particles. Besides the practical 
advantages (or limitations) that every technique possesses, an 
essential aspect of these measurements is represented by the 
number of samples needed to capture the population distribu-
tion reliably. Unfortunately, due to the complexity and time-
consuming nature of the experimental procedures, this aspect 
is often overlooked, potentially leading to measurements that 
are not a reliable representation of the underlying size distri-
bution from a statistical point of view. The standard proce-
dure usually adopted is empirical and consists of evaluating 
the variation of a mean size value and its standard deviation 
with the number of sampled particles, as exemplified in Maaß  
et al (2011): when these values no longer vary with the sample 
size, the sampling procedure is stopped and the measurement 
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is considered reliable. However, it is important to point out 
that this procedure might be not sufficient for characterizing 
the distribution without a proper definition of confidence 
intervals. This is especially true when considering that the 
characterization of a size distribution also involves high-order 
moment statistics, such as area or volume distribution, where 
the correct evaluation is very sensitive to the distribution tails. 
For this reason, we propose a new theoretical approach for the 
determination of the optimal sample size, after a small pre-
liminary sampling. This procedure is applied here to a per-
fect precision measurement, but, as we will show later in this 
contrib ution, this aspect can be addressed by establishing a 
connection between the uncertainty of the measurement and 
the desired confidence interval.

2. Theoretical analysis

As previously mentioned, the experimental determination of 
a size distribution is usually carried out through a sampling 
procedure, with the aim of measuring a relative amount of par-
ticles, typically by number or volume, according to their size. 
Let us assume that the result of our measurement is an array of 
N values of particle size, { }= …L L LL , , , N1 2 . Clearly this is 
just a sample of the unknown size distribution that we wish to 
measure. In order to characterize the population distribution 
from the sample, we need to rely on statistical estimators. For 
example, the mean value of this sample is equal to

¯ ∑=
=

L
N

L
1

,
i

N

i
1

 (1)

while an unbiased estimator for the variance of the sample is 
the following:

( ¯)∑=
−

−
=
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2 (2)

We can also define the generic raw sample moment Mk as

∑=
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M L ,k
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N

i
k

1
 (3)

with = …k N0, 1, 2, , k. It is also possible to show that mean 
and variance may be written as a function of the sample raw 
moments:

¯ =L
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0
 (4)
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where M0 is equal to N, the total number of sampled particles. 
If the latter value is sufficiently high, we can be reasonably 
sure that the random error associated with the measurement is 
smoothed out and that our statistics are adequate for character-
izing the distribution. According to the central limit theorem, 
we know that the mean values L̄ of repeated measurement 
arrays are distributed according to a normal distribution with 
standard deviation equal to

σ
σ

=
N

SE (6)

This is usually referred to as the ‘standard error of the mean’. 
Since the standard deviation of the distribution is unknown 
(i.e. can only be approximated with a very large sample size), 
we can use its estimation:

σ ≈
S

N
.SE (7)

This relation tells us that the ‘standard error of the mean’ goes 
to zero when the square root of the number of samples N goes 
to infinity. However, the choice of →∞N  is not feasible from 
the experimental point of view, therefore we need to make use 
of a few more concepts of inferential statistics.

Since the variance of the measured distribution is unknown, 
we need to use the t-test to assess the confidence interval of 
our measured mean L̄; however, the preliminary number of 
samples N is usually large enough (N  >  100) that, for large 
degrees of freedom, the Student’s t-distribution approaches 
the normal distribution. For this reason, we can write the  
following relation for the confidence interval ¯∆L:

¯ /∆ = α∞L t
S

N
2 ,, 2 (8)

where /α∞t , 2 is the so called t value for infinite degrees of 
freedom of a two-tail Student’s t  −  distribution and α defines 
the confidence interval; in fact we can state that with a con-
fidence level of ( )α−100 1 % the mean of the population lies 
in the confidence interval ¯∆L. From the point of view of a 
statistical test, once α is chosen and the values of S and N 
are calculated from the sample, the confidence interval ¯∆L is 
determined. In addition, the previous relation is particularly 
useful, since it is possible to reverse this concept and thus 
estimate the number of samples N* needed to have a certain 
target confidence interval ¯∆L and a certain confidence level of 

( )α−100 1 %, decided a priori:

¯/⎜ ⎟
⎛
⎝
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The specification of the target confidence interval ¯∆L and of 
the level of statistical significance α is an important choice for 
the experimental practitioner, since these two related aspects 
may depend on the experimental uncertainty of the particular 
measurement technique and on the desired accuracy of the 
experiment. Moreover, by substituting equation (5) into equa-
tion (9), we can write the following expression as a function 
of sampling moments:

¯ ( )
=
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In principle, the target confidence interval ¯∆L should be at 
least equal to or larger than the resolution of the specific meas-
urement technique adopted. This means, for example, that if 
our technique can only measure particle size up to 0.1 mm, 
we cannot choose a value lower than 0.1 mm as a confidence 
interval for the mean size. It should be noted that this choice is 
crucial for the determination of N*: the smaller the confidence 
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interval, the more precise our statistics level but the larger the 
value of the sample needed. In the absence of this information 
about the measurement technique, we can continue our dis-
cussion by hypothetically assuming that the amplitude of the 
target confidence interval is a (small) fraction c of the mean 
sampling value L̄:

¯ ¯∆ =L cL (11)

where c is a constant less than one. It should be noted that this 
choice is arbitrary: in fact equation (9) can be used to evaluate 
N* notwithstanding this definition of the target confidence 
interval. Nevertheless, imposing the target ¯∆L as a fraction 
of the preliminary sampled mean value L̄ represents a reason-
able approach, since it gave us a physically relevant value to 
use in our examples. By substituting equation (11) into equa-
tion (10), we can write:
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By collecting all the constants of the expression in one symbol 
C, and expressing the mean value L̄ as a function of sample 
moments, we can write:
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where the constant //= α∞C t c2 , 2 .
Equation (13) tells us which number N* of particle is 

needed to obtain a statistically significant measurement of the 
mean value L̄ of a distribution. If we were only interested in 
assessing the mean size of the measured distribution, equa-
tion  (13) would give us the desired answer. However, in 
the case of size distribution measurements, other properties 
related to the high-order moments of the distribution are usu-
ally of interest, such as the interfacial area or the total volume 
of the particles. In fact, the mean size is related to the first-
order moment, as shown in equation (4), while the mean area 
or the mean volume is proportional to the following quantities:
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As stated by the previous expressions, the total interfacial area 
is proportional to the moment of order two with respect to par-
ticle size, while the total volume is proportional to the moment 
of order three. Here we are assuming that the particles all have 
the same shape, represented by the areic kA and volumetric kV 
shape factors, a common assumption made when such mea-
surements are carried out. We can also define the variances for 
the mean Ā and V̄  in the following way:
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In order to obtain the sampling size required to have a certain 
degree of significance for both the mean area and the mean 
volume, we should therefore use a similar form of equation (9):
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where ∆ Ā and ¯∆V  are the confidence intervals for the estima-
tion of the second- and third-order moment of the distribution, 
respectively. Also in this case, by making the same assump-
tions made for ¯∆L, namely ¯ ¯∆ =A c AA  and ¯ ¯∆ =V c VV , we 
can write the following equations  as functions of the high-
order sampling moments:
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It should be noted that the constants //= α∞C t c2A A, 2  and 
//= α∞C t c2V V, 2  are arbitrary, and in principle they could have 

different values, since they depend on the level of significance 
required by the measurements with respect to the mean area 
and the mean volume of the investigated distribution.

Finally, it is possible to formulate a general rule for the 
desired level of significance of the measurements of a certain 
moment Mk of the distribution:

¯/⎜ ⎟
⎛
⎝
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∆
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∗
∞N t
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2 ,k
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, 2

2
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where ¯∆k is the target confidence interval for the moment Mk 
and the standard deviation Sk can be written as:

=
−
−

S
M M M

M M 1
.k

k k0 2
2

0 0( )
 (23)

Thus, the number of samples needed is a function of the 
moment of order 2k, M2k, meaning that high-order moments 
of the distribution significantly influence the number of sam-
ples needed for the proper characterization of the distribution.

3. Practical examples

In order to give a practical example of the proposed proce-
dure, let us assume that we are measuring the bubble size 
distribution present in a small fraction of volume in a bubble 
column or in a stirred tank reactor. We first measure N  =  1000 
samples of bubbles and we wish to determine whether the 
number is sufficient for reliable statistics or, conversely, to get 
an idea of the right number of samples to obtain the desired 
level of statistical significance. Since we wish to keep the 
present analysis general and keep the uncertainties of each 
experimental technique separate from this analysis, a random 
number generator (based on the Marsenne-Twister algorithm) 
is used to generate an array composed of N  =  1000 values of 
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bubble size. Let us assume that these are log-normally dis-
tributed, with the mean equal to 0.003 m and the standard 
deviation equal to 20% of the mean value, thus representing a 
possible outcome of an experiment (Case 1). The shape of the 
distribution is usually unknown, but in this case we assume  
a priori a realistic shape, according to the bubble size mea-
surement experiments of (Laakkonen et al 2006). Figure  1 
shows the analysis usually carried out in these cases (as for 
example in Maaß et al 2011), i.e. the evolution of the devel-
oping mean value of interest (for this case d32 the mean Sauter 
diameter, namely the ratio between the moment of order three 
and the moment of order two with respect to bubble size) 
as a function of the number of sampled bubbles. Based on 
visual analysis, it would appear that the developing mean and 
its cumulative standard deviation (expressed in percentage of 
maximum diameter) stabilize after approximately the first 500 
samples. Therefore, according to the usual procedure and the 
results obtained, N  =  1000 would be too many for our pur-
poses and we could stop after 500 sampled bubbles.

To ascertain whether it is reasonable to stop the meas-
urement after 500 particles, we need to use some concepts 
defined in the previous section, such as the confidence bounds 
for the mean size, mean area, and mean volume. By assuming 
a confidence level of 99%, table  1 reports these values for 
our experiment after 500 and after 1000 samples respec-
tively, showing how the amplitude of the confidence bounds 
decreases as the number of samples increases. The last rows 
of table 1 show how large the confidence bound is compared 
to the corresponding mean value: it can be seen that the ratio 
is higher for the high-order moments of the distribution and 
decreases with the number of samples. Of course, the smaller 
the ratio, the higher the level of statistical significance of our 
sampling procedure. Moreover, this analysis clearly shows 
the improvement in the level of statistical significance by 
increasing the sample size, which is not obviously identifiable 
from the analysis of the developing Sauter mean diameter and 
its cumulative standard deviation performed in figure 1.

The procedure that we propose in this contribution is based 
on the idea of fixing a target confidence interval and the desired 
level of statistical significance, and then finding the number of 
samples needed to meet these requirements. In practice, the 
choice of these constraints is left to the experimental practi-
tioner. In the present analysis, the target confidence intervals 
are expressed as a fraction of the corresponding preliminary 
measured moment value (see equation  (11)). If we assume 
that this fraction is equal to 1% and a confidence level of 
99% (α = 0.01 and thus =∞t 2.576,0.05 ) we obtain the values 
shown in table 2. As can be seen, not only are the 1000 par-
ticles insufficient, but we need to sample more than 10 times 
this number to obtain a statistically reliable value for the mean 
size, more than 48 times the number for the interfacial area, 
and more than 128 times the number for the total volume. 
However, it is important to remember that we are assuming 
null measurement uncertainty (since our numbers are artifi-
cially generated); in real life, every technique has a specific 
measurement uncertainty intrinsic to the experimental proce-
dure, and this must be taken into account when selecting the 
desired amplitude of the confidence interval. For example, it 
is not correct to assume a target confidence interval for the 
volume ¯∆ =V 0.299 mm3 unless our experimental technique 
can detect a similar variation of bubble volume. Figure  2 
shows the concept of confidence bounds for the distribution 
in Case 1: if we measure just 500 particles to build our statis-
tics (first row of figure 2), the statistical error associated with 

Figure 1. Cumulative Sauter mean diameter d32 as a function of 
the number of counted bubbles and resulting cumulative standard 
deviation of developing d32 for Case 1.

Table 1. Case 1. Possible outcome of a size distribution 
experiment.

L̄ (m) Ā (m2) V̄  (m3)
Analytical value ⋅ −3.000 10 3 ⋅ −9.360 10 6 ⋅ −3.037 10 8

After N  =  500 ⋅ −2.987 10 3 ⋅ −9.292 10 6 ⋅ −3.013 10 8

After N  =  1000 ⋅ −2.981 10 3 ⋅ −9.250 10 6 ⋅ −2.992 10 8

SL (m) SA (m2) SV (m3)
Analytical value ⋅ −6.000 10 4 ⋅ −3.858 10 6 ⋅ −1.976 10 8

After N  =  500 ⋅ −6.057 10 4 ⋅ −3.968 10 6 ⋅ −2.108 10 8

After N  =  1000 ⋅ −6.034 10 4 ⋅ −3.946 10 6 ⋅ −2.085 10 8

¯∆L (m) ¯∆A (m2) ¯∆V  (m)
After N  =  500 ⋅ −1.396 10 4 ⋅ −9.144 10 7 ⋅ −4.856 10 9

After N  =  1000 ⋅ −9.830 10 5 ⋅ −6.429 10 7 ⋅ −3.398 10 9

¯ / ¯∆L L (%) ¯ / ¯∆A A (%) ¯ / ¯∆V V  (%)
After N  =  500 4.7 9.8 16.1

After N  =  1000 3.3 7.0 11.3

Note: Mean value, standard deviation, confidence bound amplitude for a 
confidence level of 99% and ratio between confidence bound and mean 
value for the mean size, mean interfacial area and mean volume of the 
particle size distribution.

Table 2. Case 1. Confidence intervals and number of samples 
needed to obtain statistically significant measurements for the 
different moments of the distribution.

¯∆L (m) ¯∆A (m2) ¯∆V  (m3)

⋅ −2.981 10 5 ⋅ −9.250 10 8 ⋅ −2.992 10 10

NL NA NV

10 876 48 316 128 942

Meas. Sci. Technol. 27 (2016) 045301
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the determination of the distribution may be very large, both 
for the size distribution and the volume distribution function. 
The gray area shown in figure 2 is a visual representation of 
the statistical error associated with the sampling; this area is 
drawn by considering a high number of different possible real-
izations of the same sampling procedure (thus explaining the 
presence of bumps in the figure). This proves that the number 
of particles suggested by the analysis of the developing mean 
and the cumulative variance (i.e. approx. 500 particles) may 

not be enough to capture the size distribution with an accept-
able level of statistical significance. The only way to reduce 
this statistical error is to measure more particles, as shown in 
the other rows of figure 2, where the statistical error is rep-
resented for N  =  1000, =N 10 876, and =N 128 942. As is 
clear from the figure, the gray area associated with the statis-
tical error decreases with the increase in number of sampled 
particles, until it almost disappears in the last row of figure 2, 
when the number of particles suggested by our methodology 

Figure 2. Confidence bounds for Case 1 distribution (gray area) assuming a confidence level of 99% by measuring a different number of 
particles N. Left column: normalized number density function. Right column: normalized volume density function. First row: N  =  500 
particles. Second row: N  =  1000 particles. Third row: =N 10 876 particles. Fourth row: =N 128 942 particles. The solid line represents 
the actual distribution of the population measured.
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is measured to obtain the desired confidence level for the 
mean volume of our distribution.

Table 3 shows the results of another possible experiment 
(Case 2): in this case our distribution has a bimodal shape, with 
one peak located at 0.003 m and the second one at 0.01 m: this 
situation is plausible for a bubble column operating at high 
superficial velocities (Ruzicka et al 2001). In this case too, the 
array of randomly generated N  =  1000 values is obtained from 
the sum of two log-normal distributions, one with a mean equal 
to 0.003 m and standard deviation of 20% of the mean value 
and the other with a mean equal to 0.01 m and standard devia-
tion of 20% of the corresponding mean. Again, by imposing 
a confidence level of 99% and a ratio between the target con-
fidence intervals and the corresponding preliminary moment 
value equal to 1%, we obtain the values shown in table 4. As 
can be seen, the number of samples needed in this case is higher 
than in Case 1, meaning that if a distribution with high vari-
ance and long tails is measured, the number of samples needed 
to obtain a relevant measurement is higher. As evident from 
equations (9), (18) and (19), this behavior reflects the depend-
ence of the sample size on the measured standard deviation: the 
number of sampled particles required to obtain reliable statis-
tics is proportional to the square of the standard deviation of 
the investigated property. Moreover, in the case of size distri-
butions the proposed methodology shows that the number of 
samples needed increases when reliable statistics on high-order 
moments of the distribution are required, as shown in table 4.

4. Conclusion

This communication shows a novel rigorous methodology for 
the determination of the sample size required to obtain reli-
able measurements of size distributions. The present analysis 
demonstrates that the number of samples needed depends on 
the shape of the unknown distribution and on the requirements 
chosen for the confidence interval of the desired statistics. 
For the high-order moments often required in the analysis of 

chemical processes, the number of samples needed could be 
higher than generally expected.
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Table 3. Case 2. Possible outcome of a size distribution 
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L̄ (m) Ā (m2) V̄  (m3)
Num. ⋅ −6.451 10 3 ⋅ −5.580 10 5 ⋅ −5.653 10 7

Ana. ⋅ −6.5 10 3 ⋅ −5.668 10 5 ⋅ −5.776 10 7

SL (m) SA (m2) SV (m3)

Num. ⋅ −3.768 10 3 ⋅ −5.589 10 5 ⋅ −7.610 10 7

Ana. ⋅ −3.799 10 3 ⋅ −5.626 10 5 ⋅ −7.533 10 7

Note: The underlying distribution is the sum of two lognormal distributions, 
one with a mean equal to 0.003 m and standard deviation equal to 6.0 10 4⋅ −  
m, and the other with a mean of 0.01 m and standard deviation of 0.002 m.

Table 4. Case 2. Confidence intervals and number of samples 
needed to obtain statistically significant measurements for the 
different moments of the distribution.

¯∆L (m) ¯∆A (m2) ¯∆V  (m3)

⋅ −6.451 10 5 ⋅ −5.580 10 7 ⋅ −5.653 10 7

NL NA NV

90 560 266 331 480 937
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