



2(2): 134-143, 2019; Article no.IJR2H.52121

# Bigi Soft Drinks might Induce Hyperglycemia and Hyperlipidemia in Wistar Rats

Augustine I. Airaodion<sup>1\*</sup>, Emmanuel O. Ogbuagu<sup>2</sup>, John A. Ekenjoku<sup>2</sup>, Victor N. Okoroukwu<sup>3</sup> and Uloaku Ogbuagu<sup>1</sup>

<sup>1</sup>Department of Biochemistry, Federal University of Technology, Owerri, Imo State, Nigeria. <sup>2</sup>Department of Pharmacology and Therapeutics, Abia State University, Uturu, Nigeria. <sup>3</sup>Department of Pharmacology and Therapeutics, Gregory University, Uturu, Abia State, Nigeria.

#### Authors' Contributions

This work was carried out in collaboration with all authors. Author AIA conceptualized and designed the study, and also wrote the manuscript. Author JAE managed the analyses of the study. Author EOO managed the literature searches. Author VNO wrote the protocol while Author UO performed the statistical analysis. All authors read and approved the final manuscript.

#### Article Information

(1) Dr. Alberto Olaya Vargas Professor, National Institute of Pediatric, Universidad Nacional Autonoma de México, México. <u>Reviewers:</u> (1) Rupali Sengupta, SNDT Women's University, India. (2) Aduroja, Posi E, University of Ibadan, Nigeria. (3) Siva Rami Reddy E, Tantia University, India. Complete Peer review History: <u>https://sdiarticle4.com/review-history/52121</u>

**Original Research Article** 

Received 05 August 2019 Accepted 21 October 2019 Published 26 October 2019

# ABSTRACT

**Background**: Bigi soft drinks are carbonated drinks produced by Rite Foods Limited. The company is an indigenous company in Nigeria. Before 2016, Coca-cola bottling company and 7up bottling company products were the dominant soft drinks in Nigeria. Rite Foods Limited introduced carbonated soft drinks into the Nigerian market in 2016 and have favourably competed with the existing products. As at today, Bigi soft drinks are the dominant soft drinks in Nigeria because of their palatable taste, large volume and low price.

**Aim**: This study sought to investigate the effect of Bigi soft drinks on fasting blood glucose and lipid profile of Wistar rats.

**Methods**: Thirty-five adult Wistar rats were used for this study. They were randomly divided into seven groups of five rats each after seven days acclimatization. They were treated accordingly: animals in group 1 were administered distilled water, those in group 2 were administered Bigi Cola,

<sup>\*</sup>Corresponding author: E-mail: augustineairaodion@yahoo.com;

those in group 3 were administered Bigi Apple, those in group 4 were administered Bigi Tropical, those in group 5 were administered Bigi Orange, those in group 6 were administered Bigi Lemon and Lime, while those in group 7 were administered Bigi Chapman. The administration was done orally at a dose of 3 mL per 100 g body weight 12 hourly for fourteen days. At the end of the administration period, the animals were fasted overnight and anaesthetized using diethyl ether. Blood samples were collected by cardiac puncture. Fasting blood glucose and lipid profile were determined using standard methods.

**Results**: All the soft drinks used in this study (except Bigi Lemon and Lime) significantly increased the fasting blood glucose of animals. All the Bigi soft drinks (except Bigi Cola) significantly increased triglyceride, total cholesterol and VLDL of animals when compared with control at p<0.05 respectively. The soft drinks also perturbed the HDL and LDL of animals used in this study.

**Conclusion**: The result of this study implies that Bigi soft drinks might be deleterious to health as far as hyperglycemia and hyperlipidaemia is concern. This does not automatically translate to such effect on humans. However, individuals with a diabetic family history should minimize their consumption of these drinks.

Keywords: Bigi soft drinks; fasting blood glucose; lipid profile; diabetes; cardiovascular diseases.

## 1. INTRODUCTION

Carbonated soft drinks are sweetened waterbased nonalcoholic beverages mostly with balance acidity [1]. They are also known as readv-to-drink beverages. Soft drinks are frequently flavoured and coloured and the principal component being water which is needed for hydration. Soft drinks are commonly consumed by both young and old people [2,3]. A notable finding of Wolff and Dangsinger [4] reported that weight gained was more dramatic from soft drinks when compared with fruit punches and fruit juice. Also, intake of fruit juice was not associated with an increased risk of type-2 diabetes. This could be because of the low glycemic index (GI) of fruit juice, soluble fibre, or other constituents of fruit juice that could be beneficial, as the authors suggested [5].

Bigi soft drinks are carbonated drinks produced by Rite Foods Limited. The company is an indigenous company in Nigeria. Before 2016, Coca-cola bottling company and 7up bottling company products were the dominant soft drinks in Nigeria. The Rite Foods Limited introduced carbonated soft drinks into the Nigerian market in 2016 and have favourably competed with the existing products. As at today, Bigi soft drinks are the dominant soft drinks in Nigeria because of their palatable taste, large volume and low price. They are produced into different products as shown in Fig. 1. These products include Bigi Soda, Bigi Cola, Bigi Bitter Lemon, Bigi Apple, Bigi Chapman, Bigi Tropical, Bigi Orange and Bigi Lemon and Lime.

The composition of each Bigi product as shown on their label is presented in Table 1.



Fig. 1. Bigi Carbonated Soft Drinks

Previous study revealed that a woman with high intake of sugar-sweetened soft drinks tends to be less physically active; also, she has high total calories and low protein, alcohol, magnesium and cereal fibre [4]. Also, intake of total carbohydrate, sucrose and fructose, as well as the overall glycemic index, was high in this woman. In essence, this woman has a dietary pattern and lifestyle that led to increased risk of several disease states, including obesity, type -2 diabetes and cardiovascular diseases [6].

Sugar-sweetened beverages consumption as a marker of an unhealthy lifestyle has the potential of being a quick screening test for the increase of obesity and type-2 diabetes, but it requires validation [7-10]. Because of the large number of calories in sugar-sweetened soft drinks and the relationship between the consumption of these drinks and weight gained, reducing sugar-sweetened beverage consumption may be the simple opportunity to curb the obesity epidemic [11,12]. Obesity is now a complex worldwide problem, resulting from a combination of genetic, behavioural, cultural and environmental influence that calls for not only behavioural changes at individual levels, but also changes in public

|                                  | Bigi cola | Bigi<br>apple | Bigi<br>orange | Bigi lemon<br>and lime | Bigi<br>tropical | Bigi bitter<br>lemon | Bigi<br>chapman |
|----------------------------------|-----------|---------------|----------------|------------------------|------------------|----------------------|-----------------|
| Energy (Kcal)                    | 48        | 50            | 49             | 51                     | 49               | 55                   | 54              |
| Fats (g)                         | <0.5      | <0.5          | <0.5           | <0.5                   | <0.5             | <0.5                 | <0.5            |
| Carbohydrate (g)                 | 12        | 12            | 12             | 13                     | 12               | 14                   | 13              |
| Fibre (g)                        | <0.5      | <0.5          | <0.5           | <0.5                   | <0.5             | <0.5                 | <0.5            |
| Protein (g)                      | <0.5      | <0.5          | <0.5           | <0.5                   | <0.5             | <0.5                 | <0.5            |
| Salt (g)                         | <0.01     | <0.01         | <0.01          | <0.01                  | <0.01            | <0.01                | <0.01           |
| Sodium (g)                       | <0.005    | <0.005        | <0.005         | <0.005                 | <0.005           | <0.005               | <0.005          |
| NAFDAC<br>registration<br>number | 08-3829   | 08-3830       | 08-3831        | 08-3832                | 08-3833          | 08-3834              | 08-8183         |

| Table 1. Con | position of | Bigi soft drinks |
|--------------|-------------|------------------|
|--------------|-------------|------------------|

policy, social, environmental, and cultural norms [13,14].

The world health organization (WHO) and the food and agriculture organization submitted a report in April 2003 concluding that many deaths attributed to chronic diseases are due to obesity and outlined how millions of people around the world can avoid chronic diseases through diet and exercise [15]. In the 1960s, for example, diabetes mellitus was said to be rare in the African continent with a prevalent rate of 0.5% and the prevalent rate, then, in South Africa and North Africa is the highest, but in 1992, Nigeria has a prevalent rate of 2.8% as discovered by the Nigerian National Expert Committee on noncommunicable diseases with more prevalence in Urban areas compared to rural areas [16]. This is as a result of gradual westernization, leading to an increase in the number of soft-drinks manufacturing companies. The traditional habit of giving water to a visitor is now replaced by soft drinks or alcohol, hence the need to assess their effects in raising the blood glucose concentration, and lipid profile being the major factors associated with diabetic mellitus and cardiovascular diseases. Diabetes mellitus is characterized by hyperglycemia together with the biochemical alteration of glucose and lipid peroxidation [17-19]. Lipid peroxidation, a free radical related process, is an uncontrolled, selfenhancing process disrupting membrane lipid and other cell components. Unlimited lipid peroxidation (LP) could be one of the main in the pathogenesis of diabetic factors complications [20,21]. This pathology is often related to the release of free radicals and caused oxidative stress [22]. During reoxygenation, hypoxanthine/ xanthine oxidase and arachidonic acid pathways are important sources of free oxygen radicals, which damage lipid membrane and lead to cytolysis and cell death [23].

The accumulation of lipid in diabetes is mediated through a variety of derangement in the metabolic and regulatory process especially insulin deficiency thereby rendering the diabetic patient more prone to hypercholesterolemia and hypertriglyceridemia [24]. One of the major pathogenesis of lipid metabolism, disturbances in diabetes, is the increasing mobilization of fatty acid from adipose tissue and secondary elevation of the free fatty acid level in blood [25]. Lipid abnormalities such as hypercholesterolemia, hypertriglyceridemia, hyperphospholipidemia and fatty acid distribution changes are common in diabetic patients [14]. Consumption of soft drinks in Nigeria is becoming high, and these soft drinks are reported to contained high calories which tend to increase the risk of obesity, type-2 diabetes and cardiovascular diseases [26]. Therefore, there is need to study the effects of these soft drinks through the assessment of these parameters indices that point as to predisposed to diabetes mellitus and cardiovascular diseases to reduce the risk of obesity, type-2 diabetes and cardiovascular diseases.

#### 2. MATERIALS AND METHODS

#### 2.1 Collection of Soft drinks

Bigi soft drinks (Bigi Cola, Bigi Apple, Bigi Tropical, Bigi Oange, Bigi Lemon and Lime, Bigi Chapman) used in this study were purchased from Final Solution Catering Service shop at Odo-Ona, along Apata Road, Ibadan, Nigeria and were kept at room temperature.

#### 2.2 Experimental Design

Thirty-five (35) adult Wistar rats (*Rattus norvegicus*) with bodyweight between 120 and

150 a were used for this study. They were acclimatized for seven (7) days during which they were fed ad libitum with standard feed and drinking water and were housed in clean cages placed in well-ventilated housing conditions (under humid tropical conditions) throughout the experiment. All the animals received humane care according to the criteria outlined in the 'Guide for the Care and Use of Laboratory Animals' prepared by the National Academy of Science and published by the National Institute of Health. They were randomly divided into seven groups of five rats each and were treated according to animals in group 1 were administered distilled water, those in group 2 were administered Bigi Cola, those in group 3 were administered Bigi Apple, those in group 4 were administered Bigi Tropical, those in group 5 were administered Bigi Orange, those in group 6 were administered Bigi Lemon and Lime, while those in group 7 were administered Bigi Chapman. The administration was done orally at a dose of 3 mL per 100 g body weight 12 hourly for fourteen days. At the end of the administration period, the animals were fasted overnight and anaesthetized using diethyl ether. Blood samples were collected by cardiac puncture.

#### 2.3 Determination of Fasting Blood Sugar

Fasting blood sugar was determined according to the methods described by Airaodion et al. [27]. After the acclimatization period, animals used in this study were allowed to fast for twelve (12) commencement before hours the of administration. The blood glucose level was taken by sterilizing the tails of the animals with 10% alcohol, and cutting the tails using scissors then allowing the blood to touch the test strip which was inserted into a calibrated glucose meter (One-touch Glucometer, Acon Laboratory INC. San Diego, USA). This gave direct reading after 5 seconds in mg/dL. The blood glucose level of the rats before the commencement of administration was measured to know the normal blood glucose of the rats in each group. At the end of the administration, all the rats in each group fasted overnight and their fasting blood sugar was determined using a glucose meter. This was done to check and observe the effect of soft drinks on blood glucose level when compared to their initial glucose level (before the administration).

# 2.4 Determination of Lipids

Lipids were extracted and determined according to previously described methods [28,29].

## 2.5 Statistical Analysis

Data were subjected to analysis of variance using Graph Pad Prism. Results were presented as Mean  $\pm$  standard deviation. One way analysis of variance (ANOVA) was used for comparison of the means followed by Tukey's (HSD) multiple comparison tests. Differences between means were considered to be significant at p<0.05.

# 3. RESULTS

The results of the effect of Bigi soft drinks on fasting blood glucose and lipid profile of Wistar rats are presented in tables 2 and 3 respectively.

#### 4. DISCUSSION

Diabetes is a complex metabolic disorder associated with developing insulin resistance, impaired insulin signaling and  $\beta$ -cell dysfunction, abnormal glucose and lipid metabolism, subclinical inflammation and increased oxidative stress. These metabolic disorders lead to long-term pathogenic conditions including micro- and macro-vascular complications, neuropathy,

| Table 2. Effect of Bigi Soft Drinks on the Fasting Blood Glucose (FBG) of Animals after 14 days |
|-------------------------------------------------------------------------------------------------|
| of Administration                                                                               |

| Treatment           | Pre-treatment<br>(mg/dL) | Post-treatment<br>(mg/dL) | Increase in FBG<br>(mg/dL)       |
|---------------------|--------------------------|---------------------------|----------------------------------|
| Control             | 58.82 <u>+</u> 4.32      | 60.07±3.94                | 1.25 <u>+</u> 0.02 <sup>ª</sup>  |
| Bigi Cola           | 55.28 <u>+</u> 2.90      | 72.73±9.46                | 17.45±0.13 <sup>b</sup>          |
| Bigi Apple          | 61.25 <u>+</u> 3.28      | $74.96 \pm 4.30$          | 13.71±1.11 <sup>°</sup>          |
| Bigi Tropical       | 54.93±5.35               | 77.83±5.74                | 22.90±1.08 <sup>d</sup>          |
| Bigi Orange         | 57.36±3.28               | 76.38±4.73                | 19.02 <u>+</u> 0.38 <sup>b</sup> |
| Bigi Lemon and Lime | 64.83±2.83               | 66.89±2.93                | 2.06±0.07 <sup>a</sup>           |
| Bigi Chapman        | 60.37±6.36               | 73.29±6.55                | 12.92±0.52 <sup>°</sup>          |

Values are presented as Mean $\pm$ S.E.M, where n = 5. Values with different superscript along the same column are significantly different at p<0.05

#### Table 3. Effect of Bigi soft drinks on the lipid profile of animals after 14 days of administration

| Treatment           | TC                        | TG                        | HDL                              | LDL                              | HDL:LDL                         | VLDL                    |
|---------------------|---------------------------|---------------------------|----------------------------------|----------------------------------|---------------------------------|-------------------------|
| Control             | 98.25±8.29 <sup>a</sup>   | 88.48±7.43 <sup>a</sup>   | 44.83±6.49 <sup>a</sup>          | 41.64±3.92 <sup>a</sup>          | 1.08±0.02 <sup>ª</sup>          | 17.70±1.48ª             |
| Bigi cola           | 101.63±5.34 <sup>ª</sup>  | 91.93±8.47 <sup>ª</sup>   | 40.87±3.74 <sup>a</sup>          | 47.92 <u>+</u> 4.73 <sup>b</sup> | 0.85±0.03 <sup>b</sup>          | 18.39±1.70 <sup>ª</sup> |
| Bigi apple          | 116.23±11.21 <sup>b</sup> | 106.23±5.73 <sup>b</sup>  | 36.94±7.43 <sup>b</sup>          | 42.37±5.00 <sup>a</sup>          | 0.87±0.01 <sup>b</sup>          | 21.25±1.15 <sup>▶</sup> |
| Bigi tropical       | 111.84±8.34 <sup>°</sup>  | 111.25±12.28°             | 41.84±2.93ª                      | 39.45 <u>+</u> 3.28 <sup>ª</sup> | 1.06±0.08ª                      | 22.25±2.46 <sup>b</sup> |
| Bigi orange         | 118.28±6.43 <sup>b</sup>  | 109.39±3.86 <sup>bc</sup> | 40.52±5.72 <sup>ª</sup>          | 49.45±3.89 <sup>b</sup>          | 0.82±0.04 <sup>b</sup>          | 21.88±0.77 <sup>b</sup> |
| Bigi lemon and lime | 124.43±12.21 <sup>d</sup> | 121.28±9.83 <sup>d</sup>  | 32.67±3.92 <sup>°</sup>          | 56.74±4.32 <sup>°</sup>          | 0.58±0.02 <sup>c</sup>          | 24.26±1.97 <sup>b</sup> |
| Bigi chapman        | 115.63±9.22 <sup>b</sup>  | 110.00±7.83 <sup>bc</sup> | 39.39 <u>+</u> 2.84 <sup>b</sup> | 52.38±4.04 <sup>bc</sup>         | 0.75 <u>+</u> 0.03 <sup>b</sup> | 22.00±1.57 <sup>b</sup> |

Values are presented as Mean $\pm$ S.E.M, where n = 5. Values with different superscript along the same row are significantly different at p<0.05 Legend: TC = Total Cholesterol, TG = Triglyceride, HDL = High Density Lipoprotein, LDL = Low Density Lipoprotein, VLDL = Very Low Density Lipoprotein retinopathy, nephropathy, and a consequent decrease in quality of life and an increase in the rate of mortality [30]. Among the multiple risk factors underlining the incidence and progression of diabetes, diet is the main modifiable factor. Both experimental and epidemiological evidence has shown that consumption of vegetables rich in phenolic compounds and possess high antioxidant capacity may have an inverse relationship with the incidence and prevalence of diabetes [31]. Dietary control remains one of the most desirable avenues for the prevention and management of chronic degenerative diseases such as diabetes and cardiovascular diseases. This study sought to investigate the effect of oral intake of Bigi soft drinks in fasting blood glucose and lipid profile of Wistar rats.

In this study, all the Bigi soft drinks (except Bigi Lemon and Lime) were observed to significantly elevated the fasting blood glucose of animals at p<0.05 (table 2). This might be an indication that these drinks could predispose consumers to the risk of diabetes. One therapeutic approach for treating early stage of diabetes is to decrease postprandial hyperglycaemia. This is done by retarding the absorption of glucose through the carbohydrate-hydrolyzing inhibition of the enzymes,  $\alpha$ -amylase and  $\alpha$ -glucosidase, in the digestive tract. Consequently, activators of these enzymes determine an elevation in the rate of glucose absorption and consequently blunting the post-prandial plasma glucose rise [32,33]. Based on these findings, it could be suggested that these soft drinks may stimulate platelet aggregation and reduce vasodilatation, exerting an important role in the onset, development and progression of vascular complications caused by the hyperglycemic state [34]. However, Bigi Lemon and Lime had no significant effect on the fasting blood glucose of animals when compared with the control group after fourteen days of treatment. This might be that the flavor in it has the ability to suppress its sugar content. This is suggestive that of all the Bigi soft drinks used in this study, only Bigi Lemon and Lime is safe for diabetic patients and those predisposed to diabetes to consume.

Apart from the regulation of carbohydrate metabolism, insulin plays an important role in lipid metabolism. Insulin insufficiency, as in diabetes mellitus, is associated with hypercholesterolemia and hypertriglyceridemia, which have been reported to occur in experimental diabetic [35-37]. rats Hypercholesterolemia could result in a relative molecular ordering of the residual phospholipids, resulting in a decrease in membrane fluidity [38]. Accumulation of triglycerides is one of the leading risk factors in coronary heart disease (CHD). Lipid and lipoprotein abnormalities have been shown to play a major role in the pathogenesis and progression of several disease conditions [39].

In this study, total cholesterol and triglycerides concentrations were observed to increase significantly when animals treated with Bigi soft drinks (except for those treated with Bigi Cola) were compared with those of the control group at p<0.05 (Table 3). This could be that these soft drinks may increase the progression of CHD. Hypertriglyceridaemia has been reported in diabetic animals [40]. This was reported to be due to increased absorption and formation of triglycerides in the form of chylomicrons following exogenous consumption of a diet rich in fat or through increased endogenous production of triglyceride-enriched hepatic VLDL-cholesterol and decreased triglyceride uptake in peripheral tissues [40]. Hypercholesterolaemia has also been reported in diabetic animals [40]. This was attributed to the increased dietary cholesterol absorption from the small intestine following the intake of a high-fat diet in a diabetic condition [41]. Moreover, it can be conjectured that the lipid increasing effects of Bigi soft drinks could be due to the stimulation of hepatic cholesterol, triglyceride and possibly fatty acid synthesis [42]. The elevation in the triglyceride and total cholesterol observed in this study might be an indication that these soft drinks have the propensity to induce hypertriglyceridaemia and hypercholesterolaemia respectively making them be potent in the induction of diabetes mellitus and cardiovascular diseases. However, Bigi Cola showed no significant effect on the concentrations of trialyceride and total cholesterol of animals used in this study. This means that while other Bigi soft drinks used in this study may induce hypertriglyceridaemia and hypercholesterolaemia, Bigi Cola will not.

Hypertriglyceridaemia has also been reported to be a predictor of hypertension risk [43]. In the peripheral vascular system, endothelial cells rely on lipoproteins for the transfer of neutral sterols at this site. Although free cholesterol is transferred to HDL-cholesterol particles through the functioning of a designated HDL-cholesterol receptor, lecithin cholesterol acyltransferase (LCAT) serves to maintain the concentration toward the HDL core and preserve the hydrophobic nature that facilitates the transfer. Esterification of cholesterol produces cholesterol ester (CE), which is concentrated in HDL core and may be transferred by cholesterol ester protein transfer plasma (CETP) in the compartment to apo-B containing lipoproteins in exchange for triglyceride. Increased CETP activity would suggest an enrichment of apo-B lipoproteins in plasma, while simultaneously decreasing HDL-cholesterol, and has generally been considered pro-atherogenic [44]. This probably explains why Bigi soft drinks may lead to an elevation in the risk of developing heart diseases since a low HDL-cholesterol/LDLcholesterol ratio is deleterious and is indicative of a higher risk of cardiovascular diseases [45].

HDL-cholesterol and LDL-cholesterol are two of the four main groups of plasma lipoproteins that are involved in lipid metabolism and the exchange of cholesterol, cholesterol ester and trialvcerides between tissues [46, 47]. Numerous population studies have shown an inverse correlation between plasma HDL-cholesterol levels and risk of cardiovascular disease, implying that factors associated with HDLcholesterol protect against atherosclerosis. of these factors appear to have Some antioxidant and anti-inflammatory effects which obviate that may processes initiate atherogenesis [48,49].

Epidemiological studies have also shown that elevated concentrations of total cholesterol and/or LDL-cholesterol in the blood are powerful risk factors for coronary heart disease [50]. Most extra-hepatic tissues. although requiring cholesterol, have low activity of the cholesterol biosynthetic pathway. Their cholesterol requirements are supplied by LDL, which is internalized by receptor-mediated endocytosis. A major function of HDL-cholesterol is to enhance reverse cholesterol transport by scavenging excess cholesterol from peripheral tissues followed by esterification through lecithin: cholesterol acyltransferase and delivering it to steroidogenic the liver and organs for subsequent synthesis of bile acids and lipoproteins and eventual elimination from the body [51,52]. This role of HDL-cholesterol is responsible for its atheroprotective properties. HDL-cholesterol also regulates the exchange of proteins and lipids between various lipoproteins.

Also, HDL-cholesterol provides the protein components required to activate lipoprotein lipase which releases fatty acids that can be oxidized by the ß-oxidation pathway to release

enerav [46.47]. Most importantly. HDLcholesterol can inhibit oxidation of LDLcholesterol as well as the atherogenic effects of oxidized LDL-cholesterol by its antioxidant property [43]. LDL is a lipoprotein that transports cholesterol and triglyceride from the liver to peripheral tissues. It enables fat and cholesterol to move within the water-blood solution of the bloodstream. LDL is often called bad cholesterol; hence low levels are beneficial [53].

Unfortunately, the administration of some Bigi soft drinks (Bigi Apple, Bigi Chapman and Bigi Lemon and Lime) in this study caused a significant decrease in the serum level of HDLcholesterol when compared with the control animals at p<0.05 (table 3). HDL-cholesterol is usually referred to as the 'good cholesterol' [28]. Again, administration of some Bigi soft drinks (Bigi Cola, Bigi Orange, Bigi Chapman, and Bigi Lemon and Lime) significantly increased the concentration of LDL-cholesterol (bad cholesterol) when compared with that of the control group at p<0.05. The combined effect of decreased HDL-cholesterol (good cholesterol) and increased LDL-cholesterol (bad cholesterol) in the present study resulted in a decreased HDL-cholesterol/LDL-cholesterol ratio in treated animals when compared with the control group. This strongly supports the notion that dietary supplementation with the extract of soft drinks may lead to an elevation in the risk of developing diseases because heart а low HDLcholesterol/LDL-cholesterol ratio is deleterious and is indicative of a higher risk of CHD [54]. Although the activities of enzymes were not investigated in this study, it is possible that Bigi soft drinks increased the activity of 3-hydroxy-3methylglutaryl coenzyme A (HMG CoA) reductase (the rate-limiting enzyme in cholesterol biosynthesis) [29]. This implies that the consumption of Bigi soft drinks are of adverse health importance as far as hyperlipidemia is a concern.

In this study, Bigi Lemon and Lime is of particular interest as it had no significant effect on the fasting blood glucose but adversely perturbed the lipid profile of animals when compared with the control animals after fourteen days of treatment. This implies that while it may not predispose one to diabetes, it might not be safe for people with cardiovascular diseases history and also cardiovascular disease patients to consume.

#### **5. CONCLUSION**

The result of this study implies that Bigi soft drinks might be deleterious to health as far as

hyperglycemia and hyperlipidaemia is concern. This does not automatically translate to such effect on humans. However, individuals with a diabetic family history should minimize their consumption of these drinks.

#### CONSENT

It is not applicable.

#### ETHICAL APPROVAL

It is not applicable.

## **COMPETING INTERESTS**

Authors have declared that no competing interests exist.

#### REFERENCES

- Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: A systematic review and meta-analysis. American Journal of Public Health. 2007;97(4):667–675.
- Ebbeling CB, Feldman HA, Osganian SK, Chomitz VR, Ellenbogen SJ, Ludwig DS. Effects of decreasing sugar-sweetened beverage consumption on body weight in adolescents: A randomized, controlled pilot study. Pediatrics. 2006;117(3):673–680.
- Malik VS, Schulze MB, Hu FB. Intake of sugar sweetened beverages and weight gain: A systematic review. American Journal of Clinical Nutrition. 2006;84(2): 274–328.
- Wolff E, Dangsinger ML. Soft drinks and weight gain: How strong is the link? Medscape Journal of Medicine. 2008;10 (8):189.
- 5. Caroline DW. Type 1 diabetes mellitus in pediatrics. Pediatr Rev. 2008;29 (11):374–384.
- 6. Gibson S. Sugar-sweetened soft drinks and obesity: A systematic review of the evidence from observational studies and interventions. Nutrition Research Reviews. 2008;21(2):134–147.
- Ludwig D, Peterson K, Gortmaker S. Relation between consumption of sugarsweetened drinks and childhood obesity: A prospective, observational analysis. The Lancet. 2001;357(9255):505–508.
- Schulze MB, Manson JAE, Ludwig DS, Colditz GA, Stampfer MJ, Willet WC, Hu FB. Sugar sweetened beverages, weight

gain, and incidence of type 2 diabetes in young and middle aged women. Journal of the American Medical Association. 2004; 292(8):927–934.

- 9. Dubois HFW, Bankauskaite V. Type 2 diabetes programmes in Europe. Euro Observer. 2005;7(2):5–6.
- 10. Ashurst P. Soft drink and fruit juice problems solved. Woodhead Publishing Limited; 2009.

ISBN 978-1-84569- 326-328

- Raben A, Vasilaras TH, Moller AC, Astrup A. Sucrose compared with artificial sweeteners: different effects on ad libitum food intake and body weight after 10 weeks of supplementation in overweight subjects. American Journal of Clinical Nutrition. 2002;76(4):721–729.
- Nielsen S, Popkin B. Changes in beverage intake between 1977 and 2001. American Journal of Preventive Medicine. 2009; 27(3):205–210.
- Ripsin CM, Kang H, Urban RJ. Management of blood glucose in type 2 diabetes mellitus. American Family Physician. 2009;79(1):29–36.
- Konstantinos L. Aretaeus of Cappadocia and the first description of diabetes". Hormones. 2012;11(1):109–113.
- Ripoll BC, Leutholtz I. Exercise and disease management (2<sup>nd</sup> Ed.). Boca Raton: CRC Press. 2011;25. ISBN 978-1-4398-2759-8
- Santaguida PL, Balion C, Hunt D. Diagnosis, prognosis, treatment of impaired glucose tolerance and impaired fasting glucose. Evid Rep Technol Assess. 2008;12:1–11.
- 17. Trocho C, Pardo RT. Formaldehyde derived from dietary aspartame binds to tissue components *in vivo*. Life Sci: 1998; 637-349.
- 18. Lambert P, Bingley PJ. What is type 1 diabetes? Medicine. 2002;30:1–5.
- 19. Rother KI. Diabetes treatment—bridging the divide. The New England Journal of Medicine. 2007;356(15):1499–501.
- Stewart WF, Ricci JA, Chee E, Hirsch AG, Brandenburg NA. Lost productive time and costs due to diabetes and diabetic neuropathic pain in the US workforce. J. Occup. Environ. Med. 2007;49(6):672– 679.
- Shoback DG, Gardner D. Eds. Chapter 17". Greenspan's Basic & Clinical Endocrinology (9<sup>th</sup> Ed.). New York: McGraw-Hill Medical; 2011.

ISBN: 978-0-07-162243-1

- 22. Saydah SH, Miret M, Sung J, Varas C, Gause D, Brancati FL. Postchallenge hyperglycemia and mortality in a national sample of U.S. adults. Diabetes Care. 2001;24(8):1397–1402.
- 23. Dorner M, Pinget M, Brogard JM. Essential labile diabetes (in German). Munch Med Wochenschr. 1977;119(19):671–674.
- Jaiprakash J, Thomas P, Cavan D, Kerr D. "Preventing childhood obesity by reducing consumption of carbonated drinks: Cluster randomized controlled trial. British Medical Journal. 1993;328(7450):1237.
- 25. Vijan S. "Type 2 diabetes". Annals of Internal Medicine. 2010;152(5):ITC31-15.
- Selvin E, Steffes MW, Zhu H, Matsushita K, Wagenknecht L, Pankow J, Coresh J, Brancati FL. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N. Engl. J. Med. 2010; 362(9):800–811
- Airaodion AI, Airaodion EO, Ogbuagu EO, Ogbuagu U, Osemwowa EU. Effect of Oral Intake of African Locust Bean on Fasting Blood Sugar and Lipid Profile of Albino Rats. Asian Journal of Research in Biochemistry. 2019;4(4):1-9.
- Owoade AO, Adetutu A, Airaodion AI, Ogundipe OO. Toxicological assessment of the methanolic leaf extract of *Bridelia ferrugelia*. The Journal of Phytopharmacology. 2018;7(5):419-424.
- 29. Owoade AO, Airaodion AI, Adetutu A, Akinyomi OD. Levofloxacin-induced dyslipidemia in male albino rats. Asian Journal of Pharmacy and Pharmacology. 2018;4(5):620-629.
- Airaodion AI, Ogbuagu EO, Airaodion EO, Ekenjoku JA, Ogbuagu U. Pharmacotherapeutic effect of methanolic extract of *Telfairia occidentalis* leaves on glycemic and lipidemic indexes of alloxaninduced diabetic rats. International Journal of Bio-Science and Bio-Technology. 2019;11(8):1-17.
- Bahadoran Z, Golzarand M, Mirmiran P, Saadati N, Azizi F. The association of dietary phytochemical index and cardiometabolic risk factors inadults: Tehran lipid and glucose study. Journal of Human Nutrition and Diet. In print; 2013.
- Airaodion AI, Olatoyinbo PO, Ogbuagu U, Ogbuagu EO, Akinmolayan JD, Adekale OA, Awosanya OO, Oloruntoba AP, Agunbiade AP, Airaodion EO, Adeniji AR, Obajimi OO. Comparative assessment of

phytochemical content and antioxidant potential of *Azadirachta indica* and *Parquetina nigrescens* leaves. Asian Plant Research Journal. 2019;2(3):1-14.

- 33. Airaodion AI, Ibrahim AH, Ogbuagu U, Ogbuagu EO, Awosanya OO, Akinmolayan JD, Njoku OC, Obajimi OO, Adeniji AR, Adekale OA. Evaluation of Phytochemical Content and Antioxidant Potential of Ocimum gratissimum and Telfairia occidentalis Leaves. Asian Journal of Research in Medical and Pharmaceutical Sciences. 2019;7(1):1-11.
- Airaodion AI, Akinmolayan JD, Ogbuagu EO, Airaodion EO, Ogbuagu U, Awosanya OO. Effect of methanolic extract of *Corchorus olitorius* Leaves on hypoglycemic and hypolipidaemic activities in albino rats. Asian Plant Research Journal. 2019;2(7):1-13
- 35. Loci AS, Shaabha M, Khazraji AL, Husain A, Twaija A. Hypoglycemic effect of a valuable extract on some blood parameters in diabetic animals. J. Ethnopharmacol. 1994;43:167–171.
- 36. Ahardh CD, Bjorgell P, Nilson EP. The effect of tolnetamide in lipoproteins and lipoprotein lipase and hormone sensitive lipase. Diabetes Res. Clin. Pract. 1999;46: 99–108.
- Frayn KN. Insulin resistance and lipid metabolism. Curr. Opin. Lipidol. 1993;4: 197–204.
- Bopanna KN, Kannan J, Suchma G, Balaraman R, Ranthod SP. Antidiabetic and antihyperlipidemic effect of neem seed, kernel powder on alloxan diabetic rabbits. Ind. J. Pharmacol. 1997;29:162– 167.
- 39. Rotimi OS, David AO, Olusola AT, Regina NU, Elizabeth AB, Oladipo A. Amoxillinand pefloxacin-induced cholesterogenesis and phospholipidosis in rat tissues. Lipids in Health and Disease. 2015;14:13-30.
- Airaodion AI, Ogbuagu EO, Ekenjoku JA, Ogbuagu U. Antidiabetic effect of ethanolic extract of *Carica papaya* leaves in alloxaninduced diabetic rats. American Journal of Biomedical Science & Research. 2019; 5(3):227-234
- 41. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocintreated rat: a model for type 2 diabetes and pharmacological screening.

Pharmacological Research. 2005;52:313–320.

- Balamurugan R, Ignacimuthu S. Antidiabetic and Hypolipidemic effect of methanol extract of Lippia nodifloral. In streptozotocin induced diabetic rats. Asia Pacific Journal of Tropical Biomedicine. 2011;S30-S36.
- 43. Allen RR, Carson LA, Kwik-Uribe C, Evans E, Erdman JW. Daily consumption of a dark chocolate containing flavanols and added sterol esters affects cardiovascular risk factors in normotensive population with elevated cholesterol. J Nutr. 2008;138: 725-731.
- 44. Greene CM, Zern TL, Wood RJ, Shrestha S, Fernandez ML. Maintenance of the LDL-cholesterol/ HDL-cholesterol ratio in an elderly population given a dietary cholesterol challenge. J Nutr. 2005;135: 2793-2798.
- Perona JS, Covas MI, Fito M, Cabello-Moruno R, Aros F, Corella D, Ros E, 45. Garcia M, Estruch R, Martinez-Gonzalez MA. Ruiz-Gutierrez V. Reduction in svstemic and VLDL triacylglycerol concentration after 3-month а Mediterranean style diet highin cardiovascular-risk subjects. Nutr J Biochem. 2010;9:892-898.
- Gordon DJ, Rifkind BM. High-density lipoprotein: The clinical implications of recent studies. New England Journal of Medicine. 1989;321(19):1311-1316.

- 47. Sviridiv D. Intracellular cholesterol trafficking. Histology and Histopathology. 1999;14:305-319.
- Airaodion AI, Adeniji AR, Ogbuagu EO, Ogbuagu U, Agunbiade AP. Hypoglycemic and hypolipidaemic activities of methanolic extract of *Talinum triangulare* leaves in Wistar rats. International Journal of Bio-Science and Bio-Technology. 2019;11(5): 1-13
- 49. Oram JF, Lawn RM. ABCA1: The gatekeeper for eliminating excess tissue cholesterol. Journal Lipid Research. 2001;42:1173-1179.
- 50. Law MR. Lowering heart disease risk with cholesterol reduction: Evidence from observational studies and clinical trials. European Heart Journal. 1999;1:S3-S8.
- 51. Stein O, Stein Y. Atheroprotective mechanisms of HDL- Atherosclerosis. 1999;144:285-303.
- Ogbuagu EO, Airaodion AI, Ogbuagu U, Airaodion EO. Effect of methanolic extract of Vernonia amygdalina leaves on glycemic and lipidaemic indexes of Wistar rats. Asian Journal of Research in Medical and Pharmaceutical Sciences. 2019;7(3): 1-14.
- 53. Cromwell WC, Otvos JD. Low Density Lipoprotein Particle Number and Risk for Cardiovascular Disease. Curr. Atheroscler. Rep. 2004;6(8):381-387.
- 54. Castelli L. Epidemiology of coronary heart disease. Am. J. Med. 1984;76:4–12.

© 2019 Airaodion et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://sdiarticle4.com/review-history/52121