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Abstract 
Finite Element Method (FEM), based on p and h versions approach, and the 
Adomians decomposition algorithm (ADM) are introduced for solving the 
Emden-Fowler Equation. A number of special cases of p and h versions of 
FEM are introduced. Several iterated forms of the ADM are considered also. 
To demonstrate the efficiency of both methods, the numerical solutions of 
different examples are compared for both methods with the analytical solu-
tions. It is observed that the results obtained by FEM are quite satisfactory 
and more accurate than ADM. Moreover, the FEM method is applicable for a 
wide range of classes including the singularity cases with the given special 
treatments by the FEM. Comparing the results with the existing true solutions 
shows that the FEM approach is highly accurate and converges rapidly.  
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1. Introduction 

In this work, we present an alternate algorithm to solve the Emden-Fowler Equ-
ation [1] [2]. This equation has several interesting physical applications occur-
ring in astrophysics in the form of the Fermi-Thomas equation [3]. The analysis 
is accompanied by examples that demonstrate the comparison and show the 
pertinent features of the modified technique. Two versions of FEM approaches 
have been used to obtain a numerical solution to this problem. The decomposi-
tion scheme representing the nonlinear problem is presented. Some references 
for such numerical solutions can be found in [4] [5] [6]. In particular, Scott [7] 
used an invariant imbedding method to solve Troesch’s problem, while Khuri 
[8] used a numerical method based on Laplace transformation and a modified 
decomposition technique to obtain an approximate solution of the same prob-
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lem. Feng [9] solved this problem numerically using a modified homotopy per-
turbation technique. Chang and Chang [10] developed a new technique for calcu-
lating the one-dimensional differential transform of nonlinear functions; the algo-
rithm was illustrated by studying several nonlinear ordinary differential equations, 
including Troesch’s problem. Chang [11] proposed a new algorithm based on the 
vibrational method and variable transformation to solve Troesch’s problem. The 
cubic B-spline finite-element method (see [12] [13] [14]) is often used for solving 
nonlinear problems that arise in engineering applications; cubic B-spline functions 
are utilized to develop a collocation method for solving Troesch’s problem.  

Adomians decomposition algorithm has been recently employed to solve a 
wide range of problems (see [15] [16] [17]). We adapt the algorithm to solving 
the most general form of Emden-Fowler Equation given by 

( ) ( )d d 0, 0
d d

nuq t q t u t
t t
  + = ≥ 
 

                  (1) 

with specified initial condition 

( )0u α=                            (2) 

d
d
u
t

β=  

The balance of this paper is as follows. In Section 2.1, we give a brief descrip-
tion of Adomians method and then introduce a modified version of this algo-
rithm. We apply the modified scheme to Equations (1), (2). While in Section 2.2, 
we seek a finite element solution for solving Emden-Fowler Equation. We con-
sider the mesh point ui over the interval [0, 1], with x0 = 0 and xn = 1, noting that 
the mesh points distance = h. 

In Section 3, several interesting examples that arise in applications are used to 
illustrate the algorithm with error estimates. 

And tables are not prescribed, although the various table text styles are pro-
vided. The formatter will need to create these components, incorporating the 
applicable criteria that follow. 

2. Analysis 
2.1. Adomians Decomposition Method 

In this section, we first describe algorithm of Adomians decomposition method 
as it applies to general nonlinear equation of the form  

( )u N u f− =                          (3) 

where N is a nonlinear operator on a Hilbert space H and f is a known element 
of H. We assume that for a given f a unique solution u of Equation (3) exists. We 
then introduce a modified version of this algorithm to handle equations of the 
form Equation (1). 

The Adomians algorithm assumes a series solution for u given by  

0 nn uu ∞

=
= ∑                              (4) 
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And the nonlinear operator N to be decomposed into  

( ) 0 nnN u A∞

=
= ∑                            (5) 

where An’s are Adomians polynomials of 0 1, , , nu u u  given by 

0 0
, 0,11 d

! d
,n

n
i

in iA N u n
n λ

λ
λ

∞

= =
= = 

 ∑                   (6) 

Substituting Equations (4) and (5) into the functional Equation (3) yields.  

0 0n nn nu A f∞ ∞

= =
− =∑ ∑                         (7) 

The convergence of the series in Equation (7) will yield  

0

1 0

2 1

1n n

u f
u A
u A

u A −

=
=
=

=


                             (8) 

Thus, one can, recurrently determine every term of the series 
0 nn u∞

=∑  the 
convergence of this series has been established (see [17] [18]).  

To illustrate the scheme, let the nonlinear operator N(u) be a nonlinear func-
tion of u, say g(u) then the first four Adomians Polynomials are given by  

( )
( )

( ) ( )

( ) ( ) ( )

0 0

1 1 0

2 2 0 0

3 3 0 1 2 0

1

3
1 0

21
2!

1
3!

A g u

A u g u

A u g u g u

A

u

u g u u u g u g uu

=

′=

′ ′′= +

′ ′′ ′′′= + + +



              (9) 

How do we interpret and solve Emden-Fowler Equation in this setting? 
Following the Adomians decomposition analysis [4] defines the linear opera-

tor. 

tL
t

=
∂
∂

                          (10) 

Equation (1) can be rewritten in terms of the linear operator  

( ) ( ) ( ) 0t t nL p t L u q t u+ =                    (11) 

It was shown in [2] that Equation (1) with condition (2) possesses a unique 
solution. 

Thus, the inverse operator of Lt, namely 1
tL−  exists and is the twofold indefi-

nite integral; i.e. 

( ) ( )1
0 0
d d

t t
tL f t u vf v−  =  ∫ ∫                  (12) 

Operating on both sides of (11) with 1
tL−  yields 

( ) ( ) ( )1 1 0t t
n

t tL p t L u q tL L u− −  + =                    (13) 
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From which it follows, upon using the initial conditions given in Equation (2). 

( ) ( ) ( )
( )

( )( )
( )

1
1 10

0
n

t
t t

L q t up
L Lu

t P
t

p
u

t
β −

− −= +
  
 − 
    

           (14) 

The Adomians decomposition method yields the solution in the form given in 
(4) i.e. ( ) 0 1 2 nu t u u u u= + + + + , then from Equation (14) 

( )
( )

( )( )
( )

1
1

0 1 2
11

0 n
t

t t

L q t up
u L L

t p t
u u

β
β

−
− −

  
+ + +  − 

   
+


=         (15) 

For later numerical computation, let the expression  

( )1
0

n
n ii u tφ −

=
= ∑                           (16) 

can serve as a practical solution. We will show through several examples, that 
this Adomians decomposition method which converts the given equation to re-
currences relation whose terms are computed using maple 15. 

2.2. Finite Element Method (FEM) 

We seek a finite element solution for solving Emden-Fowler Equation, we con-
sider the mesh point ui over the interval [0, 1], with x0 = 0 and xn = 1, note that 
the mesh points distance = h, with 0nx x ih= + . Given 

( ) 1
0

n
i inu x αϕ−

=
= ∑                      (17) 

The finite element method minimizes the integral (17) over a class of Piece-
wise polynomials. The idea is to choose a finite number of trial functions iϕ , 
and among all their linear combinations 1

0
n

i in αϕ−

=∑  to find the one, which is the 
minimum, the unknown iα  determined by a system of N discrete algebraic 
equations, which the computer can handle. Therefore, the goal is to choose trial 
functions iϕ , which are convenient enough for the given integral (17) to be 
compute and minimized, and at the same time general enough to approximate 
closely the unknown u. The software TWEPEP starts by a subdivision of the 
given region into smaller pieces which are triangles with standard six-node with 
a quadratic basis function, and with one edge curved when adjacent to a curved 
boundary according to the isoperimetric method. It is also optional to use 
10-piont cubic (3rd degree) or the 15-points quartic (4th degree) isoperimetric 
triangular elements for greater accuracy. Each time a triangle is partitioned, it is 
divided by a line from the midpoint of its longest side to the opposite vertex. If 
this side is not on the boundary, the triangle which shares that side must also be 
divided to avoid non-conforming elements with discontinuous basis functions. 
An initial triangulation with sufficient triangles to define the region is supplied 
by the user, then the refinement and grading of this triangulation is guided by a 
user supplied function D3EST which should be largest where the final triangula-
tion is to be densest. The Cuthill-McKee algorithm ([18] [19] [20]) used to in-
itially number the nodes, and a special bandwidth reduction algorithm is used to 
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decrease the bandwidth of the Jacobian matrix even further.  

In all cases, the algebraic system solved by Newton’s method. One iteration 
per time step is done for parabolic problems and one iteration is sufficient for 
linear elliptic problems. The linear system is solved directly by block Gaussian 
elimination, without row interchanges since pivoting is unnecessary when the 
matrix is positive definite. Symmetry also taken advantage of in the elimination 
process if it is present then the storage and computational work halved. If the 
Jacobian matrix is too large to keep in core, the frontal method is used efficiently 
organize its storage out of core. 

3. Illustrations of the Methods 

In this section, we shall consider three examples the first is the linearized Em-
den-Fowler Equation, and the other two are nonlinear. The out-come of mod-
ified Adomians decomposition method compared with and the finite element 
method the p, the h versions, and any known solution to the underlying Em-
den-Fowler Equation. Then solution obtained generalized by maple [21]. While 
the nonlinear system of equations given in (17) has been solved using the old 
version of the computer algebra system TWEPEP [22]. 

Example 1. Consider Emden-Fowler Equation of the form 

( )2 2
2
1 d d 0

d d
t u t u

t t t
  + = 
 

 

( )0 1u =  and 
( )d 0

0
d

u
t

=                     (18) 

Substituting these values into the general formula Equation (13), we obtain 
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 

− = − 
 

=

=

=

=



                   (19) 

The exact solution to Equation (18) given by ( ) sin1
t

u t t= . 

Example 2. Consider the Emden Fowler of the form  

2 5
2
1 d d 0

d d
t u u

t t t
   + =  

  
 

( ) ( )d 0
0 1, 0

d
u

u
t

= =                       (20) 

Using Equation (13), the various ui are given by 
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                   (21) 

where ( )0 0 1A f u= =  

( )1 0
2

01
5 55

6
u tA uf u = −′= =  

( ) ( )2 2 0
2 4 3 2 4
1 0 0 120

1 355
2

0
71

1u f u u uA u f u u tu′ ′′ =+== +           (22) 

( ) ( ) ( ) ( ) ( )3 6
0 13 03 0 1 2 0

1 1 35
2 3! 144

2A u f u u f uu tu u f u ′′′ = −′ ′′= + +  

The exact solution of Equation (20) is given by  

( ) 1
11
3

u
t

t =
+

 

The exact solution compared with the numerical solution using Adomians 
method.  

Example 3. Our final Example deals with Emden-Fowler Equation of the 
form  

( )
( )

2
3

d 1 d 1 0
d d1 2 1

u u
t tt t
   + =  +   + 

              (23) 

( )0 1u = , 
( )d 0 1

d 2
u

t
=                      (24) 

Using Equation (13) the various iterates are given by  

[ ] ( )
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( )
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1 2
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t t
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  
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 +   
  
 − + 

 +   
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where 

( ) ( )00

2
3 2

0
2 2 1 1

3 3
u tA f u  + +

= = 
=                (25) 
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3 0 3 0 1 2
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2
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A u u
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u
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=

= +
= +
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The exact solution of Equation (23) and (24) is given by 

( ) 1u t t= +                         (26) 

The exact solution compared with the numerical solution using Adomians 
method, shown in Table 3 errors obtained by approximation 4 5,φ φ  and 6φ  as 
defined in Equation (16) respectively. 

In the next section, we will give the numerical results arising from the imple-
mentation of this adaptive collocation approach over the Emden-Fowler prob-
lem. 

In this section, the ADM collocation method used to solve the Emden-Fowler 
problem for different values of the ui using the computer algebra system Maple 
15. In Tables 1-3, the numerical solutions obtained by the above method at the 
mesh points 0,0.01,0.02, ,0.1t =  . Respectively, are compared with the given 
analytic solutions the resulting relative error is also compared with h version 
FEM numerical techniques, namely, 50, 100 and 150 elements. 

In Tables 4-6, the numerical solution obtained by the FEM collocation at the 
mesh points 0,0.01,0.02, ,0.1t =  , is compared with the exact solutions given. 
A Fortran code called TWOPEP [22] used to solve to solve the problems. 
 
Table 1. Error obtained using decomposition method for example 1. 

t 
ADM Relative Error FEM Relative Error 

Four terms Five terms Six terms 50 100 150 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.02 0.453 × 10−3 1.123 × 10−4 1.013 × 10−4 0.234 × 10−3 3.325 × 10−4 1.120 × 10−4 

0.04 1.987 × 10−4 1.347 × 10−4 0.047 × 10−4 1.126 × 10−3 1.034 × 10−4 2.613 × 10−5 

0.06 2.798 × 10−4 0.340 × 10−4 0.434 × 10−5 2.023 × 10−2 1.122 × 10−2 1.106 × 10−5 

0.08 1.001 × 10−5 0.150 × 10−5 0.504 × 10−6 4.750 × 10−3 2.322 × 10−4 1.457 × 10−6 

0.10 1.338 × 10−5 2.243 × 10−5 1.243 × 10−5 6.445 × 10−3 7.805 × 10−5 3.345 × 10−6 

 
Table 2. Error obtained using decomposition method for example 2. 

t 
ADM Relative Error FEM Relative Error 

Four terms Five terms Six terms 50 100 150 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.02 1.331 × 10−3 3.408 × 10−5 1.408 × 10−4 0.435 × 10−3 3.025 × 10−4 1.420 × 10−4 

0.04 9.034 × 10−3 1.000 × 10−4 9.00 × 10−4 1.512 × 10−3 1.034 × 10−4 2.152 × 10−5 

0.06 1.141 × 10−3 1.092 × 10−4 9.092 × 10−5 3.023 × 10−2 0.122 × 10−3 1.102 × 10−5 

0.08 3.114 × 10−3 2.843 × 10−4 2.843 × 10−4 4.750 × 10−3 3.421 × 10−5 1.456 × 10−6 

0.10 7.081 × 103 0.774 × 10−4 0.075 × 10−4 6.445 × 10−3 6.505 × 10−5 3.345 × 10−6 
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Table 3. Error obtained using decomposition method with four five and six terms for 
example 3. 

t 
Relative Error Number of elements 

Four terms Five terms Six terms 50 100 150 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.02 4.335 × 10−2 3.425 × 10−2 1.425 × 10−2 0.335 × 10−3 3.325 × 10−4 1.420 × 10−4 

0.04 1.512 × 10−2 1.034 × 10−2 1.634 × 10−2 1.512 × 10−3 1.034 × 10−4 2.653 × 10−5 

0.06 3.023 × 10−2 1.122 × 10−2 1.002 × 10−2 3.023 × 10−2 1.122 × 10−2 1.102 × 10−5 

0.08 4.750 × 10−3 2.322 × 10−4 1.022 × 10−4 4.750 × 10−3 2.322 × 10−4 1.456 × 10−6 

0.10 6.445 × 10−3 7.805 × 10−4 2.805 × 10−4 6.445 × 10−3 7.805 × 10−5 3.345 × 10−6 

 
Table 4. Error obtained using finite element method example 1. 

F.E.M 
p version 

F.E.M h version 

50 elements 75 elements 100 elements 125 elements 150 elements 

Quadratic 1.071 × 10−3 2.138 × 10−3 6.306 × 10−4 4.006 × 10−4 1.303 × 10−5 

Cubic 2.402 × 10−4 1.485 × 10−4 2.759 × 10−5 2.051 × 10−5 2.759 × 10−5 

Quartic 1.541 × 10−5 7.683 × 10−6 1.481 × 10−6 1.6211 × 10−6 0.381 × 10−6 

 
Table 5. Error obtained using finite element method example 2. 

F.E.M 
p version 

F.E.M h version 

100 elements 125 elements 150 elements 175 elements 200 elements 

Quadratic 3.971 × 10−3 2.338 × 10−3 7.378 × 10−4 4.006 × 10−4 1.303 × 10−5 

Cubic 2.502 × 10−4 1.485 × 10−4 2.759 × 10−5 2.051 × 10−5 2.759 × 10−5 

Quartic 1.541 × 10−5 8.683 × 10−6 0.683 × 10−6 1.621 × 10−6 0.381 × 10−6 

 
Table 6. Error obtained using finite element method example 3. 

F.E.M 
p version 

F.E.M h version 

100 elements 125 elements 150 elements 175 elements 200 elements 

Quadratic 3.271 × 10−3 2.138 × 10−3 6.306 × 10−4 4.006 × 10−4 1.303 × 10−5 

Cubic 2.402 × 10−4 1.485 × 10−4 2.759 × 10−5 2.051 × 10−5 2.059 × 10−5 

Quartic 1.541 × 10−5 7.683 × 10−6 1.681 × 10−6 1.621 × 10−6 0.331 × 10−7 

 
From Tables 4-6, we observe that the h and the p collocation FEM method 

yields a almost exact solution for elements in order = 50, 100, and 150, respec-
tively [14] an investigate the effect of the choice of the number of elements 
around the singularity points over comes the failed of the traditional ADM on 
the numerical solution of Troesch’s problem. Tables 4-6 provide the relative er-
ror obtained by the h and the p shape-spline method, 

We observe generally notable change in the numerical results when the num-
ber of elements and the degree increased, we can say almost exact.  
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From Tables 1-3, it is evident that the relative error for all given examples de-
creases as the number of terms of the ADM increase, convergence is rapid and 
the relative error is small.  

Likewise, result in Tables 4-6 shows the F.E.M error as the number of ele-
ments is subdivided (the h version) also as the degree of the polynomial is in-
creased (p version). With more dense elements near t = 0 has the upper hand 
results. 

4. Conclusion 

In this work, the Adomians decomposition method, and the finite element me-
thod p and the h versions have been successfully applied to find the solution of 
nonlinear Emden-Fowler Equation. For general cases, Adomians decomposition 
method usually fails to solve singular initial value problems of Emden-Fowler 
type, while an effective modification of FEM that only requires denser elements 
around the singularity point is introduced. We conclude that FEM is a powerful 
method for the solution of nonlinear Emden-Fowler Equation. However, the 
computations by the ADM are simpler and faster than FEM techniques. The 
FME offers great advantages of straightforward applicability, computational effi-
ciency and high accuracy. 
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