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Abstract

In this research, we investigate a new class of submanifold of a cosymplectic manifold, called
”skew semi-invariant submanifold”, for which sufficient conditions are discussed with aim to
state the related integrability of distributions. The differential geometric aspects are treated
within the standard scheme, in part it is stated that a manifold with non-trivial invariant
distribution is CR-manifold. Moreover, we discussed the some properties of sectional curvature
of skew-semi invariant submanifolds of a cosymplectic manifold.
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1 Introduction

The geometry of submanifolds in spaces endowed with additional structure is very rich source and
interesting topics [1]. The theory of CR-submanifolds which was introduced by Bejancu for almost
contact geometry [2] and also for almost complex geometry [3] had a great impact of the theory of
submanifolds in these ambient manifolds. Several authors studied and discussed the semi-invariant
submanifold in Sasakian manifold and also extended to other ambient spaces see for example, Chen
et al. [4, 5, 6, 7], Bejancu and N. Papaghuic [8], Mangione [9] and Papaghiuc [10]. In 2001, Shoeb
et al. [11] studied ξ⊥ -submanifolds of a cosymplectic manifold. Latter on Bejancu also defined
and studied a semi-invariant submanifold of a locally product manifold [12]. In 1990, Ximin and
Shao [13] have discussed a new class of submanifolds of locally product manifolds, i.e., known
as skew semi-invariant submanifolds. Recently, in 2017 Siddiqi et al. [14] studied skew semi-
inavriant submanifolds of generalized quasi-Sasakian manifolds. The purpose of the present work
is to investigate and discuss the skew semi-invariant submanifold of a cosymplectic manifold.

2 Preliminaries

Let M̄ be a real n -dimensional smooth manifold equipped with an almost contact metric structure
(ϕ, ξ, η, g) [2] where ϕ is (1, 1)-tensor field, ξ a vector field, η is a [2] 1-form and g an Riemannian
metric such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕ(ξ) = 0, η ◦ ϕ = 0, (2.1)

g(ϕX, Y ) = −g(X,ϕY ), g(X, ξ) = η(X), g(X, ξ) = 1, (2.2)

where I is the identity tensor field and X,Y ∈ χ ¯(M).

M̄ is called a cosymplectic manifold if it satisfies ([8])

(∇̄Xϕ)Y = 0, (2.3)

∇̄Xξ = 0. (2.4)

The almost contact manifold M(ϕ, ξ, η, g) is said to be normal [2] if

Nϕ(X,Y ) + 2dη(X,Y )ξ = 0,

where
Nϕ(X,Y ) = [ϕX, ϕY ] + ϕ2[X,Y ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ], X, Y ∈ (TM)

is the Nijenhuis tensor field corresponding to the tensor field ϕ and d denotes the exterior derivative
operator . It is know that an almost contact metric structure is cosymplectic if and only if ∇̄η and
∇̄Φ vanish, where ∇̄ is the covariant differentiation with respect to g and the fundamental 2-form
Φ on M̄ is defined by

Φ(X,Y ) = g(X,ϕY ). (2.5)

If a cosymplectic manifold M̄ has a constant ϕ- sectional curvature then it is called a cosympletic
space M̄(c). The curvature tensor M̄ of such a manifold is defined by ([4])

R̄(X,Y )Z =
c

4
[g(ϕY, ϕZ)X − g(ϕX, ϕZ)Y + η(Y )g(X,Z)ξ − η(X)g(Y,Z)ξ

+ g(ϕY, Z)ϕX − g(ϕX,Z)ϕY + 2g(X,ϕY )ϕZ] (2.6)

for X,Y, Z ∈ χ ¯(M).
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Let M̄ is a cosymplectic manifold and M is a m-dimensional Riemannian submanifold isometrically
immersed in M̄ and ∇̄ is its Levi-Civita connection. For p ∈ M , the tangent vector Xp ∈ TpM , we
can write

ϕXp = PXp +QXp, (2.7)

where PXp ∈ TpM is tangent to M and QXp ∈ T⊥
pM a normal to M . For any two vectors

Xp, Yp ∈ TpM , we have

g(ϕXp, Yp) = g(PXp, Yp)

implies that

g(PXp, Yp) = g(Xp, PYp).

Therefore P and P 2 are all symmetric operators on the tangent space TpM . If α(p) is an eigen
value of P 2 at p ∈ M̄ then α(p) ∈ [0, 1] where P 2 is a composition of an isometry and a projection
[13].

For each p ∈ M , we set

Dα
p = Ker(P 2 − α(p)I)

where I is an identity transformation on TpM and α(p) an eigenvalue of P 2 at p ∈ M .

Obviously we see that D0
p = KerP , D1

p = KerQ where D1
p is the maximal ϕ-invariant subspace

of TpM and D0
p is the maximal ϕ -anti invariant subspace of TpM . If α1(p), ......αk(p) are all

eigenvalues of P 2 at p then TpM can be decomposed as the direct sum of the mutually orthogonal
eigenspaces i.e., D1

p and D0
p

TpM = Dα1
p ⊕ · · ·⊕Dαk

p .

Definition 2.1. [9] A submanifold M of a cosymplectic manifold M̄ is said to be a skew semi-
invariant submanifold of M̄ if there exists an integer k and functions α1, · · · , αk defined on M̄ with
values in (0, 1) such that

1. α1(x), · · · , αk(x) are distinct eigenvalues of P 2 at each p ∈ M̄ with

TpM = D1
p⊕D0

p⊕Dα1
p ⊕ · · ·⊕Dαk

p ;

2. the dimensions of D1
p, D

0
p, D

α1
p , · · · , Dαk

p are independent of p ∈ M̄ .

Remark 2.1. (i) From Definition 2.1(2) we can also define P -invariant mutually orthogonal
distributions

Dα =
∪

p∈M̄

Dα
p , α ∈ {0, α1, · · · , αk, 1}

on M̄ and

TM = D1⊕D0⊕Dα1⊕ · · ·⊕Dαk

are differentiable (see, [5]).

(ii) If k = 0 in Definition (2.1) then it follows that P is a structure of type f(3,−1) on M̄ and
dim(D1

p) = rank(Pp), dim(D0
p) are independent of p ∈ M̄ [15].

(iii) If k = 0, (1) implies (2) then M̄ is called a semi-invariant ξ⊥-submanifold.

(iv) If k = 0 and D1
p = {0} (resp. D0

p = {0}) then M̄ becomes an anti invariant (resp. invariant)
ξ⊥-submanifold.

(v) If D1
p = {0} = D0

p, k = 1 and α2
1(x) is constant then M̄ may be said to be a θ-slant

submanifold with slant angle cos θ = α1.
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Example 2.1. We consider the Euclidean space 9 and denote its points by y = (yj). Let (ej) =
, j = 1, ....9, be the natural basis defined by yj = ∂/∂yj. We define a vector field ξ and a 1-form η
by ξ = ∂/∂y9 and η = dy9 respectively and ϕ is (1, 1) tensor field defined by

ϕe1 = e2, ϕe2 = e1, ϕe3 = e8, ϕe8 = e3,

ϕe4 = cosht(y)e5 − sinht(y)e6,

ϕe5 = cosht(y)e4 + sinht(y)e7,

ϕe6 = −sinht(y)e4 + cosht(y)e7

ϕe7 = sinht(y)e5 + cosht(y)e6, ϕe9 = 0,

where t : R9 → (0, π/2) is a smooth function. then it is easy to verify that R9 is an almost
contact metric manifold with almost contact structure (ϕ, ξ, η, g) with associated metric g given by
g(ei, ej) = δij. The submanifold

M =
{(

y1, ...., y9) ∈ R9
∣∣y6, y7, y8, y9 = 0

}
of R9 is a skew semi-invariant submanifold with

D1 = Span {e1, e2} , D0 = Span {e3} , Dα = Span {e4, e5}

where for x ∈ M one has α(y) = cosht(y).

Here, ∇ denote the induced connection on M , than the Gauss and Weingarten equations are given
by the following equations respectively

∇̄XY = ∇XY + h(X,Y ), X, Y ∈ TM, (2.8)

∇̄XN = −ANX +∇⊥
XN, N ∈ T⊥M, (2.9)

where ∇̄, ∇ and ∇⊥ are the Riemannian, induced Riemannian and induced normal connection
in M , M̄ and the normal bundle T⊥M of M̄ respectively and AN the Weingarten endomorphism
associated with N also AN and the second fundamental form h related by the equation

g(h(X,Y ), N) = g(ANX,Y ). (2.10)

Let M be a submanifold of a cosymplectic manifold M̄ and X,Y ∈ TM , N ∈ T⊥M . Using

ϕN = BN + CN, BN ∈ TM, CN ∈ T⊥M. (2.11)

From
ϕ(∇̄XY ) = ∇̄XϕY + (∇̄Xϕ)Y,

and using (2.7), (2.8 ), (2.9) ,(2.3) and ( 2.11) we have

P (∇XY ) +Q(∇XY ) +Bh(X,Y ) + Ch(X,Y ) (2.12)

= ∇XPY + h(X,PY )−AQY X +∇⊥
XQY,

for X,Y ∈ TM . Comparing tangential and normal components in (2.12) we obtain

P∇XY = ∇XPY −Bh(X,Y )−AQY X, (2.13)

Q∇XY = h(X,PY ) +∇⊥
XQY − Ch(X,Y ), (2.14)

for X,Y ∈ TM .

Replace X with Y in (2.13) and (2.14), we get

P∇Y X = ∇Y PX −Bh(Y,X)−AQXY, (2.15)

4



Siddiqi; ARJOM, 8(2):1-11, 2018; Article no.ARJOM.37911

Q∇Y X = h(Y, PX) +∇⊥
Y QX − Ch(Y,X), (2.16)

Now, subtracting (2.15) from(2.13) and (2.16) from (2.14), we get

P [X,Y ] = ∇XPY −∇Y PX +AQXY −AQY X (2.17)

Q[X,Y ] = h(X,PY )− h(PX, Y ) +∇⊥
Y QX −∇⊥

XQY. (2.18)

We have following lemmas immediately from (2.17) and (2.18)

Lemma 2.1. A submanifold M is a skew semi-invariant submanifold of a cosymplectic manifold
M̄ , then the distribution D0 is integrable if and only if

AϕXY = AϕY X, for all X,Y ∈ D0. (2.19)

Lemma 2.2. A submanifold M is a skew semi-invariant submanifold of a cosymplectic manifold
M̄ , then the distribution D1 is integrable if and only if

h(X,ϕY ) = h(ϕX, Y ), for all X,Y ∈ D1. (2.20)

We define the covariant derivatives of P and Q in a manner as follows

(∇XP )Y = ∇XPY − P∇XY, (2.21)

(∇XQ)Y = ∇⊥
XQY −Q∇XY, (2.22)

for all X,Y ∈ TM . Using (2.13) and (2.14) we have

(∇XP )Y = Bh(X,Y ) +AQY X, (2.23)

(∇XQ)Y = Ch(X,Y )− h(X,PY ). (2.24)

Let D1 and D2 be two distributions defined on a manifold M . We say that D1 is parallel with
respect to D2 if for all X ∈ D2 and Y ∈ D1, we have ∇XY ∈ D1. D1 is called parallel if for
X ∈ TM and Y ∈ D1, we have ∇XY ∈ D1, it is easy to verify that D1 is parallel if and only if the
orthogonal complementary distribution of D1 is also parallel.

Let M be a submanifold of M̄ . A distribution D on M is said to be totally geodesic if for all
X,Y ∈ D we have h(X,Y ) = 0. In this case we say also that M is D totally geodesic. For two
distributions D1 and D2 defined on M , we say that M is D1 −D2 mixed totally geodesic if for all
X ∈ D1 and Y ∈ D2 we have h(X,Y ) = 0.

Now we have the following lemma

Lemma 2.3. Let M be a skew semi-invariant submanifold of cosymplectic manifold M̄ . For any
distribution Dα, if

ANBX = BANX, for all X ∈ Dα, N ∈ T⊥M,

then M is Dα-Dβ-mixed totally geodesic, where α ̸= β.

Proof. From the assumption, we have

B2ANX − αANX = 0

which implies that ANX ∈ Dα. So for all Y ∈ Dβ , N ∈ T⊥M , α ̸= β, we have

g(ANX,Y ) = g(h(X,Y ), N) = 0

that is h(X,Y ) = 0.

Hence M̄ is Dα-Dβ mixed totally geodesic.
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Now from ( 2.7) and (2.11) we can obtain

CQXp = −QPXp, (2.25)

QBN = N − C2N, for all Xp ∈ TpM, N ∈ T⊥
p M. (2.26)

For (2.25), letXp ∈ TpM in ϕ2Xp = Xp, using (2.7) and (2.11), we get

(P 2 +BQ)Xp + (QP + CQ)Xp = Xp

from which we get (2.25). Similarly using (2.7) and (2.11) in ϕ2N = N − η(N)ξ for N ∈ T⊥M , we
get

(PB +BC)N + (C2 +QB)N = N − η(N)ξ,

which implies (2.26).

Furthermore for Xp ∈ Dαi
p , α ∈ {α1, .....αk}, we have

C2QXp = αiQXp. (2.27)

Also if Xp ∈ D0
p then it is clear that B2wXp = 0. Thus if Xp is an eigenvector of B2 corresponding

to the eigenvalue α(p) ̸= 1, QXp is an eigenvector of C2 with the same eigenvalue α(p). (1.24)
implies that α(p) is an eigenvalue of C2 if and only if γ(p) = 1−α(p) is an eigenvalue of QB. Since
QB and C2 are symmetric operators on the normal bundle T⊥M , their eigenspaces are orthogonal.
The dimension of the eigenspace of wB corresponding to the eigenvalue 1 − α(p) is equal to the
dimension of Dα

p if α(p) ̸= 1. Consequently, we have the following lemma

Lemma 2.4. A submanifold M is a skew semi-invariant submanifold of a cosymplectic manifold
M if and only if the eigenvalues of QB are constant and the eigenspaces of QB have constant
dimension.

3 Skew Semi-invariant Submanifold

Theorem 3.1. Let M be a submanifold of a cosymplectic manifold M̄ if ∇P = 0, then M is a
skew semi-invariant submanifold. Furthermore each of the B-invariant distributions D0, D1 and
Dαi , 1 ≤ i ≤ k are parallels.

Proof. For a fix p ∈ M any Yp ∈ Dαip and X ∈ TM . Let Y be the parallel translation of Yp along
with integral curve of X. Since (∇XP )Y = 0 and from (2.13) we have

∇X(P 2 − α(p)Y ) = P 2∇XY − α(p)∇XY = 0 (3.1)

since (P 2Y − α(p)Y ) = 0 at p, it is identical to 0 on M̄ . Thus the eigenvalues of P 2 are constant.
Moreover, parallel translation of TpM along any curve is an isometry which preserves each Dα.
Thus the dimension of Dα is constant and M̄ is a skew semi-invariant submanifold.

Now if Y is any vector field in Dα then we have P 2Y = αY (α constant), i.e, P 2∇XY = α∇XY
which implies that Dα is parallel.

Now, we see the vanishing of ∇Q. For X,Y ∈ TM , if (∇XQ)Y = 0 then (2.21) yields

Ch(X,Y ) = h(X,BY ) (3.2)

In particular, if Y ∈ Dα, then ((3.2) implies

C2h(X,Y ) = αh(X,Y ). (3.3)

Consequently we have the following proposition:

6
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Proposition 3.1. Let M be a skew semi-invariant submanifold of a cosymplectic manifold M , if
∇Q = 0, then M is Dα-Dβ -mixed totally geodesic for all α ̸= β. Moreover, if X ∈ Dα then either
h(X,X) = 0 or h(X,X) is an eigenvector of C2 with eigenvalue α.

The next lemma is easy to prove so we omit the proof.

Lemma 3.1. M is a submanifold of a cosymplectivc manifold M , then ∇Q = 0 if and only if
∇XBN = B∇⊥N for all X ∈ TM and N ∈ T⊥M .

Theorem 3.2. Let M be a submanifold of a cosymplectic manifold M̄ . If ∇w = 0, then M̄ is a
skew semi-invariant submanifold.

Proof. If TM = D1, then we are done. Otherwise, we may find a point p ∈ M and a vector
Xp ∈ Dα

p , α ̸= 1. Set Np = QXp, then Np is an eigenvector of QB with eigenvalue µ(p) = 1−α(p).
Now, let Y ∈ TM and N be the translation of Np in the normal bundle T⊥M along with integral
curve of Y , we have

∇⊥
Y (QBN − µ(p)N) = ∇⊥

Y QBN − µ(p)∇⊥
Y N = Q(∇Y BN)− µ(p)∇⊥

Y N. (3.4)

By Lemma 3.1,

∇⊥
Y (QBN − µ(p)N) = ∇⊥

Y QBN − µ(p)∇⊥
Y N = 0. (3.5)

Since QBN − µ(p)N = 0 at p and QBN − µ(p)N = 0 on M . It follows from Lemma 2.4 that M is
a skew semi-invariant submanifold.

Theorem 3.3. Let M be a skew semi-invariant submanifold of a cosymplectic manifold M , then
the following relation are equivalent:

1. (∇XQ)Y − (∇Y W )X = 0, for all X,Y ∈ Dα,

2. h(PX, Y ) = h(X,PY ) for all X,Y ∈ Dα,

3. Q[X,Y ] = ∇⊥
XQY −∇⊥

Y QX for all X,Y ∈ Dα,

4. ANPY − PANY is perpendicular to Dα for all Y ∈ Dα and N ∈ T⊥N .

Proof. The proof is trivial, hence we omit it.

We call P α commutataive if any of the equivalent conditions in the above Lemma holds.

For each P invariant Dα, let n(α) = dimDα. For each Dα we may choose a local orthonormal

basis E1, ...En(α). Define the Dα mean curvature vector by Hα =
∑n(α)

i h(Ei, Ei), then the mean
curvature vector is given by H = 1

n
(H0 +H1 +Hα1 + ......Hαk ), n = dimM .

A skew semi-invaraint submanifold M of a cosymplectic manifold M̄ is called Dα minimal if Hα = 0
and minimal if H = 0.

The equation of Gauss is given by ([5])

R(X,Y, Z,W ) = R̄(X,Y, Z,W ) + g(h(X,W ), h(Y, Z))− g(h(X,Z), h(Y,W )) (3.6)

where R and R̄ are the curvature of M and M̄ respectively.
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4 Sectional Curvature of a Skew Semi-invariant

Submanifold of a Cosymplectic Space Form M̄(c)

Let M be a skew-semi-invariant submanifold of a cosymplectic sapce form M̄(c) is given by

R(X,Y, Z,W ) =
c

4
[g(Y,Z)g(X,W )− η(Y )η(Z)g(X,W )

−g(X,Z)g(Y,W + η(X)η(Z)g(Y,W )

+η(Y )g(X,Z)g(ξ,W )− η(X)g(Y,Z)g(ξ,W )

+g(PY,Z)g(PX,W )− g(PX,Z)g(PY,W )

+2g(X,PY )g(PZ,W ) + g((h(Y,Z), h(X,W ))

−g(h(X,Z), h(Y,W )) (4.1)

for X,Y, Z,W ∈ TM .

Thus we have

Proposition 4.1. Let M be a skew semi-invariant submanifold of a cosymplectic space form M̄(c).
Then the sectional curvature KM (X ∧ Y ) is given by

KM (X ∧ Y ) =
c

4
[1− η(X)2 − η(Y )2 + 3g(X,ϕY )2]

+ g(h(Y, Y ), h(X,X))− ∥h(X,Y )∥2 (4.2)

for all orthonormal vectors X,Y ∈ TM .

For any unit vector X ∈ Dα, α ̸= 0, defined the sectional curvature of M̄ and M by

H̄α(X) = KM̄ (X ∧ Y ), Hα(X) = KM (X ∧ Y )

respectively, where Y = PX√
α
. From (4.2) we have

Hα(X) = H̄α(X) = − 1

α
g(h(X,X), h(ϕX, ϕX))− 1

α
∥h(X,ϕX)∥2 . (4.3)

Then we have the following proposition

Proposition 4.2. Let M be a skew semi-invariant submanifold of a cosymplectic manifold M̄ , if
ϕ is a α commutative, α ̸= 0, then

Hα(X) = H̄α(X) + ∥h(X,X)∥2 1

α
∥h(X,ϕX)∥2 (4.4)

Let
{
E1, ....En(α)

}
and

{
F 1, ....Fn(β)

}
be the local orthonormal bases for Dα and Dβ, respectively.

We define α−β sectional curvatures of M̄ and M by

λ̄αβ =

n(α)∑
i=1

n(β)∑
j=1

KM̄ (Ei ∧ F j), λαβ =

n(α)∑
i=1

n(β)∑
j=1

KM (Ei ∧ F j),

respectively.

From (4.3) we see that for α ̸= β we have

λαβ = λ̄αβ + g(Hi, Hj) (4.5)

8
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λαβ ≥ λ̄αβ if g(Hi, Hj) is non-negative.

For α = β we have

λαβ = λ̄αβ −
n(α)∑
i=1

n(β)∑
j=1

∥∥∥h(Ei ∧ F j)
∥∥∥2

. (4.6)

Using (4.5) and (4.6) we have the following proposition

Proposition 4.3. Let M be a skew semi-invariant submanifold of a cosymplectic manifold M̄ .

1. If Hα is perpendicular to Hβ, α ̸= β, then λαβ ≤ λ̄αβ, and the equality holds if and only if
M is Dα−Dβ mixed totally geodesic.

2. If M is Dα minimal, then λαβ ≤ λ̄αβ, and the equality holds of and only if M isDα totally
geodesic.

5 CR-structure

Let M̄ be a differentiable manifold and T cM̄ be the complexified tangent bundle to M̄ . A CR-
structure [2] on M is complex sub-bundle H of T cM̄ such that H ∩ H̄ = {0} and H is involutive.
A manifold endowed with a CR-structure is called a CR-manifold. It is known that a differentiable
manifold M̄ admits a CR-structure [2] if and only if there is a differentiable distribution D̄ and a
(1, 1) tensor field P on M such that for all X,Y ∈ D̄

P 2X = −X,

[P, P ](X,Y ) ≡ [PX,PY ]− [X,Y ]− P [PX, Y ]− P [X,PY ] = 0,

[PX,PY ]− [X,Y ] ∈ D̄.

Definition 5.1. A differentiable manifold M̄ is said to admit a CR-structure if there is a differentiable
distribution D̄ and a (1, 1) tensor field P on M̄ such that for all X,Y ∈ D̄

P 2X = X,

[P, P ](X,Y ) ≡ [PX,PY ] + [X,Y ]− P [PX, Y ]− P [X,PY ] = 0,

[PX,PY ] = [X,Y ] ∈ D.

A manifold equipped with a CR-structure is called a CR-manifold.

Lemma 5.1. An almost contact metric structure (ϕ, ξ, η, g) is normal if the Nijenhuis tensor [ϕ, ϕ]
of ϕ satisfies [8]

[ϕ, ϕ] + 2dη ⊗ ξ = 0. (5.1)

Now, we prove the following theorem:

Theorem 5.1. If M̄ is an skew semi-invariant ξ⊥-submanifold of a normal almost contact metric
manifold M with non-trivial invariant distribution, then M̄ possesses a CR-structure.

Proof. Since M is normal for X,Y ∈ D̄⊥, we get P 2X = −X and in view of (4.1), we have

0 = [P, P ](X,Y )−Q([X,PY ] + [PX, Y ]),

from which it follows that
Q([PX, Y ] + [X,PY ]) = 0,

that is [PX, Y ] + [X,PY ] ∈ D̄1. Thus

[PX,PY ] + [X,Y ] = P ([PX, Y ] + [X,PY ]) ∈ D̄1 (5.2)

and hence (D̄1, P ) is a CR-structure on M .

9
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Theorem 5.2. A skew semi-invariant ξ⊥-submanifold of a cosymplectic manifold with non-trivial
invariant distribution is a CR-manifold.

Proof. Since every cosymplectic manifold is normal [11], by the Theorem 5.3, the proof is obvious.

From Theorem 5.3, it is obvious that normality of M̄ is a sufficient condition for a skew semi-
invariant submanifold with nontrivial invariant distribution to carry a CR-structure. However, this
is not neccessary , and now we give an example of skew semi-ivarian

Example 5.1. We consider the Euclidean space 5 and denote its points by x = (xi). Let (ej) =
, j = 1, ...5 be the natural basis defined by ej = ∂/∂xj . We define a vector field ξ and a 1-form η
by ξ = ∂/∂x5 and η = dx5 respectively. For each x ∈ R5, and g the canonical metric defined by
g(ei, ej) = δij, ij = 1, ....5 , the set (Ej defined by

E1 = e1, E2 = cosh(x1)e2 + sinh(x1)e3, E3 = −sinh(x1)e2 + cosh(x1)e3, E4 = e4, E5 = e5

forms an orthonormal basis.As the point x varies in R5 the above set of equations defines 5 vector
field also denoted by (Ej) and ϕ is (1, 1) tensor field defined by

ϕ(E1) = E2, ϕ(E2) = E1, ϕ(E3) = E4, ϕ(E4) = E3 ϕ(E5) = 0.

Then (ϕ, ξ, η, g) define an almost contact metric structure on R5. Since

[ϕ, ϕ](E1, E4) + 2dη(E1, E4)ξ = E1 ̸= 0,

the almost contact structure is not normal. The submanifold

M =
{
x ∈ R5 : x4, x5 = 0

}
is a skew semi-invariant submnaifold of R5 with D1 = Span {E1, E2} and D0 = Span {E3} such
that (D1, ϕ) is a CR-structure on M . Moreover, D1 is not integrable because [E1, E2] = E3.

6 Conclusions

We obtain integrability conditions of the distributions on skew semi-invariant submanifold. Moreover,
we have discussed a skew semi-invariant ξ⊥-submanifold of a Cosymplectic manifold with non-
trivial invariant distribution and some relations of sectional curvature tensor form. An example of
dimension 5 is given to show that a skew semi-invariant ξ⊥ submanifold is a CR-structure on the
manifold.
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