V_{4} Magic Labelings of Some Graphs

P. T. Vandana ${ }^{1}$ and V. Anil Kumar ${ }^{1 *}$
${ }^{1}$ Department of Mathematics, University of Calicut, Malappuram, Kerala, 673635, India.

Article Information
DOI: 10.9734/BJMCS/2015/20515
Editor(s):
(1) Tian-Xiao He, Department of Mathematics and Computer Science, Illinois Wesleyan

University, USA.
Reviewers:
(1) Krasimir Yordzhev, South-West University, Bulgaria.
(2) Anonymous, Celal Bayar University, Turkey.

Complete Peer review History: http://sciencedomain.org/review-history/11389

Original Research Article

Received: 30 July 2015
Accepted: 31 August 2015
Published: 15 September 2015

Abstract

Let A be an abelian group with identity element 0 . A graph $G=(V, E)$ is said to admit an a-sum A-magic labeling if there exists an edge labeling $\ell: E(G) \longrightarrow A \backslash\{0\}$ and $a \in A$ such that the induced vertex labeling $\ell^{+}: V(G) \longrightarrow A$ defined by $$
\ell^{+}(u)=\sum\{\ell(u v): u v \in E(G)\}
$$ is the constant map, $\ell^{+}(u)=a$ for all $u \in V(G)$. If $a=0$, the labeling ℓ is called a zero-sum A-magic labeling of G. A graph G is said to be a-sum (resp.zero-sum) A-magic if G admits an a-sum (resp.zero-sum) A-magic labeling. In this paper we will consider the Klein 4 group $V_{4}=\{0, a, b, c\}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ and investigate graphs that are a-sum A-magic, zero-sum A-magic and both a-sum and zero-sum A-magic.

Keywords: V_{4} magic graph; a-sum V_{4} magic graph; zero-sum V_{4} magic graph.
2010 Mathematics Subject Classification: 05C78; 05C25.

1 Introduction

In this paper all graphs are connected,finite,simple and undirected. For graph theoretic notations and terminology not directly defined in this paper, we refer to readers [1].

For an abelian group A, written additively, any mapping $\ell: E(G) \longrightarrow A \backslash\{0\}$ is called a labeling,

[^0]where 0 denote the identity element in A. For any abelian group A, a graph $G=(V, E)$ is said to be A-magic if there exists a labeling $\ell: E(G) \longrightarrow A \backslash\{0\}$ such that the induced vertex set labeling $\ell^{+}: V(G) \longrightarrow A$ defined by
$$
\ell^{+}(u)=\sum\{\ell(u v): u v \in E(G)\}
$$
is a constant map [2]. Observe that A-magic labeling of a graph need not be unique. The V_{4} magic graphs was first introduced by S. M. Lee et al. in 2002 [2]. There has been an increasing interest in the study of V_{4} magic graphs since the publication of [2].

We follow the following definitions and notations described in our earlier publications [3, 4]. A V_{4} magic graph G is called a-sum V_{4} magic labeling of G, if there exists a labeling $\ell: E \rightarrow V_{4} \backslash\{0\}$ such that $\ell^{+}(v)=a$ for all $v \in V$. Any graph that admits an a-sum V_{4} magic labeling is called an a-sum V_{4} magic graph. When $a=0$, we call G a zero-sum V_{4} magic graph.
(i) \mathscr{V}_{a}, the class of a-sum V_{4} magic graphs,
(ii) \mathscr{V}_{0}, the class of zero-sum V_{4} magic graphs,and
(iii) $\mathscr{V}_{a, 0}$, the class of graphs which are both a-sum and zero -sum V_{4} magic.

In this paper, we investigate a class of graphs that belongs to the above categories.

2 Main Theorems

Definition 2.1. The Jahangir graph $J_{n, m}$ for $m \geq 3$ is a graph consisting of a cycle $C_{n m}$ with one additional vertex called the central vertex which is adjacent to m vertices of $C_{n m}$ at distance n to each other on $C_{n m}$.

Observe that $J_{n, m}$ has $n m+1$ vertices. The Jahangir graph $J(2,8)$ is shown in Fig. 1.
Lemma 2.1. If $\ell: E\left(J_{n, m}\right) \longrightarrow V_{4} \backslash\{0\}$ is an a-sum V_{4} magic labeling of $J_{n, m}$, then

$$
\sum_{i=1}^{m} \ell^{+}\left(u_{i}\right)+\sum_{i=1}^{m} \sum_{j=1}^{n-1} \ell^{+}\left(v_{i j}\right)+\ell^{+}(w)=0
$$

where $u_{1}, u_{2}, \cdots u_{m}$ are the m vertices of $C_{n m}$ which is adjacent to the central vertex w and $v_{i 1}, v_{i 2}, \cdots v_{i(n-1)}$ are the $(n-1)$ vertices between u_{i} and $u_{i+1}, i=1,2, \cdots m$ where $u_{m+1}=u_{1}$.

Fig. 1. The Jahangir graph $J_{2,8}$

Proof. We have

$$
\begin{equation*}
\ell^{+}(w)=\sum_{i=1}^{m} \ell\left(u_{i} w\right) . \tag{1}
\end{equation*}
$$

For $i=1,2, \cdots m$, we have

$$
\begin{align*}
\ell^{+}\left(u_{i}\right) & =\ell\left(u_{i} w\right)+\ell\left(u_{i} v_{i 1}\right)+\ell\left(u_{i} v_{(i-1)(n-1)}\right), \tag{2}\\
\ell^{+}\left(v_{i j}\right) & =\ell\left(v_{i j} v_{i(j+1)}\right)+\ell\left(v_{i(j-1)} v_{i j}\right), j=2,3, \cdots n-2, \tag{3}\\
\ell^{+}\left(v_{i 1}\right) & =\ell\left(u_{i} v_{i 1}\right)+\ell\left(v_{i 1} v_{i 2}\right), \tag{4}\\
\ell^{+}\left(v_{i(n-1)}\right) & =\ell\left(v_{i(n-1)} u_{i+1}\right)+\ell\left(v_{i(n-1)} v_{i(n-2)}\right) . \tag{5}
\end{align*}
$$

From equations (2),(4),(5) we get

$$
\begin{equation*}
\sum_{i=1}^{m} \ell^{+}\left(u_{i}\right)+\sum_{i=1}^{m} \ell^{+}\left(v_{i 1}\right)+\sum_{i=1}^{m} \ell^{+}\left(v_{i(n-1)}\right)=\ell^{+}(w)+\sum_{i=1}^{m} \ell\left(v_{i 1} v_{i 2}\right)+\sum_{i=1}^{m} \ell\left(v_{i(n-1)} v_{i(n-2)}\right) . \tag{6}
\end{equation*}
$$

From equation (3) we get,

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=2}^{n-2} \ell^{+}\left(v_{i j}\right)=\sum_{i=1}^{m} \sum_{j=2}^{n-2} \ell\left(v_{i j} v_{i(j+1)}\right)+\sum_{i=1}^{m} \sum_{j=2}^{n-2} \ell\left(v_{i(j-1)} v_{i j}\right) \tag{7}
\end{equation*}
$$

Adding the equations (6) and (7) we obtain,

$$
\sum_{i=1}^{m} \ell^{+}\left(u_{i}\right)+\sum_{i=1}^{m} \sum_{j=1}^{n-1} \ell^{+}\left(v_{i j}\right)=\ell^{+}(w) .
$$

This implies that,

$$
\sum_{i=1}^{m} \ell^{+}\left(u_{i}\right)+\sum_{i=1}^{m} \sum_{j=1}^{n-1} \ell^{+}\left(v_{i j}\right)+\ell^{+}(w)=0 .
$$

This completes the proof of the lemma.
Theorem 2.2. $J_{n, m} \in \mathscr{V}_{a}$ if and only if both n and m are odd.
Proof. Let the vertices of $J_{n, m}$ be as in the proof of Lemma 2.1. Also let $u_{i}=u_{i(\operatorname{modm})}$ and $v_{i j}=v_{i(\operatorname{modm}) j(\operatorname{modn})}$. First assume that $J_{n, m} \in \mathscr{V}_{a}$. Then we have $(n m+1) a=0$. This implies that $n m+1$ is even which in turn implies that both n and m are odd. Conversely, assume that n and m are odd. Define a labeling $\ell: E\left(J_{n, m}\right) \longrightarrow V_{4} \backslash\{0\}$ as follows.

$$
\begin{aligned}
& \text { For } i=1,2, \cdots m \text { do }: \\
& \ell\left(u_{i} w\right)=a, \\
& \ell\left(u_{i} v_{i 1}\right)=b, \\
& \text { end for } \\
& \ell\left(u_{1} v_{m(n-1)}\right)=b, \\
& \ell\left(u_{i} v_{(i-1)(n-1)}\right)=b, i=2,3, \cdots m \\
& \text { For } i=1,2, \cdots m \text { do : } \\
& \ell\left(v_{i j} v_{i(j+1)}\right)=c, j=1,3, \cdots n-2, \\
& \ell\left(v_{i j} v_{i(j+1)}\right)=b, j=2,4, \cdots n-3 . \\
& \text { end for }
\end{aligned}
$$

With this labeling we get

$$
\begin{aligned}
\ell^{+}(w) & =m a=a, \\
\ell^{+}\left(u_{i}\right) & =b+b+a=a, \\
\ell^{+}\left(v_{i j}\right) & =b+c=a .
\end{aligned}
$$

Obviously, ℓ is an a-sum V_{4} magic labeling of $J_{n, m}$.
Theorem 2.3. $J_{n, m} \in \mathscr{V}_{0}$ for all n and m.
Proof. Let the vertices of $J_{n, m}$ be as in the proof of Theorem 2.2. We consider the following cases.
Case 1: m even
Define a labeling $\ell: E\left(J_{n, m}\right) \longrightarrow V_{4} \backslash\{0\}$ as follows.

$$
\begin{gathered}
\ell\left(u_{i} w\right)=c, \text { for } i=1,2, \cdots m, \\
\text { For } j=1,2, \cdots n-2 \text { do : } \\
\ell\left(v_{i j} v_{i(j+1)}\right)=a, i=1,3, \cdots m-1, \\
\ell\left(v_{i j} v_{i(j+1)}\right)=b, i=2,4, \cdots m . \\
\text { end for }
\end{gathered} \begin{gathered}
\ell\left(u_{i} v_{i 1}\right)=a, \text { for } i=1,3, \cdots m-1, \\
\ell\left(u_{i} v_{i 1}\right)=b, \text { for } i=2,4, \cdots m, \\
\ell\left(u_{i+1} v_{i(n-1)}\right)= \begin{cases}a, & i=1,3, \cdots m-1 \\
b, & i=2,4, \cdots m+1\end{cases}
\end{gathered}
$$

Obviously, ℓ is a 0 -sum V_{4} magic labeling of $J_{n, m}$.
Case 2: m odd
Define a labeling $\ell: E\left(J_{n, m}\right) \longrightarrow V_{4} \backslash\{0\}$ as follows.

$$
\begin{aligned}
& \ell\left(u_{i} w\right)=a, \text { for } i=1,4,5, \cdots m, \\
& \ell\left(u_{2} w\right)=b, \\
& \ell\left(u_{3} w\right)=c, \\
& \text { For } j=1,2, \cdots n-2 \text { do }: \\
& \ell\left(v_{2 j} v_{2(j+1)}\right)=a, \\
& \ell\left(v_{i j} v_{i(j+1)}\right)=b, \text { for } i=3,5, \cdots m, \\
& \ell\left(v_{i j} v_{i(j+1)}\right)=c, \text { for } i=4,6, \cdots m-1, m+1 . \\
& \text { end for } \\
& \ell\left(u_{2} v_{21}\right)=\ell\left(u_{3} v_{2(n-1)}\right)=a, \\
& \ell\left(u_{i} v_{i 1}\right)=\ell\left(u_{(i+1)} v_{i(n-1)}\right)=b, \text { for } i=3,5, \cdots m, \\
& \ell\left(u_{i} v_{i 1}\right)=\ell\left(u_{(i+1)} v_{i(n-1)}\right)=c, \text { for } i=4,6, \cdots m-1, m+1 .
\end{aligned}
$$

Obviously, ℓ is a 0 -sum V_{4} magic labeling of $J_{n, m}$.
Theorem 2.4. If both m and n are odd, $J_{n, m} \in \mathscr{V}_{a, 0}$.
Proof. The proof follows from Theorems 2.2 and 2.3.

Definition 2.2. The windmill graph $D_{n}^{(m)}$ is the graph obtained by taking m copies of the complete graph K_{n} with a vertex in common.

The windmill graph $D_{3}^{(4)}$ is shown in Fig. 2. The graph $D_{3}^{(m)}$ is called the Dutch windmill graph or the friendship graph, F_{m}.
Lemma 2.5. If $\ell: E\left(D_{n}^{(m)}\right) \longrightarrow V_{4} \backslash\{0\}$ is an a-sum V_{4} magic labeling of $D_{n}^{(m)}$, then

$$
\sum_{i=1}^{m} \sum_{j=1}^{n-1} \ell^{+}\left(u_{j}^{i}\right)=\ell^{+}(v)
$$

where $u_{1}^{i}, u_{2}^{i}, \cdots u_{(n-1)}^{i}$ are the vertices of $i^{\text {th }}$ copy of K_{n} in $D_{n}^{(m)}$ and v is the common vertex.

Fig. 2. Windmill graph $D_{3}^{(4)}$
Proof. The proof is similar to Lemma 2.1 .
Theorem 2.6. The windmill graph $D_{n}^{(m)} \in \mathscr{V}_{a}$ if and only if m is odd and n is even.
Proof. Suppose $D_{n}^{(m)} \in \mathscr{V}_{a}$. Then by Lemma 2.5, $[m(n-1)+1] a=0$. This implies that $m(n-1)$ is odd. This holds only when m is odd and n is even. Conversely suppose that m is odd and n is even. Let the vertices of $D_{n}^{(m)}$ be as in the Lemma 2.5. Define a labeling $\ell: E\left(D_{n}^{(m)}\right) \longrightarrow V_{4} \backslash\{0\}$ by

$$
\text { For } i=1,2, \cdots m \text { do : }
$$

$$
\ell\left(u_{j}^{i} v\right)=a, j=1,2, \cdots n
$$

$$
\ell\left(u_{j}^{i} u_{j+1}^{i}\right)=a, j=1,2, \cdots n .
$$

end for

Obviously ℓ is an a-sum V_{4} magic labeling of $D_{n}^{(m)}$.
Theorem 2.7. $D_{n}^{(m)} \in \mathscr{V}_{0}$ for all n and m.

Proof. We consider the following cases.
Case 1: n is odd.
Label all the edges by a. Then we have $\ell^{+}(v)=0$ for all $v \in V\left(D_{n}^{(m)}\right)$.
Case 2: n is even.
Define a labeling $\ell: E\left(D_{n}^{(m)}\right) \longrightarrow V_{4} \backslash\{0\}$ by
For $i=1,2, \cdots m$ do :

$$
\ell\left(u_{j}^{i} u_{j+1}^{i}\right)=a, j=1,3, \cdots n-1,
$$

$$
\ell\left(u_{j}^{i} u_{j+1}^{i}\right)=b, j=2,4, \cdots n
$$

$$
\ell\left(u_{j}^{i} u_{k}^{i}\right)=c, j, k=1,2, \cdots n, k \neq j+1 .
$$

end for
Thus we get $\ell^{+}(v)=0$ for all $v \in V\left(D_{n}^{(m)}\right)$. Obviously ℓ is a zero-sum V_{4} magic labeling of $D_{n}^{(m)}$. This completes the proof of the theorem.

Theorem 2.8. $D_{n}^{(m)} \in \mathscr{V}_{a, 0}$ if and only if m is odd and n is even.
Proof. The proof follows from theorems 2.6 and 2.7.

Theorem 2.9. $F_{m} \notin \mathscr{V}_{a}$ for any m.
Proof. Observe that F_{m} is the one-point union of m copies of a rooted triangle. Let the vertices of the $i^{t h}$ copy be $0, u_{i}$ and v_{i}. Assume that 0 is the root of the triangles. If F_{m} admits an a-sum V_{4} magic labeling, then

$$
\ell^{+}\left(u_{i}\right)=\ell^{+}\left(v_{i}\right)=a .
$$

This implies that for all i,

$$
\begin{gathered}
\ell\left(u_{i} v_{i}\right)=b, \ell\left(0 u_{i}\right)=\ell\left(0 v_{i}\right)=c \\
\text { or } \ell\left(u_{i} v_{i}\right)=c, \ell\left(0 u_{i}\right)=\ell\left(0 v_{i}\right)=b .
\end{gathered}
$$

In both the cases, $\ell^{+}(0)=2 m a=0$. This is a contradiction.
Theorem 2.10. $F_{m} \in \mathscr{V}_{0}$ for all m.
Proof. Label all the edges by a. Obviously this is a zero-sum V_{4} magic labeling of F_{m}.

Theorem 2.11. $F_{m} \notin \mathscr{V}_{a, 0}$ for any m.
Proof. The proof follows from theorems 2.9 and 2.10.

Definition 2.3. (see [5]) The graph $P_{2} \square P_{n}$ is called a ladder. It is denoted by L_{n}.
Theorem 2.12. Ladders L_{n} are a-sum V_{4} magic for all n.

Proof. Let $u_{1}, u_{2}, \cdots u_{n}$ and $v_{1}, v_{2}, \cdots v_{n}$ be the vertices of a ladder L_{n} such that $E(G)=\left\{u_{i} u_{(i+1)} / i=\right.$ $1,2, \cdots n-1\} \cup\left\{v_{j} v_{(j+1)} / j=1,2, \cdots n-1\right\} \cup\left\{u_{i} v_{i} / i=1,2, \cdots n\right\}$. Define a labeling $\ell: E\left(L_{n}\right) \longrightarrow$ $V_{4} \backslash\{0\}$ by

$$
\begin{aligned}
\ell\left(u_{1} v_{1}\right) & =\ell\left(u_{n} v_{n}\right)=b, \\
\ell\left(u_{i} v_{i}\right) & =a, \text { for } i=2,3, \cdots n-1, \\
\ell\left(u_{i} u_{(i+1)}\right) & =\ell\left(v_{i} v_{(i+1)}\right)=c, \text { for } i=1,2, \cdots n-1 .
\end{aligned}
$$

Then clearly ℓ is an a-sum V_{4} magic labeling of L_{n}.
Theorem 2.13. (see [5]) $L_{n} \in \mathscr{V}_{0}$ for all n.
Theorem 2.14. $L_{n} \in \mathscr{V}_{a, 0}$ for all n.
Proof. The proof follows from theorems 2.12 and 2.13.
Definition 2.4. (see [5]) The graph G with the vertex set
$\left\{u_{0}, u_{1}, \cdots u_{n+1}, v_{0}, v_{1}, \cdots v_{n+1}\right\}$ and the edge set $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 0 \leq i \leq n\right\} \bigcup\left\{u_{i} v_{i} / i=1,2, \cdots n\right\}$ is called ladder L_{n+2}.

Theorem 2.15. (see [5]) $L_{n+2} \in \mathscr{V}_{a}$ for all n.
Theorem 2.16. $L_{n+2} \notin \mathscr{V}_{0}$ for any n.
Proof. Since the graph has pendant edges it is not zero-sum V_{4} magic for any n.
Definition 2.5. (see [5]) The graph G with the vertex set
$\left\{u_{1}, u_{2}, \cdots u_{n}, v_{1}, v_{2}, \cdots v_{n}\right\}$ and edge set $\left\{u_{i} u_{(i+1)}, v_{i} v_{(i+1)}, v_{i} u_{(i+1)}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 1 \leq\right.$ $i \leq n\}$ is called a semiladder of length n.

Theorem 2.17. Semiladders are a-sum V_{4} magic for all n.
Proof. Let G be a semiladder of length n. We consider two cases.
Case 1: n odd
Define a labeling $\ell: E(G) \longrightarrow V_{4} \backslash\{0\}$ by

$$
\begin{aligned}
& \ell\left(u_{1} v_{1}\right)=b, \\
& \ell\left(u_{i} v_{i}\right)=a, \text { for } i=2,3, \cdots n-1, \\
& \ell\left(u_{n} v_{n}\right)=b, \\
& \ell\left(v_{i} u_{(i+1)}\right)=a, \text { for } i=1,2, \cdots n-1 . \\
& \text { For } i=1,3, \cdots n-2 \text { do }: \\
& \ell\left(u_{i} u_{(i+1)}\right)=c, \\
& \ell\left(v_{i} v_{(i+1)}\right)=b . \\
& \text { end for } \\
& \text { For } i=2,4, \cdots n-1 \text { do }: \\
& \ell\left(u_{i} u_{(i+1)}\right)=b, \\
& \ell\left(v_{i} v_{(i+1)}\right)=c . \\
& \text { end for }
\end{aligned}
$$

Thus ℓ is an a-sum V_{4} magic labeling of G.

Case 2: n even
Define a labeling $\ell: E(G) \longrightarrow V_{4} \backslash\{0\}$ by

$$
\begin{aligned}
& \ell\left(u_{1} v_{1}\right)=b, \\
& \ell\left(u_{i} v_{i}\right)=a, \text { for } i=2,3, \cdots n-1, \\
& \ell\left(u_{n} v_{n}\right)=c, \\
& \ell\left(v_{i} u_{(i+1)}\right)=a, \text { for } i=1,2, \cdots n-1, \\
& \text { For } i=1,3, \cdots n-1 \text { do : } \\
& \ell\left(u_{i} u_{(i+1)}\right)=c, \\
& \ell\left(v_{i} v_{(i+1)}\right)=b . \\
& \text { end for } \\
& \text { For } i=2,4, \cdots n-2 \text { do : } \\
& \ell\left(u_{i} u_{(i+1)}\right)=b, \\
& \ell\left(v_{i} v_{(i+1)}\right)=c . \\
& \text { end for }
\end{aligned}
$$

Thus ℓ is an a-sum V_{4} magic labeling of G.
Theorem 2.18. (see [5]) Semiladders are zero-sum V_{4} magic for all n.
Theorem 2.19. If G is a semiladder, then $G \in \mathscr{V}_{a, 0}$.
Proof. The proof follows from theorems 2.17 and 2.18.
Definition 2.6. (see [5]) Composition of two graphs $G[H]$ has $V(G) \times V(H)$ as vertex set in which $\left(g_{1}, h_{1}\right)$ is adjacent to $\left(g_{2}, h_{2}\right)$ whenever $g_{1} g_{2} \in E(G)$ or $g_{1}=g_{2}$ and $h_{1} h_{2} \in E(H)$.

The graph $P_{4}\left[K_{2}^{c}\right]$ is shown in Fig. 3.

Fig. 3. $P_{4}\left[K_{2}^{c}\right]$
Theorem 2.20. The composition $P_{n}\left[K_{2}^{c}\right]$ is a-sum V_{4} magic for all n.

Proof. Let $v_{1}, v_{2}, \cdots v_{n}$ be the vertices of P_{n} and x, y be that of K_{2}^{c}. Let u_{i} denote the vertices $\left(v_{i}, x\right)$ and w_{i} denote $\left(v_{i}, y\right)$ of $P_{n}\left[K_{2}^{c}\right], 1 \leq i \leq n$. Define a labeling $\ell: E\left(P_{n}\left[K_{2}^{c}\right]\right) \longrightarrow V_{4} \backslash\{0\}$ by

$$
\begin{aligned}
\ell\left(u_{i} u_{(i+1)}\right) & =b, \text { for } i=1,2, \cdots n-1, \\
\ell\left(w_{1} w_{2}\right) & =b, \\
\ell\left(w_{i} w_{(i+1)}\right) & =c, \text { for } i=2,3, \cdots n-1, \\
\ell\left(u_{1} w_{2}\right) & =c, \\
\ell\left(u_{i} w_{(i+1)}\right) & =b, \text { for } i=2,3, \cdots n-1, \\
\ell\left(u_{(i+1)} w_{i}\right) & =c, \text { for } i=1,2, \cdots n-1 .
\end{aligned}
$$

Thus ℓ is an a-sum V_{4} magic labeling of $P_{n}\left[K_{2}^{c}\right]$.
Theorem 2.21. (see [5]) $P_{n}\left[K_{2}^{c}\right] \in \mathscr{V}_{0}$ for all n.
Theorem 2.22. $P_{n}\left[K_{2}^{c}\right] \in \mathscr{V}_{a, 0}$ for all n.
Proof. The proof follows from theorems 2.20 and 2.21.
Definition 2.7. (see [5]) One point union of any number of connected graphs is obtained by identifying one vertex from each graph. One point union of t cycles each of length n is denoted by $C_{n}^{(t)}$.

Lemma 2.23. If $\ell: C_{n}^{(t)} \longrightarrow V_{4} \backslash\{0\}$ is an a-sum magic labeling of $C_{n}^{(t)}$, then

$$
\sum_{i=1}^{n-1} \sum_{j=1}^{t} \ell^{+}\left(u_{i j}\right)=\ell^{+}(v)
$$

where $u_{1 j}, u_{2 j}, \cdots u_{(n-1) j}$ are the vertices of j-th copy of C_{n} and v is the common vertex.
Proof. The proof is similar to Lemma 2.1.
Theorem 2.24. $C_{n}^{(t)} \in \mathscr{V}_{a}$ if and only if n is even and t is odd.
Proof. First assume that $C_{n}^{(t)} \in V_{a}$. Then by Lemma 2.23, $[(n-1) t+1] a=0$. This equation holds if and only if n is even and t is odd. Conversely suppose that n is even and t is odd. Define a labeling $\ell: C_{n}^{(t)} \longrightarrow V_{4} \backslash\{0\}$ as follows

$$
\begin{gathered}
\text { For } j=1,2, \cdots t \text { do : } \\
\ell\left(u_{i j} u_{(i+1) j}\right)=b, \text { for } i=1,3, \cdots n-1, \\
\ell\left(u_{i j} u_{(i+1) j}\right)=c, \text { for } i=2,4, \cdots n . \\
\text { end for }
\end{gathered}
$$

Obviously $\ell^{+}\left(u_{i j}\right)=a, \ell^{+}(v)=a$.
Theorem 2.25. (see [5]) $C_{n}^{(t)} \in \mathscr{V}_{0}$ for all n and t.
Theorem 2.26. $C_{n}^{(t)} \in \mathscr{V}_{a, 0}$ if and only if n is even and t is odd.
Proof. The proof follows from theorems 2.24 and 2.25 .
Definition 2.8. (see [5]) A snake graph is formed by taking n-copies of a cycle C_{m} and identifying exactly one edge of each copy to a distinct edge of the path $P_{(n+1)}$, which is called as the backbone of the snake. It is denoted by $T_{n}^{(m)}$.

The graph $T_{n}^{(m)}$ is shown in Fig. 4.
Theorem 2.27. $T_{n}^{(m)} \in \mathscr{V}_{a}$ if and only if m is even and n is odd.
Proof. Suppose that $T_{n}^{(m)} \in V_{a}$. Let $u_{i j}, i=1,2, \cdots n, j=1,2, \cdots m$ be the vertices in the graph. Without loss of generality assume that $u_{(n+1) j}=u_{1 j}$. Then we have

$$
\sum_{i=2}^{n} \sum_{j=2}^{m} \ell^{+}\left(u_{i j}\right)+\sum_{j=1}^{m} \ell^{+}\left(u_{1 j}\right)=0
$$

This implies that $[(m-1) n+1]$ is even which again implies that m is even and n is odd. Conversely assume that m is even and n is odd. Define a labeling $\ell: E\left(T_{n}^{(m)}\right) \longrightarrow V_{4} \backslash\{0\}$ by

$$
\begin{gathered}
\text { For } i=1,3, \cdots n \text { do : } \\
\ell\left(u_{i j} u_{(j+1)}\right)= \begin{cases}b, & j=1,3, \cdots m-1 \\
c, & j=2,4, \cdots n\end{cases} \\
\text { end for } \\
\text { For } i=2,4, \cdots n-1 \text { do : } \\
\ell\left(u_{i j} u_{(j+1)}\right)= \begin{cases}c, & j=2,3, \cdots m-2 \\
b, & j=1, m-1, m\end{cases}
\end{gathered}
$$

end for
Clearly $\ell^{+}(v)=a$ for all $v \in V\left(T_{n}^{(m)}\right)$.

Fig. 4. Snake Graph $T_{n}^{(m)}$
Theorem 2.28. (see [5]) $T_{n}^{(m)} \in \mathscr{V}_{0}$ for all n and m.
Theorem 2.29. $T_{n}^{(m)} \in \mathscr{V}_{a, 0}$ if and only if m is even and n is odd.
Proof. The proof follows from theorems 2.27 and 2.28 .
Definition 2.9. (see [5]) The cartesian product of graphs P_{m} and P_{n} denoted, $P_{m} \square P_{n}$ is called a planar grid.

The planar grid $P_{6} \square P_{4}$ is shown in Figure 2.
Theorem 2.30. The planar grid $P_{m} \square P_{n}$ is a-sum V_{4} magic if and only if $m n$ is even.

Proof. Suppose that $P_{m} \square P_{n} \in \mathscr{V}_{a}$. Let $(i, j), i=0,1, \cdots m-1, j=0,1, \cdots n-1$ denote the vertices of $P_{m} \square P_{n}$. We have $\sum_{i=1}^{m-1} \sum_{j=1}^{n-1} \ell^{+}((i, j))=0$. Thus we have $m n$ is even. For the converse consider the following cases.
Case 1: Both m and n are even.
Define a labeling $\ell: E\left(P_{m} \square P_{n}\right) \longrightarrow V_{4} \backslash\{0\}$ as follows.
For $i=0,1, \cdots m-2$ do :

$$
\ell((i, j)(i+1, j))=b, j=0, n-1
$$

end for
For $j=0,1, \cdots n-2$ do :
$\ell((i, j)(i, j+1))=c, i=0, m-1$
end for
For $i=1,2, \cdots m-2$ do :
$\ell((i, j)(i, j+1))= \begin{cases}a, & j=0,2, \cdots n-2 \\ c, & j=1,3, \cdots n-3\end{cases}$
end for
For $j=1,2, \cdots n-2$ do :
$\ell((i, j)(i+1, j))= \begin{cases}a, & i=0,2, \cdots m-2 \\ b, & j=1,3, \cdots m-3\end{cases}$
end for
With this labeling $P_{m} \square P_{n}$ is a-sum V_{4} magic.
Case 2: m is even and n is odd.
Define a labeling $\ell: E\left(P_{m} \square P_{n}\right) \longrightarrow V_{4} \backslash\{0\}$ as follows.

$$
\begin{aligned}
& \ell((i, 0)(i+1,0))=b, \quad i=0,1, \cdots m-2 \\
& \ell((i, n-1)(i+1, n-1))= \begin{cases}b, & i=0,2, \cdots m-2 \\
a, & i=1,3, \cdots m-3\end{cases} \\
& \text { For } j=0,1, \cdots n-2 \text { do : } \\
& \ell((i, j)(i, j+1))=c, i=0, m-1 \\
& \text { end for } \\
& \text { For } j=1,2, \cdots n-2 \text { do : } \\
& \ell((i, j)(i+1, j))= \begin{cases}a, & i=0,2, \cdots m-2 \\
c, & i=1,3, \cdots m-3\end{cases} \\
& \text { end for } \\
& \text { For } i=1,2, \cdots m-2 \text { do : } \\
& \ell((i, j)(i, j+1))= \begin{cases}a, & j=0,2, \cdots n-3 \\
b, & j=1,3, \cdots n-2\end{cases} \\
& \text { end for }
\end{aligned}
$$

Obviously $P_{m} \square P_{n}$ is a-sum V_{4} magic.
Case 3: m is odd and n is even.

By interchanging the roles of m and n in Case 2, we get $\ell^{+}(v)=a$ for all $v \in V\left(P_{m} \square P_{n}\right)$.
This completes the proof.
Theorem 2.31. (see [5]) $P_{m} \square P_{n} \in \mathscr{V}_{0}$ for all m and n.
Theorem 2.32. $P_{m} \square P_{n} \in \mathscr{V}_{a, 0}$ if and only if $m n$ is even.
Proof. The proof follows from theorems 2.30 and 2.31.
Theorem 2.33. For $m, n \geq 2$, the complete bipartite graph $K(m, n)$ is a-sum V_{4} magic if and only if $m+n$ is even.

Proof. First assume that $K(m, n)$ is a-sum V_{4} magic. Let $\left\{u_{i}, i=1,2, \cdots m\right\} \cup\left\{v_{j}, j=1,2, \cdots n\right\}$ be the vertices of the graph with $E(G)=\left\{u_{i} v_{j}: i=1,2, \cdots m, j=1,2, \cdots n\right\}$. Then we have $\sum_{i=1}^{m} \ell^{+}\left(u_{i}\right)+\sum_{j=1}^{n} \ell^{+}\left(v_{j}\right)=0$. This implies that $m+n$ is even. Conversely suppose that $m+n$ is even. Then we have the following cases.

Fig. 5. Planar grid $P_{6} \square P_{4}$
Case 1: m and n are odd.
Define a labeling $\ell: E(K(m, n)) \longrightarrow V_{4} \backslash\{0\}$ by
For $i=1,2, \cdots m$ do :

$$
\ell\left(u_{i} v_{j}\right)=a, j=1,2, \cdots n .
$$

end for
Thus $\ell^{+}(v)=a$.
Case 2: m and n are even.

$$
\begin{aligned}
& \ell\left(u_{i} v_{2}\right)=c, i=1,3,4, \cdots m \\
& \ell\left(u_{2} v_{j}\right)=c, j=1,3,4, \cdots n \\
& \ell\left(u_{2} v_{2}\right)=b \\
& \quad \text { For } i=1,3,4, \cdots m \text { do }: \\
& \ell\left(u_{i} v_{j}\right)=b, j=1,3,4, \cdots n \\
& \quad \text { end for }
\end{aligned}
$$

Obviously, $K(m, n)$ is a-sum V_{4} magic.

Theorem 2.34. (see [2]) $K(m, n)$ is zero-sum V_{4} magic for all m and n.
Theorem 2.35. $K(m, n) \in \mathscr{V}_{a, 0}$ if and only if $m+n$ is even.
Proof. The proof follows from theorems 2.33 and 2.34 .

Definition 2.10. (see [2]) When k copies of C_{n} share a common edge it will form the n-gon book of k pages and is denoted by $B(n, k)$.

The graph $B(6,4)$ is shown in Fig. 6 .
Lemma 2.36. If ℓ is an a-sum V_{4} magic labeling of $B(n, k)$, then

$$
\sum_{i=1}^{n-2} \sum_{j=1}^{k} \ell^{+}\left(u_{i}^{j}\right)+\ell^{+}(u)+\ell^{+}(v)=0
$$

where u and v are the common vertices and $u_{1}^{j}, u_{2}^{j}, \cdots u_{n-2}^{j}$ are the other vertices of the $j^{\text {th }}$ page.
Proof. The proof is similar to Lemma 2.1.

Fig. 6. The graph $B(6,4)$

Theorem 2.37. For any $n \geq 3$ and $k \geq 1, B(n, k) \in V_{a}$ if and only if $(n-2) k$ is even.
Proof. First assume that $B(n, k) \in V_{a}$. Then $[(n-2) k+2] a=0$.This implies that $(n-2) k$ is even. Conversely assume that $(n-2) k$ is even. We consider the following cases.

Case 1: Both n and k are even.

Define a labeling $\ell: E(B(n, k)) \longrightarrow V_{4} \backslash\{0\}$ by

$$
\ell(u v)=a,
$$

For $j=1,2, \cdots k$ do :

$$
\ell\left(u u_{1}^{j}\right)=\ell\left(v u_{(n-2)}^{j}\right)=b,
$$

$$
\ell\left(u_{2 i}^{j} u_{2 i+1}^{j}\right)=b, \text { for } i=1,2, \cdots \frac{n-4}{2}
$$

$$
\ell\left(u_{2 i-1}^{j} u_{2 i}^{j}\right)=c, \text { for } i=1,2, \cdots \frac{n-4}{2}
$$

end for
Then ℓ is an a-sum V_{4} magic labeling of $B(n, k)$.
Case: $2 n$ is odd and k is even,
Define a labeling $\ell: E(B(n, k)) \longrightarrow V_{4} \backslash\{0\}$ by

$$
\ell(u v)=a,
$$

For $j=1,2, \cdots k$ do:

$$
\ell\left(u u_{1}^{j}\right)=b,
$$

$$
\ell\left(v u_{(n-2)}^{j}\right)=c
$$

$$
\ell\left(u_{2 i}^{j} u_{2 i+1}^{j}\right)=b, \text { for } i=1,2, \cdots \frac{n-3}{2}
$$

$$
\ell\left(u_{2 i-1}^{j} u_{2 i}^{j}\right)=c, \text { for } i=1,2, \cdots \frac{n-3}{2}
$$

end for
Case 3: n is even and k is odd
Define a labeling $\ell: E(B(n, k)) \longrightarrow V_{4} \backslash\{0\}$ by

$$
\ell(u v)=c,
$$

For $j=1,2, \cdots k$ do :

$$
\ell\left(u u_{1}^{j}\right)=\ell\left(v u_{(n-2)}^{j}\right)=b
$$

$$
\ell\left(u_{2 i}^{j} u_{2 i+1}^{j}\right)=b, \text { for } i=1,2, \cdots \frac{n-4}{2}
$$

$$
\ell\left(u_{2 i-1}^{j} u_{2 i}^{j}\right)=c, \text { for } i=1,2, \cdots \frac{n-2}{2} .
$$

end for
Thus ℓ is an a-sum V_{4} magic labeling of $B(n, k)$.
Theorem 2.38. (see [2]) For any $n \geq 3$ and $k \geq 1, B(n, k)$ is zero-sum V_{4} magic.
Theorem 2.39. For any $n \geq 3$ and $k \geq 1, B(n, k) \in \mathscr{V}_{a, 0}$ if and only if $(n-2) k$ is even.
Proof. The proof follows from theorems 2.37 and 2.38 .
Definition 2.11. (see [5]) The book B_{n} is the graph $S_{n} \square P_{2}$ where S_{n} is the star with $n+1$ vertices. The book graph B_{4} is shown in Fig. 7 .

Theorem 2.40. The book B_{n} is a-sum V_{4} magic for all n.

Proof. Let w_{1}, w_{2} be the vertices of the common edge. Let $\left\{u_{1}, u_{2}, \cdots u_{n}\right\} \cup\left\{v_{1}, v_{2}, \cdots v_{n}\right\}$ be the vertices of B_{n}.

Case 1: n is odd.

$$
\begin{aligned}
& \ell\left(w_{1} w_{2}\right)=c \\
& \text { For } i=1,2, \cdots n \text { do }: \\
& \ell\left(w_{1} u_{i}\right)=\ell\left(w_{2} v_{i}\right)=b \\
& \ell\left(u_{i} v_{i}\right)=c \\
& \text { end for }
\end{aligned}
$$

Case 2: n is even.

$$
\begin{aligned}
& \ell\left(w_{1} w_{2}\right)=a \\
& \text { For } i=1,2, \cdots n \text { do : } \\
& \begin{array}{l}
\ell\left(w_{1} u_{i}\right)=\ell\left(w_{2} v_{i}\right)=b \\
\ell\left(u_{i} v_{i}\right)=c \\
\text { end for }
\end{array}
\end{aligned}
$$

Clearly ℓ is an a-sum V_{4} magic labeling of B_{n}.

Theorem 2.41. $B_{n} \in \mathscr{V}_{0}$ for all n.

Proof. We consider the following cases:
Case 1: n is odd.
Label all the edges by a. Then we get $\ell^{+}(v)=0$ for all $v \in V(G)$. Case 2 : n is even.
Define a labeling $\ell: E\left(B_{n}\right) \longrightarrow V_{4} \backslash\{0\}$ by

$$
\begin{aligned}
\ell\left(w_{1} w_{2}\right) & =a \\
\ell\left(u_{1} w_{1}\right) & =\ell\left(v_{1} w_{1}\right)=\ell\left(u_{1} v_{1}\right)=c \\
\ell\left(w_{1} u_{i}\right) & =\ell\left(w_{2} v_{i}\right)=b, i=2,3, \cdots n \\
\ell\left(u_{i} v_{i}\right) & =b, i=2,3, \cdots n
\end{aligned}
$$

With this labeling we get $\ell^{+}(v)=0$ for all $v \in V(G)$.

Definition 2.12. (see [2]) Given a cycle C_{n} construct a cycle C_{m} on each edge of this cycle. The resulting graph is called flower graph and is denoted by $C_{m} @ C_{n}$.

Theorem 2.42. For all $m, n \geq 3$, the flower graph $C_{m} @ C_{n} \in \mathscr{V}_{a}$ if and only if $n(m-1)$ is even.

Proof. Suppose that $C_{m} @ C_{n} \in \mathscr{V}_{a}$. Then $[n(m-1)] a=0$. This implies that $n(m-1)$ is even. Now let $u_{1}, u_{2}, \cdots u_{n}$ be the vertices of C_{n} and $v_{1 j}, v_{2 j}, \cdots v_{(m-2) j}$ be the vertices of $C_{j}, j=1,2, \cdots n$. We consider the following cases.

Fig. 7. Book graph B_{4}
Case 1: n is even and m is odd.
For $j=1,2, \cdots n$ do :

$$
\begin{aligned}
\ell\left(u_{j} u_{(j+1)}\right) & =a, \\
\ell\left(u_{j} v_{1 j}\right) & =c, \\
\ell\left(u_{(j+1)} v_{(m-2) j}\right) & =b, \\
\ell\left(v_{i j} v_{i(j+1)}\right) & =b, i=1,3, \cdots m-4, \\
\ell\left(v_{i j} v_{i(j+1)}\right) & =c, i=2,4, \cdots m-3 .
\end{aligned}
$$

end for
Case 2: Both n and m are even.

$$
\begin{aligned}
& \ell\left(u_{j} u_{(j+1)}\right)=a, j=1,2, \cdots n, \\
& \text { For } j=1,3, \cdots n-1 \text { do : } \\
& \ell\left(v_{i j} v_{i(j+1)}\right)=c, i=1,3, \cdots m-3, \\
& \ell\left(v_{i j} v_{i(j+1)}\right)=b, i=2,4, \cdots m-4 . \\
& \text { end for } \\
& \text { For } j=2,4, \cdots n \text { do : } \\
& \ell\left(v_{i j} v_{i(j+1)}\right)=b, i=1,3, \cdots m-3, \\
& \ell\left(v_{i j} v_{i(j+1)}\right)=c, i=2,4, \cdots m-4 . \\
& \text { end for }
\end{aligned}
$$

Case 3: Both n and m are odd.
For $j=1,2, \cdots n$ do :

$$
\begin{aligned}
\ell\left(u_{j} u_{(j+1)}\right) & =a, \\
\ell\left(u_{j} v_{1 j}\right) & =b, \\
\ell\left(u_{(j+1)} v_{(m-2) j}\right) & =c, \\
\ell\left(v_{i j} v_{i(j+1)}\right) & =c, i=1,3, \cdots m-4, \\
\ell\left(v_{i j} v_{i(j+1)}\right) & =b, i=2,4, \cdots m-3 .
\end{aligned}
$$

end for

Thus ℓ is an a-sum V_{4} magic labeling of $C_{m} @ C_{n}$. This completes the proof.

Theorem 2.43. (see [2]) For all $m, n \geq 3$, the flower graph $C_{m} @ C_{n} \in \mathscr{V}_{0}$.

Theorem 2.44. For all $m, n \geq 3$, the flower graph $C_{m} @ C_{n} \in \mathscr{V}_{a, 0}$ if and only if $n(m-1)$ is even.

Proof. The proof follows from theorems 2.42 and 2.43.

Definition 2.13. (see [2]) Given k natural numbers $a_{1}, a_{2}, \cdots a_{k}$, if we connect the two vertices of $N_{2}=\{u, v\}$ by k parallel paths of length $a_{1}, a_{2}, \cdots a_{k}$, the resulting graph is called the generalized Theta graph and is denoted by $\Theta\left(a_{1}, a_{2}, \cdots a_{k}\right)$.

Note that in this graph, $\operatorname{deg}(u)=\operatorname{deg}(v)=k$ and all the other vertices are of degree two.

Theorem 2.45. If the generalized Theta graph $\Theta\left(a_{1}, a_{2}, \cdots a_{k}\right)$ is a-sum V_{4} magic then either odd number of a_{i} 's are odd or even number of a_{i} 's are even.

Proof. First suppose that $\Theta\left(a_{1}, a_{2}, \cdots a_{k}\right)$ is a-sum V_{4} magic. Then we have $\left[\sum_{i=1}^{k} a_{i}-k\right] a=0$. This implies that $\left[\sum_{i=1}^{k} a_{i}\right] a=k a$. This is if and only if both $\sum_{i=1}^{k} a_{i}$ and k are odd or even simultaneously. This happens if and only if odd number of a_{i} 's are odd or even number of a_{i} 's are even.

Theorem 2.46. Let $\Theta\left(a_{1}, a_{2}, \cdots a_{k}\right)$ be a generalized Theta graph. If k and even number of a_{i} 's are even then $\Theta\left(a_{1}, a_{2}, \cdots a_{k}\right)$ is a-sum V_{4} magic.

Proof. Let $v_{1}^{i}, v_{2}^{i}, \cdots v_{a_{i}-1}^{i}$ be the vertices of the $i^{\text {th }}$ path and let u, w be the common vertices. Define a labeling $\ell: \Theta\left(a_{1}, a_{2}, \cdots a_{k}\right) \longrightarrow V_{4} \backslash\{0\}$ by

For $i=1,2, \cdots k-1$ do:

$$
\begin{gathered}
\ell\left(u v_{1}^{i}\right)=b \\
\text { end for } \\
\ell\left(u v_{1}^{k}\right)=c \\
\text { For } i=1,2, \cdots k \text { do : } \\
\ell\left(v_{j}^{i} v_{j+1}^{i}\right)=\left\{\begin{array}{lll}
c, & j=1,3, \cdots a_{i}-2, & \text { if } a_{i} \text { is odd } \\
& j=1,3, \cdots a_{i}-3, & \text { if } a_{i} \text { is even }
\end{array}\right. \\
\ell\left(v_{j}^{i} v_{j+1}^{i}\right)=\left\{\begin{array}{lll}
b, & j=2,4, \cdots a_{i}-2, & \text { if } a_{i} \text { is even } \\
j=2,4, \cdots a_{i}-3, & \text { if } a_{i} \text { is odd }
\end{array}\right.
\end{gathered}
$$

Now label the edge $v_{a_{k}-1}^{i} w, i=1,2, \cdots k$ in the following way.
If $\ell\left(v_{a_{k}-2}^{i} v_{a_{k}-1}^{i}\right)=b$, let $\ell\left(v_{a_{k}-1}^{i} w\right)=c$ and viceversa. Thus ℓ is an a-sum V_{4} magic labeling of $\Theta\left(a_{1}, a_{2}, \cdots a_{k}\right)$.

Theorem 2.47. (see [2]) $\Theta\left(a_{1}, a_{2}, \cdots a_{k}\right)$ is zero-sum V_{4} magic for any sequence $a_{1}, a_{2}, \cdots a_{k}$.
Theorem 2.48. Let $\Theta\left(a_{1}, a_{2}, \cdots a_{k}\right)$ be a generalized Theta graph. If k and even number of a_{i} 's are even then $\Theta\left(a_{1}, a_{2}, \cdots a_{k}\right) \in \mathscr{V}_{a, 0}$.

Proof. The proof follows from theorems 2.46 and 2.47.
Definition 2.14. (see [2]) Let $N_{2}=\left\{v_{1}, v_{2}\right\}$ be the disconnected graph of order two. The graph $C_{n} \vee N_{2}$ is called the bypyramid based on C_{n} and is denoted by $B P(n)$.

The bypyramid graph based on C_{6} denoted as $B P(6)$ is shown in Fig. 8 .
Theorem 2.49. For any $n \geq 4$, the bipyramid graph $B P(n)$ is a-sum V_{4} magic if and only if n is even.

Proof. Suppose that $B P(n) \in \mathscr{V}_{a}$. This implies that $(n+2) a=0$. Thus we have obtained n is even. Conversely assume that n is even.

$$
\begin{gathered}
\text { For } i=1,2 \text { do : } \\
\ell\left(v_{i} u_{1}\right)=c, \\
\ell\left(v_{i} u_{j}\right)=b, j=2,3, \cdots n \\
\text { end for } \\
\ell\left(u_{j} u_{(j+1)}\right)=b, j=1,3, \cdots n-1, \\
\ell\left(u_{j} u_{(j+1)}\right)=c, j=2,4, \cdots n .
\end{gathered}
$$

Obviously $B P(n) \in \mathscr{V}_{a}$.

Fig. 8. The graph $B P(6)$

Theorem 2.50. (see [2]) For any $n \geq 4, B P(n)$ is zero-sum V_{4} magic for all n.

Theorem 2.51. For any $n \geq 4, B P(n) \in \mathscr{V}_{a, 0}$ if and only if n is even.
Proof. The proof follows from theorems 2.49 and 2.50.

Definition 2.15. (see [2]) Given a graph G, we can define the bypyramid based on G to be $G \vee N_{2}$. This graph will be denoted by $B P(G)$.

Theorem 2.52. Consider the bypyramid graph $B P(G)$ based on G. We have the following.
i) If G is a-sum V_{4} magic and number of vertices in G is odd, then $B P(G)$ is a-sum V_{4} magic.
ii) If G is a-sum V_{4} magic and number of vertices in G is even, then $B P(G)$ is 0 -sum V_{4} magic.
iii) If G is 0 -sum V_{4} magic and number of vertices in G is even, then $B P(G)$ is both a-sum V_{4} magic and 0-sum V_{4} magic.
iv) If G is 0 -sum V_{4} magic and number of vertices in G is odd, then $B P(G)$ is 0 -sum V_{4} magic.

Proof. Obvious.
Corollary 2.53. We have the following.
i) If G is 0 -sum V_{4} magic, then $G \vee \overline{K_{n}} \in \mathscr{V}_{a, 0}$.
ii) If G is a-sum V_{4} magic, then $G \vee \overline{K_{n}} \in \mathscr{V}_{a, 0}$.

3 Conclusions

This paper is a continuation of the work carried out in [3] and [4]. In this paper we investigated graphs in the following categories:

1) \mathscr{V}_{a}, the class of a-sum V_{4} magic graphs.
2) \mathscr{V}_{0}, the class of zero-sum V_{4} magic graphs.
3) $\mathscr{V}_{a, 0}$, the class of graphs which are both a-sum and zero-sum V_{4} magic.

Acknowledgement

The authors thanks the anonymous referees and the editors for their valuable comments and suggestions on the improvement of this paper. Moreover the first author is grateful to Kerala State Council for Science,Technology and Environment for the KSCSTE fellowship under which this research was conducted.

Competing Interests

The authors declare that no competing interests exist.

References

[1] Chartrand G, Zhang P. Introduction to graph theory. McGraw-Hill, Boston; 2005.
[2] Lee SM, et al. On the V_{4} magic graphs. Congressus Numerantium. 2002;156:59-67.
[3] Anil Kumar V, Vandana PT. V_{4} magic labelings of some Shell related graphs. British Journal of Mathematics and Computer Science. 2015;9(3):199-223.
[4] Vandana PT, Anil Kumar V. V_{4} magic labelings of wheel related graphs. British Journal of Mathematics and Computer Science. 2015;8(3):189-219.
[5] Sweetly R, Paulraj Joseph J. Some special V_{4} magic graphs. Journal of Informatics and Mathematical Sciences. 2010;2:141-148.
(C)2015 Vandana \& Kumar; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]
[^0]: *Corresponding author: E-mail: anil@uoc.ac.in

[^1]: Peer-review history:
 The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
 http://sciencedomain.org/review-history/11389

