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Abstract

Let A be an abelian group with identity element 0. A graph G = (V,E) is said to admit an a-sum
A-magic labeling if there exists an edge labeling ℓ : E(G) −→ A \ {0} and a ∈ A such that the
induced vertex labeling ℓ+ : V (G) −→ A defined by

ℓ+(u) =
∑

{ℓ(uv) : uv ∈ E(G)}

is the constant map, ℓ+(u) = a for all u ∈ V (G). If a = 0, the labeling ℓ is called a zero-sum
A-magic labeling of G. A graph G is said to be a-sum (resp.zero-sum) A-magic if G admits
an a-sum (resp.zero-sum) A-magic labeling. In this paper we will consider the Klein 4 group
V4 = {0, a, b, c} = Z2⊕Z2 and investigate graphs that are a-sum A-magic, zero-sum A-magic and
both a-sum and zero-sum A-magic.

Keywords: V4 magic graph; a-sum V4 magic graph; zero-sum V4 magic graph.

2010 Mathematics Subject Classification: 05C78; 05C25.

1 Introduction

In this paper all graphs are connected,finite,simple and undirected. For graph theoretic notations
and terminology not directly defined in this paper, we refer to readers [1].

For an abelian group A, written additively, any mapping ℓ : E(G) −→ A \ {0} is called a labeling,
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where 0 denote the identity element in A. For any abelian group A, a graph G = (V,E) is said to
be A-magic if there exists a labeling ℓ : E(G) −→ A \ {0} such that the induced vertex set labeling
ℓ+ : V (G) −→ A defined by

ℓ+(u) =
∑

{ℓ(uv) : uv ∈ E(G)}

is a constant map [2]. Observe that A-magic labeling of a graph need not be unique. The V4 magic
graphs was first introduced by S. M. Lee et al. in 2002 [2]. There has been an increasing interest
in the study of V4 magic graphs since the publication of [2].

We follow the following definitions and notations described in our earlier publications [3, 4]. A V4

magic graph G is called a-sum V4 magic labeling of G, if there exists a labeling ℓ : E → V4 \ {0}
such that ℓ+(v) = a for all v ∈ V . Any graph that admits an a-sum V4 magic labeling is called an
a-sum V4 magic graph. When a = 0, we call G a zero-sum V4 magic graph.

(i) Va, the class of a-sum V4 magic graphs,

(ii) V0, the class of zero-sum V4 magic graphs,and

(iii) Va,0, the class of graphs which are both a-sum and zero -sum V4 magic.

In this paper, we investigate a class of graphs that belongs to the above categories.

2 Main Theorems

Definition 2.1. The Jahangir graph Jn,m for m ≥ 3 is a graph consisting of a cycle Cnm with one
additional vertex called the central vertex which is adjacent to m vertices of Cnm at distance n to
each other on Cnm.

Observe that Jn,m has nm+ 1 vertices. The Jahangir graph J(2, 8) is shown in Fig. 1.

Lemma 2.1. If ℓ : E(Jn,m) −→ V4 \ {0} is an a-sum V4 magic labeling of Jn,m, then

m∑
i=1

ℓ+(ui) +

m∑
i=1

n−1∑
j=1

ℓ+(vij) + ℓ+(w) = 0

where u1, u2, · · ·um are the m vertices of Cnm which is adjacent to the central vertex w and
vi1, vi2, · · · vi(n−1) are the (n− 1) vertices between ui and ui+1, i = 1, 2, · · ·m where um+1 = u1.

Fig. 1. The Jahangir graph J2,8
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Proof. We have

ℓ+(w) =

m∑
i=1

ℓ(uiw). (1)

For i = 1, 2, · · ·m, we have

ℓ+(ui) = ℓ(uiw) + ℓ(uivi1) + ℓ(uiv(i−1)(n−1)), (2)

ℓ+(vij) = ℓ(vijvi(j+1)) + ℓ(vi(j−1)vij), j = 2, 3, · · ·n− 2, (3)

ℓ+(vi1) = ℓ(uivi1) + ℓ(vi1vi2), (4)

ℓ+(vi(n−1)) = ℓ(vi(n−1)ui+1) + ℓ(vi(n−1)vi(n−2)). (5)

From equations (2),(4),(5) we get

m∑
i=1

ℓ+(ui) +

m∑
i=1

ℓ+(vi1) +

m∑
i=1

ℓ+(vi(n−1)) = ℓ+(w) +

m∑
i=1

ℓ(vi1vi2) +

m∑
i=1

ℓ(vi(n−1)vi(n−2)). (6)

From equation (3) we get,

m∑
i=1

n−2∑
j=2

ℓ+(vij) =

m∑
i=1

n−2∑
j=2

ℓ(vijvi(j+1)) +

m∑
i=1

n−2∑
j=2

ℓ(vi(j−1)vij). (7)

Adding the equations (6) and (7) we obtain,

m∑
i=1

ℓ+(ui) +

m∑
i=1

n−1∑
j=1

ℓ+(vij) = ℓ+(w).

This implies that,
m∑
i=1

ℓ+(ui) +

m∑
i=1

n−1∑
j=1

ℓ+(vij) + ℓ+(w) = 0.

This completes the proof of the lemma.

Theorem 2.2. Jn,m ∈ Va if and only if both n and m are odd.

Proof. Let the vertices of Jn,m be as in the proof of Lemma 2.1. Also let ui = ui(modm) and
vij = vi(modm)j(modn). First assume that Jn,m ∈ Va. Then we have (nm + 1)a = 0. This implies
that nm+ 1 is even which in turn implies that both n and m are odd. Conversely, assume that n
and m are odd. Define a labeling ℓ : E(Jn,m) −→ V4 \ {0} as follows.

For i = 1, 2, · · ·m do :

ℓ(uiw) = a,

ℓ(uivi1) = b,

end for

ℓ(u1vm(n−1)) = b,

ℓ(uiv(i−1)(n−1)) = b, i = 2, 3, · · ·m
For i = 1, 2, · · ·m do :

ℓ(vijvi(j+1)) = c, j = 1, 3, · · ·n− 2,

ℓ(vijvi(j+1)) = b, j = 2, 4, · · ·n− 3.

end for
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With this labeling we get

ℓ+(w) = ma = a,

ℓ+(ui) = b+ b+ a = a,

ℓ+(vij) = b+ c = a.

Obviously, ℓ is an a-sum V4 magic labeling of Jn,m.

Theorem 2.3. Jn,m ∈ V0 for all n and m.

Proof. Let the vertices of Jn,m be as in the proof of Theorem 2.2. We consider the following cases.

Case 1: m even

Define a labeling ℓ : E(Jn,m) −→ V4 \ {0} as follows.

ℓ(uiw) = c, for i = 1, 2, · · ·m,

For j = 1, 2, · · ·n− 2 do :

ℓ(vijvi(j+1)) = a, i = 1, 3, · · ·m− 1,

ℓ(vijvi(j+1)) = b, i = 2, 4, · · ·m.

end for

ℓ(uivi1) = a, for i = 1, 3, · · ·m− 1,

ℓ(uivi1) = b, for i = 2, 4, · · ·m,

ℓ(ui+1vi(n−1)) =

{
a, i = 1, 3, · · ·m− 1
b, i = 2, 4, · · ·m+ 1

Obviously, ℓ is a 0-sum V4 magic labeling of Jn,m.

Case 2: m odd

Define a labeling ℓ : E(Jn,m) −→ V4 \ {0} as follows.

ℓ(uiw) = a, for i = 1, 4, 5, · · ·m,

ℓ(u2w) = b,

ℓ(u3w) = c,

For j = 1, 2, · · ·n− 2 do :

ℓ(v2jv2(j+1)) = a,

ℓ(vijvi(j+1)) = b, for i = 3, 5, · · ·m,

ℓ(vijvi(j+1)) = c, for i = 4, 6, · · ·m− 1,m+ 1.

end for

ℓ(u2v21) = ℓ(u3v2(n−1)) = a,

ℓ(uivi1) = ℓ(u(i+1)vi(n−1)) = b, for i = 3, 5, · · ·m,

ℓ(uivi1) = ℓ(u(i+1)vi(n−1)) = c, for i = 4, 6, · · ·m− 1,m+ 1.

Obviously, ℓ is a 0-sum V4 magic labeling of Jn,m.

Theorem 2.4. If both m and n are odd, Jn,m ∈ Va,0.

Proof. The proof follows from Theorems 2.2 and 2.3.
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Definition 2.2. The windmill graph D
(m)
n is the graph obtained by taking m copies of the complete

graph Kn with a vertex in common.

The windmill graph D
(4)
3 is shown in Fig. 2. The graph D

(m)
3 is called the Dutch windmill graph

or the friendship graph, Fm.

Lemma 2.5. If ℓ : E(D
(m)
n ) −→ V4 \ {0} is an a-sum V4 magic labeling of D

(m)
n , then

m∑
i=1

n−1∑
j=1

ℓ+(ui
j) = ℓ+(v)

where ui
1, u

i
2, · · ·ui

(n−1) are the vertices of ith copy of Kn in D
(m)
n and v is the common vertex.

Fig. 2. Windmill graph D
(4)
3

Proof. The proof is similar to Lemma 2.1 .

Theorem 2.6. The windmill graph D
(m)
n ∈ Va if and only if m is odd and n is even.

Proof. Suppose D
(m)
n ∈ Va. Then by Lemma 2.5, [m(n− 1) + 1]a = 0. This implies that m(n− 1)

is odd. This holds only when m is odd and n is even. Conversely suppose that m is odd and n is
even. Let the vertices of D

(m)
n be as in the Lemma 2.5. Define a labeling ℓ : E(D

(m)
n ) −→ V4 \ {0}

by

For i = 1, 2, · · ·m do :

ℓ(ui
jv) = a, j = 1, 2, · · ·n,

ℓ(ui
ju

i
j+1) = a, j = 1, 2, · · ·n.

end for

Obviously ℓ is an a-sum V4 magic labeling of D
(m)
n .

Theorem 2.7. D
(m)
n ∈ V0 for all n and m.
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Proof. We consider the following cases.

Case 1: n is odd.

Label all the edges by a. Then we have ℓ+(v) = 0 for all v ∈ V (D
(m)
n ).

Case 2: n is even.

Define a labeling ℓ : E(D
(m)
n ) −→ V4 \ {0} by

For i = 1, 2, · · ·m do :

ℓ(ui
ju

i
j+1) = a, j = 1, 3, · · ·n− 1,

ℓ(ui
ju

i
j+1) = b, j = 2, 4, · · ·n,

ℓ(ui
ju

i
k) = c, j, k = 1, 2, · · ·n, k ̸= j + 1.

end for

Thus we get ℓ+(v) = 0 for all v ∈ V (D
(m)
n ). Obviously ℓ is a zero-sum V4 magic labeling of D

(m)
n .

This completes the proof of the theorem.

Theorem 2.8. D
(m)
n ∈ Va,0 if and only if m is odd and n is even.

Proof. The proof follows from theorems 2.6 and 2.7.

Theorem 2.9. Fm /∈ Va for any m.

Proof. Observe that Fm is the one-point union of m copies of a rooted triangle. Let the vertices of
the ith copy be 0, ui and vi. Assume that 0 is the root of the triangles. If Fm admits an a-sum V4

magic labeling, then

ℓ+(ui) = ℓ+(vi) = a.

This implies that for all i,

ℓ(uivi) = b, ℓ(0ui) = ℓ(0vi) = c

or ℓ(uivi) = c, ℓ(0ui) = ℓ(0vi) = b.

In both the cases, ℓ+(0) = 2ma = 0. This is a contradiction.

Theorem 2.10. Fm ∈ V0 for all m.

Proof. Label all the edges by a. Obviously this is a zero-sum V4 magic labeling of Fm.

Theorem 2.11. Fm /∈ Va,0 for any m.

Proof. The proof follows from theorems 2.9 and 2.10.

Definition 2.3. (see [5]) The graph P2�Pn is called a ladder. It is denoted by Ln.

Theorem 2.12. Ladders Ln are a-sum V4 magic for all n.
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Proof. Let u1, u2, · · ·un and v1, v2, · · · vn be the vertices of a ladder Ln such that E(G) = {uiu(i+1)/i =
1, 2, · · ·n− 1}∪{vjv(j+1)/j = 1, 2, · · ·n− 1}∪{uivi/i = 1, 2, · · ·n}. Define a labeling ℓ : E(Ln) −→
V4 \ {0} by

ℓ(u1v1) = ℓ(unvn) = b,

ℓ(uivi) = a, for i = 2, 3, · · ·n− 1,

ℓ(uiu(i+1)) = ℓ(viv(i+1)) = c, for i = 1, 2, · · ·n− 1.

Then clearly ℓ is an a-sum V4 magic labeling of Ln.

Theorem 2.13. (see [5]) Ln ∈ V0 for all n.

Theorem 2.14. Ln ∈ Va,0 for all n.

Proof. The proof follows from theorems 2.12 and 2.13.

Definition 2.4. (see [5]) The graph G with the vertex set
{u0, u1, · · ·un+1, v0, v1, · · · vn+1} and the edge set {uiui+1, vivi+1 : 0 ≤ i ≤ n}

∪
{uivi/i = 1, 2, · · ·n}

is called ladder Ln+2.

Theorem 2.15. (see [5]) Ln+2 ∈ Va for all n.

Theorem 2.16. Ln+2 /∈ V0 for any n.

Proof. Since the graph has pendant edges it is not zero-sum V4 magic for any n.

Definition 2.5. (see [5]) The graph G with the vertex set
{u1, u2, · · ·un, v1, v2, · · · vn} and edge set {uiu(i+1), viv(i+1), viu(i+1) : 1 ≤ i ≤ n − 1} ∪ {uivi : 1 ≤
i ≤ n} is called a semiladder of length n.

Theorem 2.17. Semiladders are a-sum V4 magic for all n.

Proof. Let G be a semiladder of length n. We consider two cases.
Case 1: n odd

Define a labeling ℓ : E(G) −→ V4 \ {0} by

ℓ(u1v1) = b,

ℓ(uivi) = a, for i = 2, 3, · · ·n− 1,

ℓ(unvn) = b,

ℓ(viu(i+1)) = a, for i = 1, 2, · · ·n− 1.

For i = 1, 3, · · ·n− 2 do :

ℓ(uiu(i+1)) = c,

ℓ(viv(i+1)) = b.

end for

For i = 2, 4, · · ·n− 1 do :

ℓ(uiu(i+1)) = b,

ℓ(viv(i+1)) = c.

end for

Thus ℓ is an a-sum V4 magic labeling of G.

7
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Case 2: n even

Define a labeling ℓ : E(G) −→ V4 \ {0} by

ℓ(u1v1) = b,

ℓ(uivi) = a, for i = 2, 3, · · ·n− 1,

ℓ(unvn) = c,

ℓ(viu(i+1)) = a, for i = 1, 2, · · ·n− 1,

For i = 1, 3, · · ·n− 1 do :

ℓ(uiu(i+1)) = c,

ℓ(viv(i+1)) = b.

end for

For i = 2, 4, · · ·n− 2 do :

ℓ(uiu(i+1)) = b,

ℓ(viv(i+1)) = c.

end for

Thus ℓ is an a-sum V4 magic labeling of G.

Theorem 2.18. (see [5]) Semiladders are zero-sum V4 magic for all n.

Theorem 2.19. If G is a semiladder, then G ∈ Va,0.

Proof. The proof follows from theorems 2.17 and 2.18.

Definition 2.6. (see [5]) Composition of two graphs G[H] has V (G)×V (H) as vertex set in which
(g1, h1) is adjacent to (g2, h2) whenever g1g2 ∈ E(G) or g1 = g2 and h1h2 ∈ E(H).

The graph P4[K
c
2 ] is shown in Fig. 3.

Fig. 3. P4[K
c
2 ]

Theorem 2.20. The composition Pn[K
c
2 ] is a-sum V4 magic for all n.

8
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Proof. Let v1, v2, · · · vn be the vertices of Pn and x, y be that of Kc
2 . Let ui denote the vertices

(vi, x) and wi denote (vi, y) of Pn[K
c
2 ], 1 ≤ i ≤ n. Define a labeling ℓ : E(Pn[K

c
2 ]) −→ V4 \ {0} by

ℓ(uiu(i+1)) = b, for i = 1, 2, · · ·n− 1,

ℓ(w1w2) = b,

ℓ(wiw(i+1)) = c, for i = 2, 3, · · ·n− 1,

ℓ(u1w2) = c,

ℓ(uiw(i+1)) = b, for i = 2, 3, · · ·n− 1,

ℓ(u(i+1)wi) = c, for i = 1, 2, · · ·n− 1.

Thus ℓ is an a-sum V4 magic labeling of Pn[K
c
2 ].

Theorem 2.21. (see [5]) Pn[K
c
2 ] ∈ V0 for all n.

Theorem 2.22. Pn[K
c
2 ] ∈ Va,0 for all n.

Proof. The proof follows from theorems 2.20 and 2.21.

Definition 2.7. (see [5]) One point union of any number of connected graphs is obtained by
identifying one vertex from each graph. One point union of t cycles each of length n is denoted by
C

(t)
n .

Lemma 2.23. If ℓ : C
(t)
n −→ V4 \ {0} is an a-sum magic labeling of C

(t)
n , then

n−1∑
i=1

t∑
j=1

ℓ+(uij) = ℓ+(v)

where u1j , u2j , · · ·u(n−1)j are the vertices of j-th copy of Cn and v is the common vertex.

Proof. The proof is similar to Lemma 2.1.

Theorem 2.24. C
(t)
n ∈ Va if and only if n is even and t is odd.

Proof. First assume that C
(t)
n ∈ Va. Then by Lemma 2.23, [(n− 1)t+1]a = 0. This equation holds

if and only if n is even and t is odd. Conversely suppose that n is even and t is odd. Define a
labeling ℓ : C

(t)
n −→ V4 \ {0} as follows

For j = 1, 2, · · · t do :

ℓ(uiju(i+1)j) = b, for i = 1, 3, · · ·n− 1,

ℓ(uiju(i+1)j) = c, for i = 2, 4, · · ·n.
end for

Obviously ℓ+(uij) = a, ℓ+(v) = a.

Theorem 2.25. (see [5]) C
(t)
n ∈ V0 for all n and t.

Theorem 2.26. C
(t)
n ∈ Va,0 if and only if n is even and t is odd.

Proof. The proof follows from theorems 2.24 and 2.25.

Definition 2.8. (see [5]) A snake graph is formed by taking n-copies of a cycle Cm and identifying
exactly one edge of each copy to a distinct edge of the path P(n+1), which is called as the backbone

of the snake. It is denoted by T
(m)
n .

9
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The graph T
(m)
n is shown in Fig. 4.

Theorem 2.27. T
(m)
n ∈ Va if and only if m is even and n is odd.

Proof. Suppose that T
(m)
n ∈ Va. Let uij , i = 1, 2, · · ·n, j = 1, 2, · · ·m be the vertices in the graph.

Without loss of generality assume that u(n+1)j = u1j . Then we have

n∑
i=2

m∑
j=2

ℓ+(uij) +

m∑
j=1

ℓ+(u1j) = 0

This implies that [(m−1)n+1] is even which again implies that m is even and n is odd. Conversely

assume that m is even and n is odd. Define a labeling ℓ : E(T
(m)
n ) −→ V4 \ {0} by

For i = 1, 3, · · ·n do :

ℓ(uiju(j+1)) =

{
b, j = 1, 3, · · ·m− 1
c, j = 2, 4, · · ·n

end for

For i = 2, 4, · · ·n− 1 do :

ℓ(uiju(j+1)) =

{
c, j = 2, 3, · · ·m− 2
b, j = 1,m− 1,m

end for

Clearly ℓ+(v) = a for all v ∈ V (T
(m)
n ).

Fig. 4. Snake Graph T
(m)
n

Theorem 2.28. (see [5]) T
(m)
n ∈ V0 for all n and m.

Theorem 2.29. T
(m)
n ∈ Va,0 if and only if m is even and n is odd.

Proof. The proof follows from theorems 2.27 and 2.28.

Definition 2.9. (see [5]) The cartesian product of graphs Pm and Pn denoted, Pm�Pn is called a
planar grid.

The planar grid P6�P4 is shown in Figure 2.

Theorem 2.30. The planar grid Pm�Pn is a-sum V4 magic if and only if mn is even.

10
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Proof. Suppose that Pm�Pn ∈ Va. Let (i, j), i = 0, 1, · · ·m−1, j = 0, 1, · · ·n−1 denote the vertices
of Pm�Pn. We have

∑m−1
i=1

∑n−1
j=1 ℓ+((i, j)) = 0. Thus we have mn is even. For the converse

consider the following cases.
Case 1: Both m and n are even.

Define a labeling ℓ : E(Pm�Pn) −→ V4 \ {0} as follows.

For i = 0, 1, · · ·m− 2 do :

ℓ((i, j)(i+ 1, j)) = b, j = 0, n− 1

end for

For j = 0, 1, · · ·n− 2 do :

ℓ((i, j)(i, j + 1)) = c, i = 0,m− 1

end for

For i = 1, 2, · · ·m− 2 do :

ℓ((i, j)(i, j + 1)) =

{
a, j = 0, 2, · · ·n− 2
c, j = 1, 3, · · ·n− 3

end for

For j = 1, 2, · · ·n− 2 do :

ℓ((i, j)(i+ 1, j)) =

{
a, i = 0, 2, · · ·m− 2
b, j = 1, 3, · · ·m− 3

end for

With this labeling Pm�Pn is a-sum V4 magic.

Case 2: m is even and n is odd.

Define a labeling ℓ : E(Pm�Pn) −→ V4 \ {0} as follows.

ℓ((i, 0)(i+ 1, 0)) = b, i = 0, 1, · · ·m− 2

ℓ((i, n− 1)(i+ 1, n− 1)) =

{
b, i = 0, 2, · · ·m− 2
a, i = 1, 3, · · ·m− 3

For j = 0, 1, · · ·n− 2 do :

ℓ((i, j)(i, j + 1)) = c, i = 0,m− 1

end for

For j = 1, 2, · · ·n− 2 do :

ℓ((i, j)(i+ 1, j)) =

{
a, i = 0, 2, · · ·m− 2
c, i = 1, 3, · · ·m− 3

end for

For i = 1, 2, · · ·m− 2 do :

ℓ((i, j)(i, j + 1)) =

{
a, j = 0, 2, · · ·n− 3
b, j = 1, 3, · · ·n− 2

end for

Obviously Pm�Pn is a-sum V4 magic.

Case 3: m is odd and n is even.

11



Vandana & Kumar; BJMCS, 11(5), 1-20, 2015; Article no.BJMCS.20515

By interchanging the roles of m and n in Case 2, we get ℓ+(v) = a for all v ∈ V (Pm�Pn).

This completes the proof.

Theorem 2.31. (see [5]) Pm�Pn ∈ V0 for all m and n.

Theorem 2.32. Pm�Pn ∈ Va,0 if and only if mn is even.

Proof. The proof follows from theorems 2.30 and 2.31.

Theorem 2.33. For m,n ≥ 2, the complete bipartite graph K(m,n) is a-sum V4 magic if and only
if m+ n is even.

Proof. First assume that K(m,n) is a-sum V4 magic. Let {ui, i = 1, 2, · · ·m} ∪ {vj , j = 1, 2, · · ·n}
be the vertices of the graph with E(G) = {uivj : i = 1, 2, · · ·m, j = 1, 2, · · ·n}. Then we have∑m

i=1 ℓ
+(ui) +

∑n
j=1 ℓ

+(vj) = 0. This implies that m + n is even. Conversely suppose that m + n
is even. Then we have the following cases.

Fig. 5. Planar grid P6�P4

Case 1: m and n are odd.

Define a labeling ℓ : E(K(m,n)) −→ V4 \ {0} by

For i = 1, 2, · · ·m do :

ℓ(uivj) = a, j = 1, 2, · · ·n.
end for

Thus ℓ+(v) = a.

Case 2: m and n are even.

ℓ(uiv2) = c, i = 1, 3, 4, · · ·m,

ℓ(u2vj) = c, j = 1, 3, 4, · · ·n,
ℓ(u2v2) = b,

For i = 1, 3, 4, · · ·m do :

ℓ(uivj) = b, j = 1, 3, 4, · · ·n.
end for

12
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Obviously, K(m,n) is a-sum V4 magic.

Theorem 2.34. (see [2]) K(m,n) is zero-sum V4 magic for all m and n.

Theorem 2.35. K(m,n) ∈ Va,0 if and only if m+ n is even.

Proof. The proof follows from theorems 2.33 and 2.34.

Definition 2.10. (see [2]) When k copies of Cn share a common edge it will form the n-gon book
of k pages and is denoted by B(n, k).

The graph B(6, 4) is shown in Fig. 6.

Lemma 2.36. If ℓ is an a-sum V4 magic labeling of B(n, k), then

n−2∑
i=1

k∑
j=1

ℓ+(uj
i ) + ℓ+(u) + ℓ+(v) = 0

where u and v are the common vertices and uj
1, u

j
2, · · ·u

j
n−2 are the other vertices of the jthpage.

Proof. The proof is similar to Lemma 2.1.

Fig. 6. The graph B(6, 4)

Theorem 2.37. For any n ≥ 3 and k ≥ 1, B(n, k) ∈ Va if and only if (n− 2)k is even.

Proof. First assume that B(n, k) ∈ Va. Then [(n− 2)k+2]a = 0.This implies that (n− 2)k is even.
Conversely assume that (n− 2)k is even. We consider the following cases.

Case 1: Both n and k are even.

13
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Define a labeling ℓ : E(B(n, k)) −→ V4 \ {0} by

ℓ(uv) = a,

For j = 1, 2, · · · k do :

ℓ(uuj
1) = ℓ(vuj

(n−2)) = b,

ℓ(uj
2iu

j
2i+1) = b, for i = 1, 2, · · · n− 4

2
,

ℓ(uj
2i−1u

j
2i) = c, for i = 1, 2, · · · n− 4

2
.

end for

Then ℓ is an a-sum V4 magic labeling of B(n, k).

Case: 2 n is odd and k is even,

Define a labeling ℓ : E(B(n, k)) −→ V4 \ {0} by

ℓ(uv) = a,

For j = 1, 2, · · · k do :

ℓ(uuj
1) = b,

ℓ(vuj
(n−2)) = c,

ℓ(uj
2iu

j
2i+1) = b, for i = 1, 2, · · · n− 3

2
,

ℓ(uj
2i−1u

j
2i) = c, for i = 1, 2, · · · n− 3

2
.

end for

Case 3: n is even and k is odd

Define a labeling ℓ : E(B(n, k)) −→ V4 \ {0} by

ℓ(uv) = c,

For j = 1, 2, · · · k do :

ℓ(uuj
1) = ℓ(vuj

(n−2)) = b,

ℓ(uj
2iu

j
2i+1) = b, for i = 1, 2, · · · n− 4

2
,

ℓ(uj
2i−1u

j
2i) = c, for i = 1, 2, · · · n− 2

2
.

end for

Thus ℓ is an a-sum V4 magic labeling of B(n, k).

Theorem 2.38. (see [2]) For any n ≥ 3 and k ≥ 1, B(n, k) is zero-sum V4 magic.

Theorem 2.39. For any n ≥ 3 and k ≥ 1, B(n, k) ∈ Va,0 if and only if (n− 2)k is even.

Proof. The proof follows from theorems 2.37 and 2.38.

Definition 2.11. (see [5]) The book Bn is the graph Sn�P2 where Sn is the star with n+1 vertices.

The book graph B4 is shown in Fig. 7.

14
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Theorem 2.40. The book Bn is a-sum V4 magic for all n.

Proof. Let w1, w2 be the vertices of the common edge. Let {u1, u2, · · ·un} ∪ {v1, v2, · · · vn} be the
vertices of Bn.

Case 1: n is odd.

ℓ(w1w2) = c,

For i = 1, 2, · · ·n do :

ℓ(w1ui) = ℓ(w2vi) = b,

ℓ(uivi) = c.

end for

Case 2: n is even.

ℓ(w1w2) = a,

For i = 1, 2, · · ·n do :

ℓ(w1ui) = ℓ(w2vi) = b,

ℓ(uivi) = c.

end for

Clearly ℓ is an a-sum V4 magic labeling of Bn.

Theorem 2.41. Bn ∈ V0 for all n.

Proof. We consider the following cases:

Case 1: n is odd.

Label all the edges by a. Then we get ℓ+(v) = 0 for all v ∈ V (G). Case 2: n is even.

Define a labeling ℓ : E(Bn) −→ V4 \ {0} by

ℓ(w1w2) = a,

ℓ(u1w1) = ℓ(v1w1) = ℓ(u1v1) = c,

ℓ(w1ui) = ℓ(w2vi) = b, i = 2, 3, · · ·n,
ℓ(uivi) = b, i = 2, 3, · · ·n.

With this labeling we get ℓ+(v) = 0 for all v ∈ V (G).

Definition 2.12. (see [2]) Given a cycle Cn construct a cycle Cm on each edge of this cycle. The
resulting graph is called flower graph and is denoted by Cm@Cn.

Theorem 2.42. For all m,n ≥ 3, the flower graph Cm@Cn ∈ Va if and only if n(m− 1) is even.

Proof. Suppose that Cm@Cn ∈ Va. Then [n(m−1)]a = 0. This implies that n(m−1) is even. Now
let u1, u2, · · ·un be the vertices of Cn and v1j , v2j , · · · v(m−2)j be the vertices of Cj , j = 1, 2, · · ·n.
We consider the following cases.

15
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Fig. 7. Book graph B4

Case 1: n is even and m is odd.

For j = 1, 2, · · ·n do :

ℓ(uju(j+1)) = a,

ℓ(ujv1j) = c,

ℓ(u(j+1)v(m−2)j) = b,

ℓ(vijvi(j+1)) = b, i = 1, 3, · · ·m− 4,

ℓ(vijvi(j+1)) = c, i = 2, 4, · · ·m− 3.

end for

Case 2: Both n and m are even.

ℓ(uju(j+1)) = a, j = 1, 2, · · ·n,
For j = 1, 3, · · ·n− 1 do :

ℓ(vijvi(j+1)) = c, i = 1, 3, · · ·m− 3,

ℓ(vijvi(j+1)) = b, i = 2, 4, · · ·m− 4.

end for

For j = 2, 4, · · ·n do :

ℓ(vijvi(j+1)) = b, i = 1, 3, · · ·m− 3,

ℓ(vijvi(j+1)) = c, i = 2, 4, · · ·m− 4.

end for

Case 3: Both n and m are odd.

For j = 1, 2, · · ·n do :

ℓ(uju(j+1)) = a,

ℓ(ujv1j) = b,

ℓ(u(j+1)v(m−2)j) = c,

ℓ(vijvi(j+1)) = c, i = 1, 3, · · ·m− 4,

ℓ(vijvi(j+1)) = b, i = 2, 4, · · ·m− 3.

end for
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Thus ℓ is an a-sum V4 magic labeling of Cm@Cn. This completes the proof.

Theorem 2.43. (see [2]) For all m,n ≥ 3, the flower graph Cm@Cn ∈ V0.

Theorem 2.44. For all m,n ≥ 3, the flower graph Cm@Cn ∈ Va,0 if and only if n(m− 1) is even.

Proof. The proof follows from theorems 2.42 and 2.43.

Definition 2.13. (see [2]) Given k natural numbers a1, a2, · · · ak, if we connect the two vertices of
N2 = {u, v} by k parallel paths of length a1, a2, · · · ak, the resulting graph is called the generalized
Theta graph and is denoted by Θ(a1, a2, · · · ak).

Note that in this graph, deg(u)= deg(v)= k and all the other vertices are of degree two.

Theorem 2.45. If the generalized Theta graph Θ(a1, a2, · · · ak) is a-sum V4 magic then either odd
number of ai’s are odd or even number of ai’s are even.

Proof. First suppose that Θ(a1, a2, · · · ak) is a-sum V4 magic. Then we have

[
k∑
ai

i=1

− k

]
a = 0. This

implies that

[
k∑
ai

i=1

]
a = ka. This is if and only if both

k∑
ai

i=1

and k are odd or even simultaneously.

This happens if and only if odd number of ai’s are odd or even number of ai’s are even.

Theorem 2.46. Let Θ(a1, a2, · · · ak) be a generalized Theta graph. If k and even number of ai’s
are even then Θ(a1, a2, · · · ak) is a-sum V4 magic.

Proof. Let vi1, v
i
2, · · · viai−1 be the vertices of the ith path and let u,w be the common vertices.

Define a labeling ℓ : Θ(a1, a2, · · · ak) −→ V4 \ {0} by

For i = 1, 2, · · · k − 1 do :

ℓ(uvi1) = b

end for

ℓ(uvk1 ) = c

For i = 1, 2, · · · k do :

ℓ(vijv
i
j+1) =

{
c, j = 1, 3, · · · ai − 2, if ai is odd

j = 1, 3, · · · ai − 3, if ai is even

ℓ(vijv
i
j+1) =

{
b, j = 2, 4, · · · ai − 2, if ai is even

j = 2, 4, · · · ai − 3, if ai is odd

Now label the edge viak−1w, i = 1, 2, · · · k in the following way.

If ℓ(viak−2v
i
ak−1) = b, let ℓ(viak−1w) = c and viceversa. Thus ℓ is an a-sum V4 magic labeling of

Θ(a1, a2, · · · ak).
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Theorem 2.47. (see [2]) Θ(a1, a2, · · · ak) is zero-sum V4 magic for any sequence a1, a2, · · · ak.

Theorem 2.48. Let Θ(a1, a2, · · · ak) be a generalized Theta graph. If k and even number of ai’s
are even then Θ(a1, a2, · · · ak) ∈ Va,0.

Proof. The proof follows from theorems 2.46 and 2.47.

Definition 2.14. (see [2]) Let N2 = {v1, v2} be the disconnected graph of order two. The graph
Cn ∨N2 is called the bypyramid based on Cn and is denoted by BP (n).

The bypyramid graph based on C6 denoted as BP (6) is shown in Fig. 8.

Theorem 2.49. For any n ≥ 4, the bipyramid graph BP (n) is a-sum V4 magic if and only if n is
even.

Proof. Suppose that BP (n) ∈ Va. This implies that (n + 2)a = 0. Thus we have obtained n is
even.Conversely assume that n is even.

For i = 1, 2 do :

ℓ(viu1) = c,

ℓ(viuj) = b, j = 2, 3, · · ·n
end for

ℓ(uju(j+1)) = b, j = 1, 3, · · ·n− 1,

ℓ(uju(j+1)) = c, j = 2, 4, · · ·n.

Obviously BP (n) ∈ Va.

Fig. 8. The graph BP (6)

Theorem 2.50. (see [2]) For any n ≥ 4, BP (n) is zero-sum V4 magic for all n.

Theorem 2.51. For any n ≥ 4, BP (n) ∈ Va,0 if and only if n is even.

Proof. The proof follows from theorems 2.49 and 2.50.
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Definition 2.15. (see [2]) Given a graph G, we can define the bypyramid based on G to be G∨N2.
This graph will be denoted by BP (G).

Theorem 2.52. Consider the bypyramid graph BP (G) based on G. We have the following.

i) If G is a-sum V4 magic and number of vertices in G is odd, then BP (G) is a-sum V4 magic.

ii) If G is a-sum V4 magic and number of vertices in G is even, then BP (G) is 0-sum V4 magic.

iii) If G is 0-sum V4 magic and number of vertices in G is even, then BP (G) is both a-sum V4 magic
and 0-sum V4 magic.

iv) If G is 0-sum V4 magic and number of vertices in G is odd, then BP (G) is 0-sum V4 magic.

Proof. Obvious.

Corollary 2.53. We have the following.

i) If G is 0-sum V4 magic, then G ∨Kn ∈ Va,0.

ii) If G is a-sum V4 magic, then G ∨Kn ∈ Va,0.

3 Conclusions

This paper is a continuation of the work carried out in [3] and [4]. In this paper we investigated
graphs in the following categories:

1) Va, the class of a-sum V4 magic graphs.

2) V0, the class of zero-sum V4 magic graphs.

3) Va,0, the class of graphs which are both a-sum and zero-sum V4 magic.
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