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Abstract 
 

The present article investigates the use of a modified F-expansion method in finding the exact traveling 
wave solution of two-component nonlinear partial differential equations (NLPDEs). More specifically, 
this method is used to construct new solutions to the nonlinear Maccari’s system (1+2)-dimensional. The 
solutions obtained can exactly generate soliton solutions, triangular periodic wave solutions, exponential 
and rational solutions unther some certain condition. In addition, some fig-uses of partial solutions for 
direct-viewing analysis are suggested.  

 

Keywords: Modified F-expansion method; exact solution; Maccari’s system (2+1)-dimensional.  
 
2010 Mathematics Subject Classification: 35Q53; 35Q80; 35Q55; 35G25. 
 

1 Introduction 
 
The discovery of the soliton, its remarkable properties and the incredible richness of structure are all 
included in its mathematical description. The story begins with the observation by John Scott Russell of “the 
great wave of translation”. It was not till the 1870’s that Russell’s work was finally vindicated and its 
scientific importance was appreciated by some eminent scholars. Independently, Boussinesq [1] (1872) and 
Rayleigh (1876) found the hyperbolic secant squared solution for the free surface. Boussinesq’s 1872 paper, 
in fact, did a lot more and introduced many of the ideas nowadays used by modem analysts. In particular, he 
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found the conserved density of the third conservation law, a quantity he called the moment of instability. He 
derived his solution from the approximation to the water wave equations that now bear his name. In this 
approximation, the motion can be bidirectional 1 but the basic idea of the balance between nonlinearity and 
dispersion is present. It was left to Korteweg and deVries in 1895, who apparently did not know the work of 
Boussinesq and Rayleigh and who were still trying to answer the objections of Airy and Stokes, to write 
down the unidirectional equation which now bears their names. (It would appear to have been the thesis 
project of deVries.) In this first stage of discovery, the primary thrust was to establish the existence and 
resilience of the wave. The discovery of its universal nature and its additional properties was to await a new 
day and an unexpected result from another experiment designed to answer a totally different question.  
 
The appearance of solitary wave solutions in nature is quite is common. Refereces can be made to Bell-
shaped sech-solutions and kink-shaped tanh-solutions model wave phenomena in fluids, plasmas, elastic 
media, electrical circuits, optical fibers, chemical reactions, bio-genetics, etc. The travelling wave solutions 
of the Korteweg-de Vries (KdV) and Boussionesq equations, which describe water waves, are famous 
examples as well. For a more detailed and technical account of the solitary wave, see [2]. 
 
In recent years, other methods have developed, such as the Backlund transformation method[3], Darboux 
transformation [4], tanh method [5,6] extended tanh function method [7], Exp-function method [8], the 
generalize hyperbolic function [9], the first integral method [10], the exp(-Φ(ξ))-expansion method [11], 
enhanced (G'/G)-expansion method [12-15], modified simple equation method [16], and the F-expansion 
method [17,18]. All the above-mentioned approaches are based on the assumption that the solutions can be 
uniformly expressed in terms of some special ansatz. Therefore, the original partial differential equations 
(PDE’s) can be transformed into a set of algebraic equations through balancing the same order of the ansatz, 
which yields the explicit expressions of the waves. The difference between these methods is attributed to the 
different ansatz introduced. For example, in the tanh-coth method, the ansatz can be written in as 
combinations of tanh and coth functions, whild in the Jacobi elliptic function expansion method, the ansatz 
can be expressed in the form of Jacobi elliptic functions. From our point of view, all these methods have 
some nerits and demerits with respect to the problem considered and there is no unified method that can be 
used to deal with all types of NLPDEs. That is why anytime that an improvement is made in a particular 
method to allow it to recover some new solutions to the NLPDEs, it is always welcomed. The purpose of this 
paper is to apply a modified F-expansion method to coupled familied of NLPDEs.  
 
The aim of this paper is organized as follows: In Section 2,at first, we briefly introduse the steps involved in 
the modified F-expansion method, In Section 3, by using the results obtained in Section 2, attempts are made 
to apply the method to solve the Maccari’s system (2+1)-dimensional.  
 

2 Description of Method  
 
Consider a nonlinear partial differential equation with independent variables = 1 2 mx ( t ,x ,x ,...,x ) and 

dependent variables u, in the form:  
 

( ) = 0,t x x x x x tx tt x x x x x xm1 2 m 1 2 m 1 1 2 2 m
F u,u ,u ,u ,...,u ,u ,u ,...,u ,u ,u ,u ,...,u ,...              (1) 

 
where ( )=u u x,y,t  is the solution of nonlinear partial differential Eq.(1). Furthermore, the 
transformations which are used are as follows:  
 

1 2 m 1 1 2 2 m mu(x ,x , , x ,t)=U(ξ), ζ = k (x +k x +...+k x - t).λ                              (2) 
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Where λ and ik are constants. Using the chain rule, it can be found that  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= − = = =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

2 2
2

1 1 1 2 12 2
1 2 1

. k . , . k . , . k k . , . k . , ...
t x x x

λ
ξ ξ ξ ξ

            (3) 

 
At present, Eq. (3) is used to show transfering the nonlinear partial differential equation Eq. (1) to nonlinear 
ordinary differential equation:  
 

( ) ( ) ( )( ) =H U ,U ,U , ... 0.ξ ξξξ ξ ξ                                                                                                  (4) 

 
According to the modified F-expansion method, it is assumed that the solution can be expressed in the form:  
 

( ) ( ) ( )−

= =

= + +∑ ∑
N N

i i
0 i i

i 1 i 1

U a a F b Fξ ξ ξ                                                                                     (5) 

 

where 0 ia , a and ib are constants to be determined. ( )F ξ satisfies Riccati equation: 

 

( ) ( ) ( )′ = + + 2F A BF CFξ ξ ξ                                                                                                    (6) 

 
where A, B and C are constants to be determined. The prime (' ) denotes d / dξ . Integer N can be 
determined by considering the homogeneous balance between the governing nonlinear term (s) and highest 

order derivatives of ( )U ξ in Eq.(4). Given different values of A, B and C, the different Riccati function 

solution ( )F ξ  can be obtained from Eq. (6) (see Table 1). To determine ( )U ξ  explicitly, we take the 

following steps:  
 

Step I. Substituting (5) along with (6) into Eq. (4) and collect coefficients of ( )iF ξ to zero yields a system 

of algebraic equations for ( ) ( ) ( )= = =i i ia i N ,...,1,0 , b i 1,...,N , k i 1,...,m andλ . 

 
Step II. Solve the system of algebraic equations, probably with the aid of Mathematica or Maple. 

( )=ia i N ,...,1,0 and ( )=ib i 1,...,N  can be expressed by A, B and C (or the coefficients of ODE(4). 

Substituting these results into (5), we can obtain the general form of travelling wave solutions to Eq.(4). 
 

Step III. Selecting A, B, C and ( )F ξ  from Table 1 and substituting them along with ( )=ia i N ,...,1,0  

and ( )=ib i 1,...,N  into Eq.(5), a series of soliton-like solutions, trigonmetric function solutions and 

rational solutions to Eq.(4) can be obtained.  
 
The modified F-expansion method is more effective in obtaining the soliton-like solution, trigonometric 
function solutions, exponential solutions and rational solutions of the nonlinear partial deferential equations. 
This method will yield more rich types solutions of the nonlinear partial deferential equations. It shows that 
the modified F-expansion method is more powerful in constructing exact solutions of NLPDEs.  
 

Relations between values of A, B, C and corresponding ( )F ξ  in Eq.(6) are listed in (Table 1) [17].  

 



 
 
 

Aasaraai; BJMCS, 11(5): 1-14, 2015; Article no.BJMCS.19938 
 
 
 

4 
 
 

Table 1. Relations between values of A, B, C and corresponding ( )F ξ  in Eq. (6) 
 

Values of A, B, C (((( ))))F ξξξξ  

= = = −A 0 , B 1 , C 1 ( )+1 1 1
tanh

2 2 2
ξ  

= = − =A 0 , B 1 , C 1 
( )−1 1 1

coth
2 2 2

ξ  

−= = =1 1
A , B 0 , C

2 2
 ( ) ( ) ( ) ( )csch , tanh isech± ±coth ξ ξ ξ ξ  

= = = −A 1 , B 0 , C 1 ( ) ( )tanh ,cothξ ξ  

= = =1 1
A , B 0 , C

2 2
 ( ) ( ) ( ) ( ),csc cot+ −sec tanξ ξ ξ ξ  

= = =1 1
A , B 0 , C

2 2
 ( ) ( ) ( ) ( ),csc cot− +sec tanξ ξ ξ ξ  

( ) ( )= − = = −A 1 1 , B 0 , C 1 1 ( ) ( )tan ,cotξ ξ  

= = ≠A 0 , B 1 , C 0 −
+
1

Cξ η
(η  is an arbitrary constant) 

A is arbitrary constant, = =B 0 , C 0 Aξ  

A is arbitrary constant, ≠ =B 0 , C 0 ( ) −exp B A

B

ξ  

 

3 Exact Solutions of Maccari’s System  
 
In this section, we discuss the Maccari’s System (2+1)-dimensional system, written in the form of the 
following equations: 
  

( )
+ + =


 + + =

t xx

2
t y

x

iu u uv 0,

u u u 0.
                                                                 (7) 

 
The celebrated (2+1)-dimensional Maccari’s system has been found in some studies conducted by Maccari. 
Maccari derived this system from the Kadomtsev-Petvishvili equation by using the asymptotically exact 
reduction method based Fourier expansion and spatiotemporal rescaling [19]. It is necessary to state that 
equation (7) plays an important role in nonlinear physics. That is to say, this system is often presented to 
describe the motion of the isolated waves, localized in a small part of space, in many fields such as 
hydrodynamic, plasma physics, etc.  
 
By using the transformation:  
 

( ) ( ) ( ) ( ) ( ) ( )= = = = = + − = + +u u x, y,t exp i U , v v x, y,t V , k x ly t , x y t.θ ξ ξ ξ λ θ α β γ
    

(8) 

 

where k,l , , ,λ α β  and γ  are arbitrary constants, substituting Eq.(8) with Eq.(7), there will be a change 
into:  
 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( )
 − + + − + =



+ + =


i 2 2 i i

2

i i U k U e 2i kU k U U e e U V 0,

V klV k U 0.

θ θ θ
ξ ξ ξξ

ξ ξ ξ

γ ξ λ ξ α ξ ξ α ξ ξ ξ

γ ξ ξ ξ
  (9) 
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where by integrating the second equation of the Eq.(9), respect to ξ , it can be obtained that:  
 

( ) ( )= − +
+ +

2 1dk
V U .

kl kl
ξ ξ

γ γ
                                                                                                 (10) 

 

where 1d  is an integral constant. Substituting Eq.(10) with the first equation of the Eq.(9) results in: 

 

( ) ( ) ( ) ( ) ( )( ) U U− + − − − + =
+ +

2 3 21d k
i 2 k k U U k 0,

kl klξ ξξα λ ξ γ α ξ ξ ξ
γ γ

                       (11) 

 
if we let the = 2 ,λ α it can be found that:  
 

( ) ( ) ( )( ( )) U U− + − + =
+ +

2 3 21d k
U k 0.

kl kl ξξγ α ξ ξ ξ
γ γ

                                                        (12) 

 

Considering the homogeneous balance between U3  and Uξξ in (12), we suppose that the solution to 

ordinary differential equation (12) can be expressed by:  
 

( ) ( ) ( )−= + + 1
0 1 1U a a F b Fξ ξ ξ                                                                                             (13) 

 

where 0 1 1a , a and b are constants to be determined. Substituting (13) with Eq. (12), and using (6), the 

left-hand side of Eq. (13) can be converted into a finite series in ( ) ( )= −jF j 3, , 3ξ . Equating each 

coefficient of ( )jF ξ  to zero yields a system of algebraic equations for 0 1 1a , a , b  and 1d : 

 

− +
+

3 3 2 2
1 1

k
F : a 2k a C ,

klγ
 

− +
+

2 2 2
0 1 1

k
F : 3 a a 3k a BC,

klγ
 

( ) ( ) ( )( ) 3− + − + + +
+ +

2 2 2 2 21
1 1 1 0 1 1

d k
F : a a b a a k a B 2AC ,

kl kl
γ α

γ γ
 

( ) ( )( ( ))− + − + + +
+ +

0 2 3 21
0 1 0 1 1 1 1

d k
F : a a 3a a b k a AB CBb ,

kl kl
γ α

γ γ
                       (14) 

( ) ( )( ( ))− − + − + + +
+ +

1 2 2 2 2 21
1 1 1 0 1 1 1

d k
F : b 3 a b a b k B b 2b AC ,

kl kl
γ α

γ γ
 

− +
+

2 2 2
0 1 1

k
F : 3 a b 3k ABb ,

klγ
 

− − +
+

3
3 2 21

1
kb

F : 2k A b .
klγ

 

 
Solving the algebraic equations (14) using Maple, the following solutions will be obtained:  
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Case I: 
 

+ += = =
2 2

0 1 1
k k l k k l

a B , a 0, b A
2 2

γ γ  

( )( + )( )= + − + + +2 2 3 2 2 2
1

1
d k k l B 2AC kl .

2
γ γ α γ γ α                                                      (15) 

 
Case II: 
 

+= = + =
+

2
0 1 1

2

kB( kl )
a , a C 2( k k l ) , b 0

2( k k l )

γ γ
γ

 

( + )( )= + − + + +2 2 3 2 2 2
1

1
d k k l B 2AC kl( ).

2
γ γ α γ γ α                                                   (16) 

 
Substituting (15) and (16) with Eq.(13), from Table 1, we may obtain many soliton-like solutions, 
trigonometric function solutions, exponential solutions and rational solutions to Eq.(7) (where we left the 
same type solutions out): 
 
3.1 The Soliton-Like Solutions to Maccari’s System  
 
(1)   When = = = −A 0, B 1, C 1, from Table 1, ( )  = +  

 

1 1 1
F tanh .

2 2 2
ξ ξ  By (16), the exact solution to 

equation (7) is given by:  
 

( ) + +
 + = − + + + −
 
 

2
2 i( x y t )

1
k k l 1 1 1

u x, y,t 2( k k l ) ( tanh( ( k( x ly t ))) e ,
2 2 2 2

α β γγ γ λ  

( ) ( ) ( + )= − + +
+

2
2 2

1 1
k k

v x, y,t u x, y,t .
kl 2

γ α
γ

                     (17) 

 

(2) When = = − =A 0, B 1, C 1,from Table 1, ( )  = −  
 

1 1 1
F coth .

2 2 2
ξ ξ  By (16), the exact solution to 

equation (7) is given by: 
 

( ) + +
 + = − + + − + −
 
 

2
2 i( x y t )

2
k k l 1 1 1

u x, y,t 2( k k l ) ( coth( ( k( x ly t ))) e ,
2 2 2 2

α β γγ γ λ  

( ) ( ) ( + )= − + +
+

2
2 2

2 2
k k

v x, y,t u x, y,t .
kl 2

γ α
γ

                     (18) 

 

(3) When = = = −1 1
A , B 0, C ,

2 2
from Table 1, ( ) ( ) ( ) ( ) ( )= ± ±F coth csc h or tanh i sec h .ξ ξ ξ ξ ξ  

By (15), the exact solution to equation (7) is given by: 
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( ) + +
 + =
 + − ± + −
 

2
i( x y t )

3
k k l

u x, y,t e ,
2 2(coth( k( x ly t )) csc h( k( x ly t )))

α β γγ
λ λ

 

( ) ( ) ( + )= − + +
+

2
2 2

3 3
k k

v x, y,t u x, y,t .
kl 2

γ α
γ

                     (19) 

 

( ) + +
 + =
 + − ± + −
 

2
i( x y t )

4
k k l

u x, y,t e ,
2 2(tanh( k( x ly t )) i sec h( k( x ly t )))

α β γγ
λ λ

 

( ) ( ) ( + )= − + +
+

2
2 2

4 4
k k

v x, y,t u x, y,t .
kl 2

γ α
γ

                     (20) 

 
By case (16), the exact solution to equation (7) can be written as:  
 

( ) + +
 + = − + − ± + −
 
 

2
i( x y t )

5
k k l

u x, y,t (coth( k( x ly t )) csc h( k( x ly t ))) e ,
2

α β γγ λ λ  

( ) ( ) ( + )= − + +
+

2
2 2

5 5
k k

v x, y,t u x, y,t .
kl 2

γ α
γ

                     (21) 

 

( ) + +
 + = − + − ± + −
 
 

2
i( x y t )

6
k k l

u x, y,t (tanh( k( x ly t )) i sec h( k( x ly t ))) e ,
2

α β γγ λ λ  

( ) ( ) ( + )= − + +
+

2
2 2

6 6
k k

v x, y,t u x,y,t .
kl 2

γ α
γ

                     (22) 

 

(4) When = = = −A 1, B 0, C 1,from Table 1, ( ) ( ) ( )=F tanh or coth .ξ ξ Ξ  By (15), the exact 

solution to equation (7) can be written as:  
 

( ) + +
 + = + −
 
 

2
i( x y t )

6
k k l

u x, y,t coth( k( x ly t )) e ,
2

α β γγ λ  

( ) ( ) ( + )= − + +
+

2
2 2

7 7
k k

v x, y,t u x, y,t .
kl 2

γ α
γ

                            (23) 

 

( ) + +
 + = + −
 
 

2
i( x y t )

8
k k l

u x, y,t tanh( k( x ly t )) e ,
2

α β γγ λ  

( ) ( ) ( + )= − + +
+

2
2 2

8 8
k k

v x, y,t u x, y,t .
kl 2

γ α
γ

                                                    (24) 

 
By (16), the exact solution to equation (7) is given by: 
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( ) + + = − + + − 
 

2 i( x y t )
9u x, y,t 2( k k l ) tanh( k( x ly t )) e ,α β γλ  

( ) ( ) ( + )= − + +
+

2
2 2

9 9
k k

v x, y,t u x, y,t .
kl 2

γ α
γ

                                        (25) 

 

( ) + + = − + + − 
 

2 i( x y t )
10u x, y,t 2( k k l ) coth( k( x ly t )) e ,α β γγ λ  

( ) ( ) ( + )= − + +
+

2
2 2

10 10
k k

v x, y,t u x, y,t .
kl 2

γ α
γ

                           (26) 

 

For direct-viewing analysis, we provide the figures of ( )5u x,y,t , where we choose 

= = = = = =0, l 1 and k 2.α β γ λ  
 

  

Fig. 1. Graphics of soliton-like solution 5u are shown at “+” and “−”, respectively  
 

  
 

Fig. 2. Graphics of soliton-like solution 5u are shown at “+” and “−”, respectively 

 
3.2 The Trigonometric Function Solutions to Maccari’s System  
 
(1) When = = =1 1

A , B 0, C ,
2 2

from Table 1, ( ) ( ) ( ) ( ) ( )= + −F sec tan or csc cot .ξ ξ ξ ξ ξ  By (16), 

the exact solution to equation (7) can be written as:  
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( ) + + = + + − + + − 
 

2 i( x y t )
11

1
u x,y,t 2( k k l )(sec( k( x ly t )) tan( k( x ly t )) e ,

2
α β γγ λ λ  

( ) ( ) ( + )= − + +
+

2
2 2

11 11
k k

v x, y,t u x, y,t .
kl 2

γ α
γ

                             (27) 

 

( ) + + = + + − − + − 
 

2 i( x y t )
12

1
u x, y,t 2( k k l )(csc( k( x ly t )) cot( k( x ly t )) e ,

2
α β γγ λ λ  

( ) ( ) ( + )= − + +
+

2
2 2

12 12
k k

v x,y,t u x, y,t .
kl 2

γ α
γ

                                         (28) 

 
By (15), the exact solution to equation (7) can be written as: 
 

( ) + ++
=

+ − + + −

2
i( x y t )

13
k k l

u x, y,t e ,
2 2(sec( k( x ly t )) tan( k( x ly t )))

α β γγ
λ λ

 

( ) ( ) ( + )= − + +
+

2
2 2

13 13
k k

v x, y,t u x,y,t .
kl 2

γ α
γ

                                           (29) 

 

( ) + ++
=

+ − − + −

2
i( x y t )

14
k k l

u x, y,t e ,
2 2( csc( k( x ly t )) cot( k( x ly t )))

α β γγ
λ λ

 

( ) ( ) ( + )= − + +
+

2
2 2

14 14
k k

v x,y,t u x, y,t .
kl 2

γ α
γ

                                           (30) 

 

(2) When = − = = −1 1
A , B 0, C ,

2 2
from Table 1, ( ) ( ) ( ) ( ) ( )= − +F sec tan or csc cot .ξ ξ ξ ξ ξ  By 

(15), the exact solution to equation (7) will be shown as follows:  
 

( ) + ++= −
+ − − + −

2
i( x y t )

15
k k l

u x, y,t e ,
2 2(sec( k( x ly t )) tan( k( x ly t )))

α β γγ
λ λ

 

( ) ( ) ( + )= − + +
+

2
2 2

15 15
k k

v x, y,t u x, y,t .
kl 2

γ α
γ

                                           (31) 

 

( ) + ++= −
+ − + + −

2
i( x y t )

16
k k l

u x, y,t e ,
2 2(csc( k( x ly t )) cot( k( x ly t )))

α β γγ
λ λ

 

( ) ( ) ( + )= − + +
+

2
2 2

16 16
k k

v x,y,t u x, y,t .
kl 2

γ α
γ

                                           (32) 

 
By (16), the exact solution to equation (7) can be written as:  
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( ) + + = − + + − − + − 
 

2 i( x y t )
17

1
u x, y,t 2( k k l )(sec( k( x ly t )) tan( k( x ly t ))) e ,

2
α β γγ λ λ  

( ) ( ) ( + )= − + +
+

2
2 2

17 17
k k

v x, y,t u x, y,t .
kl 2

γ α
γ

                                           (33) 

 

( ) + + = − + + − + + − 
 

2 i( x y t )
18

1
u x, y,t 2( k k l )(csc( k( x ly t )) cot( k( x ly t ))) e ,

2
α β γγ λ λ

  

 

( ) ( ) ( + )= − + +
+

2
2 2

18 18
k k

v x, y,t u x, y,t .
kl 2

γ α
γ

                                                      (34) 

 

(3) When = = =A 1, B 0, C 1,from Table 1, ( ) ( )=F tan .ξ ξ  By (16), the exact solution to equation 

(7) is found to be:  
 

( ) + += + + −2 i( x y t )
19u x, y,t 2( k k l ) tan( k( x ly t ))e ,α β γγ λ  

( ) ( ) ( + )= − + +
+

2
2 2

19 19
k k

v x, y,t u x, y,t .
kl 2

γ α
γ

                                             (35) 

 

For direct-viewing analysis, we provide the figures of ( )11u x,t , ( )11v x,t , ( )12u x,t ,and ( )12v x,t ,

where we choose = = = = − = − =l 0, 1, k 2 and 1.β α γ λ  
 
By (15), the exact solution to equation (7) is obtained as:  
 

( ) + += + + −2 i( x y t )
20

1
u x, y,t ( k k l ) cot( k( x ly t ))e ,

2
α β γγ λ  

( ) ( ) ( + )= − + +
+

2
2 2

20 20
k k

v x,y,t u x,y,t .
kl 2

γ α
γ

                                              (36) 

 
where , , ,k ,l andα β γ λ are real constants in section 2.1 and 2.2.  
 

  

Fig. 3. (a) Graphics of the periodic solution 11u  (b) Graphics of the periodic solution 11v
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Fig. 4. (a) Graphics of the periodic solution 12u                   (b) Graphics of the periodic solution 12v  

 
3.3 The Rational Solutions to Maccari’s System  
 
(1) When = = ≠A B 0, C 0,from Table 1, ( ) = −

+
1

F
C

ξ
ξ η

(η is an arbitrary constant). By (16), the exact 

solution to equation (7) is obtained as:  
 

( )
+ +

= − +
+ − +

i( x y t )
2

21
e

u x,y,t C 2( k k l ) ,
C( k( x ly t ))

α β γ
γ

λ η
 

( ) ( ) ( + )= − + +
+

2
2 2

21 21
k k

v x, y,t u x, y,t .
kl 2

γ α
γ

                                              (37) 

 
where C is real constants,, , ,k ,l andα β γ λ are arbitrary constants.  
 

(2) When = =C B 0and A is an arbitrary constant, from Table 1, ( ) =F A .ξ ξ By (15), the exact solution 

to equation (7) it can be obtained that:  
 

( ) + +
+

=
+ −

2

i( x y t )
22

1
( k k l )

2u x,y,t e ,
k( x ly t )

α β γ
γ

λ
 

( ) ( ) ( + )= − + +
+

2
2 2

22 22
k k

v x, y,t u x, y,t .
kl 2

γ α
γ

                                                           (38) 

 
where , , ,k ,l andα β γ λ are arbitrary constants.  
 

For direct-viewing analysis, we provide the figures of ( )22u x,t , and ( )22v x,t ,where we choose 

= = = − = − = − =l 0, 1, 2, k 4 and 1.β α γ λ  
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Fig. 5. (a) Graphics of the rational solution 22u
        

 (b) Graphics of the rational solution 22v  

 
3.4 The Exponential Solutions to Maccari’s System  
 
(1) When ≠ =B 0, C 0 and A is an arbitrary constant, from Table 1, ( ) −= exp( B ) A

F .
B

ξξ  By (15), the 

exact solution to equation (7) is found to be:  
 

( ) + +
+

=
+ − −

2

i( x y t )
23

1
AB ( k k l )

2u x,y,t e ,
exp( Bk( x ly t )) A

α β γ
γ

λ
 

( ) ( ) ( + )= − + +
+

2
2 2

23 23
k k

v x, y,t u x, y,t .
kl 2

γ α
γ

                                                                 (39) 

 
where , , ,k ,l andα β γ λ are arbitrary constants.  

 
The solutions obtained in this paper are different from solutions in [20], (38) and (39) are almost the same as 
the some known solutions in [8] except for the coefficients. Other solutions in this investigation of the 
solutions in [8, 20], will be different. 
 

4 Conclusion  
 
This paper reports on the successful application of the F-expansion method to finding the solutions for 
Maccari’s system. The F-expansion method has been used to get some types of traveling wave solutions 
including the periodic waves and solitary waves for Maccari’s system. It is found that the coupled nonlinear 
system possesses some other solution structures. we can claim that the F-expansion method can be utilized to 
solve problems with systems of nonlinear partial differential equations that may arise in the theory of soliton 
and other related research areas. In the end, it is worthwhile to mention that the proposed method is 
straightforward and concise and it's applications to other nonlinear physical systems can be investigated in 
future studies.  
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