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Abstract

The present article investigates the use of a modified Brsipn method in finding the exact traveling
wave solution of two-component nonlinear partial differérgiguations (NLPDES). More specifically,
this method is used to construct new solutions to the nonliieecari’s system (1+2)-dimensional. The
solutions obtained can exactly generate soliton salstiziangular periodic wave solutions, exponential
and rational solutions unther some certain condition. In additione sigruses of partial solutions for
direct-viewing analysis are suggested.
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1 Introduction

The discovery of the soliton, its remarkable properties andirtredible richness of structure are all
included in its mathematical description. The story begiitis thhe observation by John Scott Russell of “the
great wave of translation”. It was not till the 1870att Russell’'s work was finally vindicated and its
scientific importance was appreciated by some emindmiacs. Independently, Boussinesq [1] (1872) and
Rayleigh (1876) found the hyperbolic secant squared solutiathédree surface. Boussinesq'’s 1872 paper,
in fact, did a lot more and introduced many of the ideagadays used by modem analysts. In particular, he
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found the conserved density of the third conservation lawaatiy he called the moment of instability. He
derived his solution from the approximation to the watavevequations that now bear his name. In this
approximation, the motion can be bidirectional 1 but thechidsia of the balance between nonlinearity and
dispersion is present. It was left to Korteweg and d=vin 1895, who apparently did not know the work of
Boussinesq and Rayleigh and who were still trying to ansierobjections of Airy and Stokes, to write
down the unidirectional equation which now bears their nanfieso(ld appear to have been the thesis
project of deVries.) In this first stage of discovettye primary thrust was to establish the existence and
resilience of the wave. The discovery of its universal eatund its additional properties was to await a new
day and an unexpected result from another experimergrasio answer a totally different question.

The appearance of solitary wave solutions in nature is guitemmon. Refereces can be made to Bell-
shaped sech-solutions and kink-shaped tanh-solutions model preenomena in fluids, plasmas, elastic
media, electrical circuits, optical fibers, chemicalations, bio-genetics, etc. The travelling wave solutions
of the Korteweg-de Vries (KdV) and Boussionesq equatiartgsch describe water waves, are famous
examples as well. For a more detailed and technical acobthe solitary wave, see [2].

In recent years, other methods have developed, such asathéuid transformation method[3], Darboux
transformation [4], tanh method [5,6] extended tanh function rdefif) Exp-function method [8], the
generalize hyperbolic function [9], the first integralthad [10], the exp(®(&))-expansion method [11],
enhanced (G'/G)-expansion method [12-15], modified simple equatgthod [16], and th&-expansion
method [17,18]. All the above-mentioned approaches are bastt @ssumption that the solutions can be
uniformly expressed in terms of some special ansatz.eldre; the original partial differential equations
(PDE’s) can be transformed into a set of algebraic equatiwosgh balancing the same order of the ansatz,
which yields the explicit expressions of the waves. Thiemihce between these methods is attributed to the
different ansatz introduced. For example, in the tanh-cuethod, the ansatz can be written in as
combinations of tanh and coth functions, whild in the Jacliptie function expansion method, the ansatz
can be expressed in the form of Jacobi elliptic functions. Frormpoint of view, all these methods have
some nerits and demerits with respect to the problem coadi@ad there is no unified method that can be
used to deal with all types of NLPDEs. That is why angtithat an improvement is made in a particular
method to allow it to recover some new solutions to the DES it is always welcomed. The purpose of this
paper is to apply a modified F-expansion method to codpladied of NLPDEs.

The aim of this paper is organized as follows: In Se@ian first, we briefly introduse the steps involved in
the modified F-expansion method, In Section 3, by usingests obtained in Section 2, attempts are made
to apply the method to solve the Maccari’s system (2+hedsional.

2 Description of Method

Consider a nonlinear partial differential equation with indeleat variablesx = (t,xl % ..., X and
dependent variables u, in the form:

F(u,u U ol oW o8y by bl Hxg bxp oeedhxm ),=0, (1)

where U=U(X,Y,) is the solution of nonlinear partial differential Eq.(1fFurthermore, the
transformations which are used are as follows:

u(q . % , % ,=U§¢), (=KX K X o+ 4K X m AY). @)
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Where A and K; are constants. Using the chain rule, it can be fouaid th
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At present, Eq. (3) is used to show transfering the nanlipartial differential equation Eq. (1) to nonlinear
ordinary differential equation:

H(U (&) Ve(€) Uge(6).-)=0 @

According to the modified F-expansion method, it is assumedhéaolution can be expressed in the form:

N N

U()=ap+ Y aF (§)+Y BF (¢) (5)

i=1 i=1

whereay, gand h are constants to be determindﬂ(f) satisfies Riccati equation:

F'(&) = A+BF(&)+CF?(¢&) (6)

where A, B and C are constants to be determined. The prineenotesd / d€ . Integer N can be
determined by considering the homogeneous balance bethegoverning nonlinear term (s) and highest

order derivatives otJ ({) in Eqg.(4). Given different values of A, B and C, the difg Riccati function

solution F (5) can be obtained from Eqg. (6) (see Table 1). To deterh:lilﬁe?) explicitly, we take the
following steps:

Step |. Substituting (5) along with (6) into Eq. (4) and collect coedfits of Fi (f) to zero yields a system
of algebraic equations fag (i=N,...,.1,0 , p( F 1,...N , K # 1,...n anc

Step Il. Solve the system of algebraic equations, probably with tbeo&iMathematica or Maple.
8 (i =N ,...,1,() andly (i =1,..., N) can be expressed by A, B and C (or the coefficioht®DE(4).
Substituting these results into (5), we can obtain the genenaldbtravelling wave solutions to Eq.(4).

Step lll. Selecting A, B, C and~ (E) from Table 1 and substituting them along vxﬂih(i =N ,...,1,()

and h (i =1,...,N) into Eq.(5), a series of soliton-like solutions, trigonneefiinction solutions and
rational solutions to Eq.(4) can be obtained.

The modified F-expansion method is more effective in obtgirthe soliton-like solution, trigonometric
function solutions, exponential solutions and rational solutidribe nonlinear partial deferential equations.
This method will yield more rich types solutions of trenlinear partial deferential equations. It shows that
the modified F-expansion method is more powerful in constgiexact solutions of NLPDEs.

Relations between values of A, B, C and corresponﬁr(g,;) in Eq.(6) are listed in (Table 1) [17].
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Table 1. Relations between values of A, B, C and cosponding F (¢) in Eq. (6)

Values of A, B, C F (&)
A=0,B=1,C=-: 1.1 1

2+ 2'[anr( 25)
A=0,B=-1,C=: 11 1

Z—Zcoth(=

2 ZCO t‘(24()
A:% B=0 ’C:-?l coth(&) £csch(é) ,tanlfé) + isec¥)
A=1,B=0,C=-: tanh(&) , coti{é)
A:%, B=0 ,c:% sed &)+ tar(¢), csq¢) - co(¢)
a=1 8=0,c- sed )~ tafé) csq£) + cof)
A=1(-1) ,B=0,C= {-) tan(¢) , co(¢)
A=0,B=1,C= ( ~1 (p is an arbitrary constant)

Cé+n
A is arbitrary constantg =0 ,C= 0 Af
A is arbitrary constantB# 0 , C= 0 exp( Bf)- A

B

3 Exact Solutions of Maccari’'s System

In this section, we discuss the Maccari’'s Systeml)alimensional system, written in the form of the
following equations:

iU +Uyy +uv=0,

wry (i) =0 ;

The celebrated (2+1)-dimensional Maccari’'s systes een found in some studies conducted by Maccari.
Maccari derived this system from the Kadomtsev-Bbtili equation by using the asymptotically exact
reduction method based Fourier expansion and seatporal rescaling [19]. It is necessary to stht t
equation (7) plays an important role in nonlinehygcs. That is to say, this system is often prieskio
describe the motion of the isolated waves, locdlize a small part of space, in many fields such as
hydrodynamic, plasma physics, etc.

By using the transformation:
u=u(x,yd=exg & Ué) .= { x.y)= V) é= k% WA)t@=a «B #y (8

wherek,I,A,a ., and y are arbitrary constants, substituting Eq.(8) vt (7), there will be a change
into:

(10 (£) kAU ¢ (€))7 +(2iakUg (£) + R Ug () -aU()) &7+ & L&) Y€)= ¢

Wer (€)+ Vg () + K U2 (5))5 =0,

©)
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where by integrating the second equation of th¢Jgespect taf , it can be obtained that:

d
v(e)=- y-llfkl UE(e)+ y+1kl ' (o)
where d; is an integral constant. Substituting Eq.(10) wité first equation of the Eq.(9) results in:
i (2ak - k1) Ug (£) +(y(j-1kl —y-a?)u(é) —ﬁ U3(£)+ KUg (€)= 0, (11)
if we let the A = 2a ,it can be found that:
I+ a?NU (6) -— - U3(£) +k2U g () = . 12)
y+Kk y+Kl

Considering the homogeneous balance betvx)dgnand U&r in (12), we suppose that the solution to
ordinary differential equation (12) can be exprddsg

U(&)=ap+agF(&)+ b F (&) (13)

where @y, & and q are constants to be determined. Substituting i) Eq. (12), and using (6), the

left-hand side of Eq. (13) can be converted intfinde series inF J (E) (] =-3,, 3). Equating each

coefficient of F (f) to zero yields a system of algebraic equationssgpr & , bl and d1:

F3:- y|+(kl af+2k2a102

F2: —Sﬁaoalz + 3k231 BC

k + kzal( B+ 2A(}

F :al(yil —(y+a2))—3(a12b1+ agal)erk

ki

0., (% _ 2yy_ 3

FO:ag( b (r+a?) y+kl(a1+360a1bl)+ @ a AB CBY (14)
1 G 2yy_o_ K 2. 2 2( 2

Frhibyh - (rrat) -3 (abf + e+ [ Br 2 AG
F2:-3—X_ap?+3K2 ABY

y+Kl

3
Fo: - K o2y
y+Kl

Solving the algebraic equations (14) using Magie,following solutions will be obtained:
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Case I:
ky+ K2 ky+ K|
=B~ a=0, b= AT
dy = )2+ (K + k3l)(% B2- 2AQ+a &+ k(y+a2) (15)
Case ll:

__kB(y+K) alzclz(kyﬂg,), h=
J2(ky+ K21

dy = 2 + (K2 + k3l)(% B%-2AQ+a ¥+ Kiy+a ?) 16]

Substituting (15) and (16) with Eqg.(13), from Takle we may obtain many soliton-like solutions,
trigonometric function solutions, exponential s@uos and rational solutions to Eq.(7) (where we thé
same type solutions out):

3.1 The Soliton-Like Solutions to Maccari’'s System

(1) wWhenA=0, B=1, C=- 1from Table 1,p (é) :1+—1tanh[—1{J _By (16), the exact solution to
2 2 2

equation (7) is given by:

2 .
ul(x,y,t)=[ @—\/ 2(k/+ K I)%+—; tanh(—; (k(x IyA t))} lgax+By+yt)

2
£ ( x,y,)+(y+a2+k7) (17)

(2) When A=0, B=-1, C= 1from Table 1,F (g) :E—ECOIh(—lfj By (16), the exact solution to
2 2 2

equation (7) is given by:

2 .
UZ(va’t):[‘\/@ﬂ/ 2+ K |)%——; coth%1 (k(x IyA t))} igax+By+yt)

2
5 ( x,y,)+(y+a2+k7) (18)

©) WhenA:%, B=0, C= __; from Table 1,F (&) = coth(&) + csc{¢) or tanfé) £ isec()

By (15), the exact solution to equation (7) is gi\sy:
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Vky+ K2 Jei(ax+ﬁy+yt),

ug(x,y’t)z[Z\/E(coth(k(X* -4 Ok csch(k(x lyA t)

2
2, K 19
+2) (19)

VS(X’y’t):_yka Lé( X,y )+ (y+a

iy +12) Jei(axwyw,

u4(x'y't):[2\/§(tanh(k(x+ ly-A )k isech(k(x IyA t))

__ K 2, K
va(x,y.9= o G(x,y)+(y+ra®+ 2) (20)
By case (16), the exact solution to equation (f)lmawritten as:

/ 2 .
u5(x,y,t)=[—w (coth(k(# Iy 1)} csch(k(x kA t)} (@x+By+yt)
Vs (X, ¥, = - @ x,y}+( +a2+—2) (21)

5 ,y, y+k| 1yl y 2

/ 2 .

u6(x,y,t)={—w (tanh(k(% Iy t)} isech(k(x KA t)%) @x+By+)
(22)

k G
Ve(><,y,t)=—y+kI E(x,y}+(r+a +)

(4) When A=1, B=0, C=- 1lfrom Table 1,F (&) =tanh(¢) orcot{=) By (15), the exact

solution to equation (7) can be written as:

2 .
UB(X’Yat):{\/@ coth(k(x Iy-A t)} Lax+By+pt)

2
2, K 23
+2) (23)

w(x'y’t):_yfkl E(xy)+(y+a

2 .
ky;k L tanh(k(¢ Iy t)} gax+By+n)

ug(x,y,t)={

(24)

k G
Vs(><,y,t)=—y+k| B(x,y}+(y+a +)

By (16), the exact solution to equation (7) is gi\sy:
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Ug(X,y,t)=(—\/ 2(k+ R I)tanh(k(* Iy A t)) iGax+By+yt)

2
Vg(x’y’t):_yfkl 6 x,y,)+(y+a2+k?) : (25)
Uo(X,y.0) = [ —J 2(k/+ R )coth(k(* Iy t)) e+ By+yt)
V10(X1Y1t):_y+k| Fo( x.y}+(y+a® +—) (26)

For direct-viewing analysis, we provide the figuresf u5(x,y,t) , where we choose

a=L=y=1=0,l=1and k= 2.

-2.x 1013
-4 % 1013
-6 1013
-g. x 1012
-1 x 101
12 x 1014

1410

100 i

Fig. 1. Graphics of soliton-like solutionUg are shown at “+” and “~", respectively

o
-2 1037
—4, > 1047
—&. x 1037
—2. = 1047
—1. = 1025
~12 = 1028
~1.4 = 10%%—|
—1.6 = 107
-1.8 = 10%%—|

100 50 [ ~30 “1oo
Fig. 2. Graphics of soliton-like solutionUs are shown at “+” and “-”, respectively

3.2 The Trigonometric Function Solutions to Maccars System

(1) When A:%, B=0, C:—; from Table 1,F(&)=sed¢)+ tar{é) or csfé)- cd€) By (16),

the exact solution to equation (7) can be written a
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U11 xy [ \/ 2(k/+ I@I)(sec(k(x lyA t) tan(k@x A t))i(gx+ﬂy+yt)

o X,y )+ (y+a? +—)

U (X, y,0 = ( J 20+ B)(csc(k(x lyA t)) cot(k(x IyA t})"é’“ﬁym)

2
w2 (XY = Bl Xy )+ a2+ )

y+ kI
By (15), the exact solution to equation (7) cawiiten as:

Vky+ K2l dlax+By+pt).

2f(sec(k(x1— Iy-A t)y tan(k(x Iy A t)))

ua(x,y.9) =

) =- L
viz( X,y 9 y+kl u}3 (x, y)+(y+a +K )
/ 2
U14(X,y,t) ky+k ! |(ax+,8y+yt)’

2\/§(csc(k(x’r ly-A t)y cot(k(x IyA t)))

k2
vig (X, y.0) = U§4 X,Y, +(V+0' + 2)

y+ kI

27)

(28)

(29)

(30)

) WhenA:—%, B=0, C= —%' from Table 1,F (&) = sed &) - tar{&) or cs¢é)+ cdif) By

(15), the exact solution to equation (7) will b@wsin as follows:

Vky +KI dlactByyt)

2x/§(sec(k(>er Iy-A t)y tan(k(% Iy A t)))

Us(X,y.0=

vis (%Y. +k| (Es( x 1y,)+(y+”2+7)

- W dlax+py+pt)
uze (X Y. 2\/§(csc(k(>ﬂ- -1 )y cot(k(X- ly- A t)))
v16(x,y,t)= lﬁG X y)+(y+a +—)

y+ kI

By (16), the exact solution to equation (7) cawiiten as:

(31)

32
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u7(x,y.9) (—%\/ 2(k/+ R 1)(sec(k(x IgA t) tan(k(x IyA t)))“@“ﬁym)

2
(X, y)+(y+a? +—) (33)

V17(X’y’t):_y+k|

Upg (X, y.0 = (—1\/ 2(k+ R 1)(csc(k(x IyA ty cot(k(X HyA t)})‘(é"‘*ﬂy*”)

g X,y }+(y+a? +—) (34)

(3) whenA=1, B=0, C= 1from Table 1,F ({) =tan({) . By (16), the exact solution to equation
(7) is found to be:

U19(X,y,t)=\/m)tan(k(>¢ ly- A t))léﬂx’fﬁywt) ,

o X,y )+ (y+a? +—) (35)

For direct-viewing analysis, we provide the figum‘sull(x,t) ,Vll(x,t) ,ulz(x,t) ,and Vlz(x,t) ,
where we choosé= =0,a=y=-1,k=-2 andA = 1.

By (15), the exact solution to equation (7) is ated as:

Uzo(X,y,t)=\/l(ky7+k2|)cot(k(xr ly- A t))léax’fﬂywt) ’

Bo( X,y }+(y+a? +—) (36)

VZO(X7y’t): y+k|

wherea,3,y,k,| and A are real constants in section 2.1 and 2.2.

250—; " 20000
200 | _a000
150 L 60000
1005 " _s0000
503 " _ 100000
= L _ 130000

50 I~ 140000

| 8 A8 SN _ L 160000
s T x T H T . T T
1300 500 -500-1500 000 -1000 0 000 2000

T T T
1000

T
1]

T T T
-2000 -1000
£ x

f

Fig. 3. (a) Graphics of the periodic solutionuq 1 (b) Graphics of the periodic solutionVy 1
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-1000—

-2000—

3000~

1500 1000

2000 1500

Fig. 4. (a) Graphics of the periodic solutionu » (b) Graphics of the periodic solutio Vq >

3.3 The Rational Solutions to Maccari’'s System

(1) WhenA=B=0, C# Ofrom Table 1, (g) :_L(q is an arbitrary constant). By (16), the exact
Cé+n
solution to equation (7) is obtained as:

i(ax+By+ypt)
Uy (%Y, = -G 20+ R 1)

C(k(x+ly-At)+n

k
y+kl

k2
Var(xy )= Ba( xy )+ (rra?e ) @37)

where C is real constan@®, 5, )/,K,| and A are arbitrary constants.

(2) WhenC =B = Oand A is an arbitrary constant, from TabIeFl(f) = A& .By (15), the exact solution
to equation (7) it can be obtained that:

/1 2
=(ky+k°l
& A ax+By+yt)

K(x+ly=At)
k
y+Kk

Upp(X,y.0 =

K2
V22(X,y,t)=- '«%2( x,y,)+(y+a2+7) . (38)

wherea,3,y,K,l and A are arbitrary constants.

For direct-viewing analysis, we provide the figuret U22(X,t) , and V22(X,t) ,where we choose
|=4=0,a=-1y=-2,k=-4andi = 1

11
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07
100000 . 1010—3
EDDDDD; 1w 1011_:_
300000: 1% wu_f
400000—_ i 10“—2
500000_...... J T 1 T T T ] '2'5”0”: S I L IO Rl AL R LA RN RAARS!
1500 0 -1300 —1000 il 1000 2000 -2000-1000 0 1000 1500 1000 500 0 -300-1000-1500

x § £ x

Fig. 5. (a) Graphics of the rational solutionUyo (b) Graphics of the rational solution Voo

3.4 The Exponential Solutions to Maccari’'s System

(1) WhenB#0, C=0 and Ais an arbitrary constant, from Table ﬁ(g):w By (15), the
B

exact solution to equation (7) is found to be:

1
AB,|= (ky+ 21
2( y+ k) i ax+By+yt)

uzs(x’y’t)zexp(Bk(xlr A D) A
K k2
Vaa () == e Xy (rrat+ ) (39)

wherea,3,y,K,| and A are arbitrary constants.

The solutions obtained in this paper are diffefesrn solutions in [20], (38) and (39) are almost #ame as
the some known solutions in [8] except for the @iomts. Other solutions in this investigation thie
solutions in [8, 20], will be different.

4 Conclusion

This paper reports on the successful applicatiothef F-expansion method to finding the solutions fo
Maccari's system. The F-expansion method has beed to get some types of traveling wave solutions
including the periodic waves and solitary wavesMarccari's system. It is found that the coupled|mzar
system possesses some other solution structuresameaim that the F-expansion method can beetilio
solve problems with systems of nonlinear partiffedential equations that may arise in the thedrgaditon

and other related research areas. In the end, woishwhile to mention that the proposed method is
straightforward and concise and it's applicatiansther nonlinear physical systems can be invastia
future studies.
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