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ABSTRACT 
 
Aim: The objective of this study was to describe the spatial patterns of selected soil properties and 
biomass yield at fine and coarse scale in a switchgrass field to determine the appropriate sampling 
approach to enable the calculation of means with minimum variance.  
Methodology: Spatial variability of biomass yield and soil properties at fine (2.5 m sampling 
interval) and coarse (10 m sampling interval) scales were assessed through semivariogram 
analysis. The site located in Chickasha, Oklahoma, consisted of two soil types a Dale silt loam 
(fine-silty, mixed, superactive, thermic Pachic Haplustolls) and McLain silty clay loam (fine, mixed, 
superactive, thermic Pachic Argiustolls). Eighty soil samples were collected along two 100 m 
transects at 2.5 and 10 m intervals established across each soil type in both 2012 and 2013. 
Results: The semivariograms revealed coarse scale organic carbon (OC) to be strongly correlated 
with range values from 56–78 m for both soils. Normalized difference vegetative index (NDVI) was 
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consistently moderately correlated with a distance less than 30 m at the fine scale for both years. 
Switchgrass yield was strongly correlated at the fine scale for McLain silty clay for both years, while 
a weak spatial dependence over a range of 36 m in 2012 and a moderate dependence at 5 m in 
2013 was observed for the Dale silt loam. Conversely, a reliable spatial dependence could not be 
identified for total nitrogen (TN).  
Conclusion: These results indicate that spatial correlation of coarse scale OC might have been 
imposed by the cropping system, while spatial correlation of switchgrass yield was influenced by 
the soil texture, particularly clay content. The use of the NDVI measurement was useful to describe 
the spatial dependence of switchgrass yield with good precision at the fine scale. 
 

 
Keywords: Switchgrass; spatial variation; soil type; biomass; semivariogram; fine scale; coarse scale. 
 
1. INTRODUCTION 
 
The challenge for agronomy researchers is to 
characterize crop yield variation in space and 
time to provide farmers with useful information to 
make good management decisions [1]. Several 
studies have identified a number of reasons for 
the difficulties in characterizing crop yield 
variation in space and time. Growing season 
precipitation, annual temperature, N fertilizer and 
ecotype are some of the reasons identified for 
variation in switchgrass yield [2]. In the Ozzano 
Dell’Emilia valley area in Spain, Di Virgilio et al. 
[3] conducted a study using GIS and geostatistic 
methods to produce thematic maps of soil 
parameters and switchgrass yield to quantify the 
relationship between biomass yield spatial 
variation and soil parameters (N,P, soil moisture, 
soil texture and OM) in a small plot (5 ha) in 2004 
and 2005. The maps produced from the study 
showed significant variability in the relationship 
between switchgrass yield and nearly all the soil 
parameters [3].  
 
In the northern U.S., variation in switchgrass 
population for nine variables (biomass yield, 
survival, dry matter, lodging, maturity, plant 
height, holocellulose, lignin, and ash) was partly 
due to temperature and eco-region defined by 
soil type [4]. Likewise, switchgrass yield was 
found to vary across 10 locations in the Great 
Plains [North Dakota (Munich and Streeter), 
South Dakota (Bristol, Highmore, Huron and 
Ehtan) and Nebraska (Crofton, Atkinson, 
Douglas and Lawrence)] [5]. Kiniry et al. [6] 
simulating switchgrass yield using the ALMANAC 
(Agricultural Land Management Alternatives with 
Numerical Assessment Criteria) model for 
locations in three southern states [Texas (Dallas, 
Stephenville, and College Station), Arkansas 
(Hope) and Louisiana (Clinton)] found that 
changing the runoff curve number used to 
determine potential runoff water from the soil by 

15% changed the mean annual biomass from 1 
to 31% depending on location.   
 
A quantitative estimation of spatial variability of 
soil properties and crop yield can be obtained 
using semivariogram modeling [3,7-9]. A 
semivariogram describes the relationship 
between spatially separated data points as a 
function of distance [9-11]. The relationship is 
described for each variable by the semivariogram 
parameters: Nugget, sill (total semi-variance) and 
range. Nugget is the variance at distance of zero 
and represents inherent variability or 
experimental error; sill is the semi-variance value 
at which the semivariogram reaches the upper 
bound after its initial increase; range is the 
distance at which each variable becomes 
spatially independent (samples closer to the 
range are related, samples further apart are not). 
Traditionally, one of the main reasons for 
deriving a semivariogram is to use it to predict or 
estimate values at unsampled locations in kriging 
interpolation [3,7,12]. However, a semi-variogram 
can also be used to relate semivariance of 
spatial separation and provides concise and 
unbiased description of the scale and pattern of 
spatial variability [12,13]. For example, spatial 
distribution of soil properties, erosion and crop 
yield along a cultivated transect and an adjacent 
transect in virgin grassland was studied by 
Moulin et al. [14]. The statistical distribution of 
soil properties and crop yield in the landscape 
was found to be affected by erosion that was a 
result of the interaction between elevation and 
surface curvature. Likewise, Huang et al. [7] 
observed a periodic behavior for soil total carbon 
along a transect that was mainly dependent on 
field topographic position and not on land use.  
 
Site specific crop management using remote 
sensing and geographic information systems that 
make use of semivariogram modeling has been 
proposed as a means of managing the spatial 
and temporal variation of soil related, biological, 
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landform and meteorological factors that 
influence crop yield [15-18]. Remote sensing is 
the process of acquiring information about an 
object by a device separate from it by some 
distance such as ground-based booms, aircraft, 
or satellite. Barnes et al. [19] outlined three 
applications for using remote sensing data in 
site-specific agriculture. In the first application, 
multispectral images are used for detection of 
plant stresses (such as pest, water stress and 
nutrient deficiency). In the second application, 
variation in spectral responses is correlated to 
specific variables such as soil properties. Once 
these site-specific relationships are developed, 
multispectral images can be translated directly to 
maps of fertilizer applications and yield 
variability. In the third application, multispectral 
data is converted to quantitative units such as 
vegetative indices (VIs) with physical meaning. 
Vegetative indices can be integrated into 
physically based growth models used for 
assessing crop growth and development. 
Remotely sensed measurements through various 
VIs can assess crop yield potential for 
switchgrass production and can provide reliable 
and consistent information about spatial and 
temporal variability at regional production scale.  
 
Characterizing of variation within a field is 
dependent on the sampling method used. The 
selection of the appropriate sampling approach is 
important to enable the calculation of means with 
the minimum variance. Curran and Williamson 
[20] reported that systematic, as opposed to 
random sampling offers the potential to increase 
the precision. The proportion of nugget to sill or 
total semivariance in a semivariogram is a strong 
indicator of whether the precision of a parameter 
can be increased with systematic, as opposed to 
random, sampling [20,21]. Furthermore, Curran, 
[12] suggested that the semivariograms can be 
used for remote sensed and ground data to aid 
the choice of sample units and sample numbers. 
Thus, the objective of this study were to describe 
the spatial patterns of fine and coarse scale 
sampling of OC,TN, NDVI and switchgrass yield; 
and to determine the appropriate sampling 
approach to enable the calculation of means with 
minimum variance.  
 

2. MATERIALS AND METHODS 
 

2.1 Experimental Site 
 

This study was conducted on an eight (8 ha) 
hectare switchgrass (Alamo) field established in 
2010 at Chickasha, Oklahoma (35.042°N, -

97.917°W). The field is comprised of two soil 
types, Dale silt loam [fine-silty, mixed, 
superactive, thermic Pachic Haplustolls] (~60%) 
and McLain silty clay loam [fine, mixed, 
superactive, thermic Pachic Argiustolls] (~40%). 
Soil P and K were maintained at the levels 
recommended by the Oklahoma State Soil 
testing laboratory for warm season grasses. 
Annual N fertilization (82 kg ha-1) was applied in 
the second year after the establishment of 
switchgrass and each subsequent year. Table 1 
describes the climatic condition of the site for the 
2012 and 2013 growing seasons. 
 

Table 1. Precipitation (mm) and temperature 
(
ᵒ
C) at Chickasha, Oklahoma during 2012 and 

2013 
 

Months Rainfall (mm) Temperature (ᵒC) 

2012 2013 2012 2013 
Jan  50 38 5 4 
Feb 16 73 7 6 
Mar 113 27 15 9 
Apr 79 269 18 13 
May 150 76 22 20 
Jun 71 113 26 26 
Jul 48 145 30 27 
Aug 43 24 28 27 
Sep 117 49 24 28 
Oct 14 58 16 16 
Mean/Total 701 872 19 18 

 

2.2 Yield and Soil Measurements 
 
During 2012 and 2013, the field was sampled at 
fine and coarse scale to permit spatial modeling 
of biomass yield and soil properties. For coarse 
scale sampling, switchgrass biomass and soil 
samples were collected within a 0.5 m2 area 
centered on geo-referenced-grid nodes spaced 
every 10 m along the two 100m transects. While, 
fine scale sampling of feedstock biomass and 
soil samples were collected within a 0.5 m2 area 
distributed every 2.5 m along the two 100 m 
transects (Fig. 1). After randomly assigning 
transects location in 2012, it was later discovered 
that majority of transect 1 was located on the 
Dale silt loam and the entire transect 2 on the 
McLain silty clay loam. Therefore, in 2013, 
transects were randomly assigned to each of the 
soil type (Fig. 1). 
 
In both years, subsamples of the switchgrass 
biomass [0.1 m2 (0.5 m row at 0.20 m row 
spacing)] were hand-clipped and processed for 
determining dry matter yield.  Soil samples were 
collected in March of both years from 0-15 cm 
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depth and analyzed for total organic carbon (OC) 
and total nitrogen (TN). Soil OC and TN 
concentrations were determined by dry 
combustion using LECO CN analyzer (LECO 
Corp., St. Joseph, MI).   
 

2.3 Acquisition of Sensor Reflectance 
Measurements 

 
Spectral data was collected from aerial 
photograph taken in August 2012 and 2013. 
Imagery was converted into reflectance values to 
compute the normalize difference vegetation 
index (NDVI). 
 

2.4 Spatial Analysis  
 

Spatial variability of feedstock (NDVI and yield) 
and soil properties (TN and OC) at fine and 
coarse-scales were assessed through 
semivariogram modeling to quantify the spatial 
variation for each variable [9]. Traditionally, 
modeled semivariogram are used in kriging 
interpolation, but the parameters of a 
semivariogram can also be used to describe the 
spatial dependence (pattern) of a variable with 
distance [7]. There are several models to 
describe semivariogram. However, in this study, 
spatial variation was characterized using circular 
and spherical models.  
 

2.5 Calculating Semivariogram 
 
For a transect running across the field of equally 
spaced samples and measurements of soil 
properties, NDVI (pixel value) and biomass yield 
there were m pairs of observations separated by 
the same lag(distance). Thus, the semivariance γ 
(h) was estimated as:  
 

γ(h) =
�

��(�)
� [�(��) − �(�� + ℎ)]

��(�)

���
.        (1) 

   

Where N(h) is the number of pairs separated by 
lag distance h; Z(xi) is measured sample value 
(soil properties, NDVI (pixel) and biomass yield) 
at point i; and Z(xi + h) is measured sample 
value at point i+h. 
 

To obtain the best-fitted model, the model data 
frequency distribution was compared to a normal 
distribution. The shape of the data distribution is 
often described by the skewness coefficient. An 
absolute value greater than 2 indicates that, the 
distribution is considered as skewed [7]. A 
significant positive value indicates a long right 
tail; a negative value indicates a long left tail. 
 
 

2.6 Statistical Analysis 
 
Data analysis for each transect dataset was 
performed to determine normality, descriptive 
statistics (mean, standard deviation, maximum, 
minimum and CV) and semivarigorams were 
defined and differences in nugget and total 
semivariance and range examined for each of 
the variable. The ArcGIS 10.1 (ESRI, Redlands, 
California, USA) was used to analyze the spatial 
structure of the data and to define the 
semivariograms. Selection of the best fitting 
semivariogram model was based on the lowest 
RMSE (root mean square error) and confirmed 
by visual inspection. The lag-distance used was 
between 2 and 8 depending on the variable.  
  
Spatial correlation with distance for each variable 
was assessed quantitatively by dividing the 
nugget by the sill. The classification classes 
describe by Cambardella et al. [21] was used to 
describe the nugget/sill ratio:1)<25%, strong 
spatial dependence; 2) 25-75% moderate spatial 
dependence; 3) >75% spatially independent or 
pure nugget; and 4) random when the slope of 
semivariogram is close to zero, regardless of 
nugget ratio. 
 

3. RESULTS AND DISCUSSION 
 
3.1 Descriptive Statistics 
 
The descriptive statistics for TN, OC, NDVI and 
biomass yield for 2012 and 2013 at fine (2.5 m) 
and coarse (10 m) scale sampling distance for 
each transects is presented in Table 2. Mean TN 
was similar between soils, while higher OC and 
biomass yield was observed for the McLain silty 
clay loam for both years. Switchgrass yield 
increased for each soil from 2012 to 2013, while 
OC and NDVI value decreased. Distributions of 
TN, OC, NDVI and biomass yield were normally 
distributed for the fine scale sampling distance 
based on the skewness value (skewness 
coefficient<2).The McLain silty clay loam NDVI 
was significantly negatively skewed at the coarse 
scale for both years of the study. Log 
transformation generally reduced skewness, but 
skewness values for NDVI increased after the log 
transformation. The standard deviation and CV 
were used as estimates of variability (Table 2). In 
general, greater variation for the soil parameters 
(OC and TN) were observed in the Dale silt loam, 
but the McLain silty clay loam reported greater 
variability for yield parameters (NDVI and 
switchgrass yield) based on the standard 
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deviation and CV values. Switchgrass yield was 
highly variable with CV greater than 40% for Dale 
silt loam and 50% for McLain silty clay loam at 
fine and coarse scale. The yield ranges from 
150–816 g/0.10 m2 in 2012 and 260–1463 g/0.10 
m2 in 2013 for the Dale silt loam at fine and 
coarse scale. Yield for the McLain silty clay loam 
ranges from 35–1655 g/0.10 m2 and 55–1498 
g/0.10 m2 in 2012 and 360–2670 g/0.10 m2 and 
390–2580 g/0.10 m2 in 2013 at the fine and 
coarse scale respectively. The variation 
observed between the soils for the soil 
parameters and yield parameters may be 
attributed to intrinsic characteristics related to 
each soil and extrinsic sources. Rao and 
Wagenet, [22] define intrinsic variation as the 
natural variations within a soil and extrinsic 
variation as the variations that imposed on a field 
as part of crop production practices. Same 
production practice when imposed on the entire 
field, the variation in soil parameters can be 
considered to be more intrinsic; whereas 
variation in yield parameters maybe attributed to 
a combination of intrinsic and extrinsic sources. 

 

3.2 Semivariogram Models 

 
The geostatistical parameters describing the soil 
and yield parameters from the transect datasets 
were listed in Table 3. Spatial variation was 
characterized using spherical and circular 
models. For circular and spherical models, 
semivariance increases with distance between 
samples (lag distance) to a constant value (sill or 
total semivariance) at a given separation 
distance called the range of influence [21]. 
Samples separated by range distance are related 
spatially, and those separated by distance 
greater than the range are not spatially related. 
In other words, semivariogram models where the 
slope is not equal to zero describes samples that 
are spatially related, while models with slope that 
is close to zero(where the total variance equals 
the nugget variance) describes samples that are 
not related. The semivariogram for the McLain 
silty clay loam fine and coarse scale TN exhibits 
a slope close to zero in 2013, suggesting that TN 
was not related at either the fine or coarse scale 
sampling distance. Likewise, coarse scale TN 
and switchgrass yield also reported slope close 
to zero on the Dale silt loam and the McLain silty 
clay loam coarse scale NDVI for both 2012 and 
2013. Semivariogram slope for OC was positive, 
except at the 2013 fine scale. A positive slope 
means that samples within the distance of 
influence (range) were closely related. Positive 

slope was also observed for the fine scale NDVI 
and yield for both soils in 2012.  
 
According to Webster, [23] estimates of range 
tend to be landscape dependent that may be 
interpreted to indicate the distance across 
distinct soil type. However, in this study the 
estimate of range can be attributed to small 
landscape changes within a soil type (i.e. wet 
spots). Range values were considerable variable 
among the different parameters. There were 
some similarities in range values for OC, TN and 
NDVI for the Dale silt loam at the fine scale 
sampling distance across both years. While, 
greater variation in range values was observed 
for the McLain silty clay loam and at the coarse 
scale sampling distance. 
 
The distinct classification of spatial dependence 
based on Cambardella et al. [21] that uses a 
nugget ratio expressed as percentage of the total 
semivariance was used to determine the spatial 
dependence of fine and coarse scale TN, OC, 
NDVI and switchgrass yield of Dale silt loam and 
McLain silty clay loam soils within the same field 
for the 2012 and 2013 growing seasons. 
Semivariograms indicated strong spatial 
dependence for variables such as coarse scale 
OC for both soils in 2012 and 2013, McLain silty 
clay loam fine scale switchgrass yield in 2012 
and 2013, and the Dale silt loam coarse scale 
NDVI in 2013 (Table 3). Strong spatial 
dependence of OC was also reported for several 
other studies under different production 
practices. For example, Cambardella and Karlen 
[24] reported strong spatial dependence of OC 
under conventional and organic field in Iowa, 
Huang et al. [11] for soils under conservation 
reserve program land for 10 years and partially 
continuously crop land and Cambardella et al. [3] 
under tillage and no-till fields. All these studies 
reported sampling distance greater than 10 m 
separating each sampling points. Therefore, the 
strong spatial dependence of the coarse scale 
OC reported in this study is a strong indication 
that the coarse scale sampling (10 m) was 
appropriate for determining the spatial 
dependence of OC. On the contrary, variations of 
spatial dependence for the fine scale OC showed 
strong and close to a weak spatial dependence 
for the Dale silt loam in 2012 and 2013 
respectively, and weak and no spatial 
dependence for the McLain silty clay loam in 
2012 and 2013 respectively. This suggests that 
the fine scale sampling was not the most 
appropriate. Considering that the transects 
location differed each year of the study (Fig. 1),
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.  

 
Fig. 1. Site map with location of sampling transects in relation to soil map units for the 2012 
and 2013 growing seasons. Transect 1 (T1) was located on a Dale silt loam (fine-silty, mixed, 
superactive, thermic Pachic Haplustolls) and transect 2 (T2) on a McLain silty clay loam (fine, 
mixed, superactive, thermic Pachic Argiustolls). Sample data were collected at points 2.5 m 

apart (fine scale) and 10 m apart (coarse scale). Color inserts display field conditions for  
2012 and 2013 

 
the results of this study and others mentioned 
above are strong indication that spatial 
distribution of OC can be determined 
systematically from samples collected at 
distance greater than 10 m apart. 
 
Spatial dependence of fine scale NDVI did not 
change from 2012 to 2013, but switchgrass yield 
spatial dependence did change for the Dale silt 
loam. In 2012 and 2013 growing seasons, fine 
scale NDVI was moderately correlated for both 
soils, but fine scale switchgrass yield was weak 
and moderately correlated in 2012 and 2013 for 
the Dale silt loam respectively and strongly 
correlated for the McLain silty clay loam (Table 
3). In contrast, spatial dependence was more 
variable at the coarse scale. The difference in 
the range distance was small from year to year. 
Similar range was observed for switchgrass yield 
at the fine scale for the McLain silty clay loam for 
both years, but differed for the Dale silt loam. 
The range of influence for the McLain silty clay 

loam was 5mfor both years and the Dale silt 
loam was 36 and 5m in 2012 and 2013 
respectively. The larger range of influence in 
2012 for the Dale silt loam could be a result of 
the inclusion of a few samplings from the McLain 
silty clay loam (Fig. 1). The small nugget ratio 
and small range values for the fine scale McLain 
silty clay loam switchgrass yield for both years 
(Table 3) is an indication of the high variable in 
stand density [24] that was observed within the 
field. Likewise, the small range for the Dale silt 
loam in 2013 is also an indication of a patchy 
distribution of switchgrass yield [3]. The McLain 
silty clay loam high clay content resulted in an 
extended wet period during the early spring 
precipitation that impacted the germination and 
stand establishment. The average number of 
plants harvested per 0.1 m 2 was 2.3 for the 
Dale silt loam and 1.4 for the McLain silty clay 
loam. Therefore, the higher biomass yield 
observed on the McLain silty clay loam was a 
result of increased tillering as individual plants 
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took advantage of the available space and less 
competition (Table 2). In addition, switchgrass 
stand established at row spacing of 0.2 m have 
been observed to thin over time resulting in a 
more patchy distribution. This situation could 
very be the scenario with the Dale silt loam. Di 
Virgilio et al. [3] also reported a smaller range in 
describing the spatial distribution of switchgrass 
in a field from 2004 to 2005. Spatial dependence 
at the coarse scale was inconsistent, thus a 
reliable spatial correlation could not be identified 
to describe the spatial patterns of NDVI and yield 
in this field. 
 
There was a consistent pattern in the spatial 
correlation between NDVI and switchgrass yield.  
Moderate spatial correlation for fine scale Dale 
silt loam NDVI corresponds with a weak and a 
moderate spatial correlation for yield in 2012 and 
2013, respectively. Similarly, a moderate spatial 
correlation for fine scale McLain silty clay loam 
NDVI corresponds with a strong spatial 
correlation for yield in both 2012 and 2013. At 
the coarse scale, weak spatial dependence for 
the Dale silt loam NDVI corresponds to a random 
distribution for the Dale silt loam yield in both 
years. The McLain silty clay loam coarse scale 
NDVI and yield were both randomly distributed in 
2012, but NDVI was randomly distributed and 
yield was strongly spatial correlated within a 
distance of 65 min 2013. 
 
Curran, [20] pointed out that consideration of 
sample size is of particular importance when 
remotely sensed data are correlated to ground 
data or whenever ground data are being 
estimated from remotely sensed data. The 
sample size in this study was identical for ground 
and remotely sensed data. Therefore, the small 
variation was assumed to be a result of 
difference in sample area used to compute the 
NDVI (0.25 m2) and sampling area (0.1 m2) for 
the biomass. The computed NDVI is based on 
the extraction of a value for the transect point 
within a pixel in relation to the point location, 
while the actual sampling collection involve 
harvesting of a 0.5 m row within the location of 
each transect point. Based on the sampling 
approach, the consistency in the spatial pattern 
observed is a strong indication that remotely 
sensed data could be used to describe the 
spatial distribution of switchgrass yield across 
the two soil types within this field. 
 
In general, remote sensing approach for 
determining the best sampling approach to 
enable the calculation of means with minimum 

variance offers numerous advantages over 
actual field samples, but should always be 
support by ground sampling data. For example, 
in this study a systematic sampling distance 2.5 
m was found to be appropriate to describe the 
spatial distribution of NDVI for both soils. While, 
actual ground sampling suggests that a random 
sampling approach might be appropriate for the 
Dale silt loam and systematic sampling at 2.5 m 
for the McLain silty clay loam. Sampling at 2.5 m 
distance is impractical to most producers as it is 
labor intensive and time consuming.  Therefore, 
the use of remote sensing for the estimation of 
switchgrass yield can be performed at this fine 
scale sampling distance inexpensively and with 
less labor and time. These results indicate that 
remote sensing measurements could be used to 
adequately describe the spatial distribution of 
switchgrass yield at fine scale. 
 
To evaluate temporal variation from year to year, 
fine scale NDVI was computed for the 2012 and 
2013 transect points using the aerial imagery of 
2013 and 2012 respectively. The result shows 
similar spatial correlation for fine scale NDVI 
using the 2013 NDVI values and 2012 transects 
points for both soil types (Table 3). When NDVI 
was computed from the 2013 aerial image for the 
2012 transect points the Dale silt loam fine scale 
NDVI was moderately correlated over a range of 
39 m an increase of 10 m and the McLain silty 
clay loam was moderately correlated over a 
range of 5m, a decrease of 5 m compared to the 
2012 NDVI. Similarly, when 2012 NDVI  was 
computed with the 2013 transects points the 
Dale silt loam was strongly correlated over a 
range of 9 m, a decrease of 18 m  and the 
McLain silty clay loam strongly correlated over a 
range of 23m, a decrease of 1 m compared to 
the 2013 NDVI. These results further suggest 
that variation was small from year to year for 
each of the soil types within the field and also 
illustrates the benefit of using remote sensed 
data for describing spatial distribution of 
switchgrass yield. 
 
Spatial dependence of TN was ranked moderate, 
weak or random (no spatial dependence). Total 
N in 2012 was strong and moderate spatial 
dependence at the coarse scale over a distance 
of 54 and 66 m for the Dale silt loam and the 
McLain silty clay loam respectively. In 2013, 
randomness dominated at the coarse scale for 
both soil types. At the fine scale, weak spatial 
dependence was observed for both soils in 2012 
and for the Dale silt loam in 2013, but was 
random for the McLain silty clay loam in 2013 
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(Table 3). Spatial pattern of OC and biomass 
yield was, in general, somewhat stable within soil 
type for both years, but TN varied greatly. The 
variation of spatial dependence of TN is not 
surprising. It is well documented that soil 
nitrogen is influenced by environmental factors 

such as temperature and moisture. Therefore, 
the warmer temperature and wetter condition 
prior to sampling in 2012, opposed to cooler 
temperature and drier condition prior to sampling 
in 2013 could have attributed to differences in 
the spatial patterns observed. 

 
Table 2. Statistical parameters of selected soil properties, NDVI and switchgrass yield along 

two 100 m transects at two sampling distance over two growing seasons 
 

Parameters Sample 
no. 

Mean Stand. Dev Minimum Maximum Skewness Coeff. 
Var. 

2012 
TN (g kg-1)        
T1@2.5 m 40 1.10 0.20 0.70 1.60 0.29 19 
T1@10 m 9 1.10 0.20 0.70 1.40 -1.01 20 
T2@2.5 m 40 1.30 0.20 0.90 1.60 -0.01 14 
T2@10 m 9 1.30 0.20 1.00 1.40 -1.01 13 
OC (g kg

-1
)        

T1@2.5 m 40 11.2 2.60 7.80 20.7 1.26 23 
T1@10 m 9 13.0 2.40 8.10 15.30 -0.61 18 
T2@2.5 m 40 14.9 1.40 12.20 18.70 0.72 9 
T2@10 m 9 14.7 1.50 12.60 16.90 0.45 10 
NDVI        
T1@2.5 m 40 0.491 0.03 0.416 0.545 -0.45 7 
T1@10 m 9 0.492 0.02 0.464 0.519 -0.68 4 
T2@2.5 m 40 0.488 0.08 0.153 0.611 -1.85 16 
T2@10 m 9 0.470 0.13 0.150 0.610 -2.10 28 
BM (g /0.1 m

2
)        

T1@2.5 m 40 403 185 150 816 0.66 46 
T1@10 m 9 385 238 150 816 0.94 62 
T2@2.5 m 40 619 383 35 1655 0.72 62 
T2@10 m 9 720 505 55 1498 0.47 70 

2013 
TN (gkg

-1
)        

T1@2.5 m 40 1.10 0.10 0.90 1.30 -0.15 8 
T1@10 m 9 1.10 0.10 1.00 1.20 -0.18 7 
T2@2.5 m 40 1.20 0.10 1.10 1.30 -0.07 6 
T2@10 m 9 1.20 0.00 1.20 1.30 1.33 0.3 
OC (g kg-1)        
T1@2.5 m 40 11.0 1.10 9.00 13.7 0.29 10 
T1@10 m 9 11.1 1.20 9.50 13.7 0.88 11 
T2@2.5 m 40 13.4 0.60 12.4 15.5 0.98 4 
T2@10 m 9 13.3 0.20 12.4 14.0 -0.39 5 
NDVI        
T1@2.5 m 40 0.358 0.05 0.267 0.455 0.04 13 
T1@10 m 9 0.348 0.04 0.267 0.401 -0.72 12 
T2@2.5m 40 0.444 0.07 0.267 0.600 -0.24 17 
T2@10m 9 0.437 0.01 0.267 0.497 -1.97 2 
BM(g/0.1m2)        
T1@2.5 m 40 538 228 260 1463 1.80 42 
T1@10 m 9 712 342 260 1463 1.04 48 
T2@2.5 m 40 1051 515 360 2670 1.28 49 
T2@10 m 9 1087 681 390 2580 1.20 63 

Transects (T1 and T2) were 100 m long with sample points every 2.5 and 10 m apart, T1 was located on a Dale 
silt loam and T2 on a McLain silty clay loam within the same switchgrass field in Chickasha Oklahoma
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Table 3. Semivariogram models and spatial distribution parameters of switchgrass yield, total 
nitrogen and organic carbon collected across two seasons (2012 and 2013) at different 

sampling distance (2.5 m and 10 m) along two 100 m transects on different soil types (Dale silt 
loam and McLain silty clay loam) within the same field

 
Parameters Model Range (m) Nugget ratio† Class‡ RMSE 

2012 
TN (g kg-1)      
T1@2.5 m  Spherical  35 75 W 0.02 
T1@10 m   0 100 R 0.02 
T2@2.5 m Spherical 56 80 W 0.02 
T2@10 m Spherical 66 49 M 0.02 
OC (g kg

-1
)      

T1@2.5 m  Spherical 90 20 S 0.13 
T1@10 m  Spherical 56 22 S 0.17 
T2@2.5 m Spherical   8 80 W 0.15 
T2@10 m Spherical 65 0 S 0.07 
NDVI        
T1@2.5 m  Spherical 29 48 M 0.03 
T1@10 m  Spherical 56 76 W 0.03 
T2@2.5 m Spherical 10 38 M 0.07 
T2@10 m  0 100 R 0.14 
T1-NDVI131 Spherical 39 70 M 0.04 
T2-NDVI13

2
 Spherical 5 63 M 0.07 

BM (g /0.1 m
2
)      

T1@2.5 m  Spherical 36 87 W 191 
T1@10 m     0 100 R 258 
T2@2.5 m Spherical   5 11 S 366 
T2@10 m    0 100 R 524 

2013 
TN (g kg-1)      
T1@2.5 m  Spherical 52 75 W 0.01 
T1@10 m   0 100 R 0.01 
T2@2.5 m  0 100 R 0.01 
T2@10 m  0 100 R 0.01 
OC (g kg

-1
)      

T1@2.5 m  Circular 5 74 M 0.08 
T1@10 m  Spherical 78 5 S 0.08 
T2@2.5 m  0 100 R 0.05 
T2@10 m Circular 54 9 S 0.03 
NDVI      
T1@2.5 m  Spherical 27 64 M 0.05 
T1@10 m  Spherical 65 2 S 0.03 
T2@2.5 m Circular 24 70 M 0.07 
T2@10 m  0 100 R 0.08 
T1-NDVI123 Spherical 9 0 S 0.03 
T2-NDVI12

4
 Spherical 23 25 S 0.04 

BM (g /0.1 m
2
)      

T1@2.5 m  Spherical 5 60 M 244 
T1@10 m   0 100 R 391 
T2@2.5 m Spherical 5 32 S 534 
T2@10 m Spherical 65 6 S 468 
†Nugget ratio = (Nugget semivariance/sill)*100;

1 
NDVI computed for T1@2.5 m using 2013 aerial image;

2
NDVI 

computed for T2@2.5 m using 2013 aerial image;
3
NDVI computed for T1@2.5 m using 2012 aerial image; and 

4
NDVI computed for T2@2.5 m using 2012 aerial image. ‡Spatial Class: S= strong spatial dependence (% 

Nugget ratio <25); M = moderate spatial dependence (% Nugget ratio between 25 and 75); W= weak spatial 
dependence (% Nugget ratio >75); R = random (slope of semivariogram close to zero, regardless of nugget ratio) 
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Some researcher hypothesized that strongly 
spatially dependent properties may be controlled 
by intrinsic variations in soil characteristics such 
as texture and mineralogy and weak spatially 
dependence properties may be controlled by 
extrinsic variations such as fertilizer application 
and cropping practice [21,22]. Therefore, the 
weak to random spatial correlation observed for 
TN at the fine and coarse scale could be seen as 
indicators of the influence of extrinsic variations, 
such as fertilizer application and cropping 
practice and the medium  spatial dependence of 
NDVI controlled by  the combined effect of the 
intrinsic and extrinsic factors. On the contrary, 
the consistent strong spatial dependence of 
coarse scale OC across the different soil types 
suggest that it may be controlled by extrinsic 
factors such as cropping system and residue 
removal. Whereas, the differences in spatial 
correlation for switchgrass yield between the two 
soils further suggest that soil surface texture was 
the dominant influence. Di Virgilio et al. [3] study 
evaluated  the spatial dependence of numerous 
soil characteristics (silt content, clay content, 
sand content, organic matter, soil strength, soil 
moisture, pH, P and N) based on nugget/ sill ratio 
[21] in a switchgrass field found only clay content 
to have strong spatial correlation with distance. 
The soils used in this study are almost identical 
with the major difference being that the McLain 
silty clay loam contains 31% clay to 20 % of the 
Dale silt loam [25]. 

 

4. CONCLUSION 

 
Since most spatial analysis studies of a field 
involved multiple soil types, this study was 
preformed to determine the appropriate sampling 
method and distance to obtain a mean with the 
minimum amount of variability for OC, TN and 
biomass yield. The result of this study reports 
similar spatial pattern of OC across soil type, but 
greater variation in spatial pattern for yield and 
TN. Based on these results the best precision 
(mean with minimum variation) for OC maybe 
achieved by systematic sampling. While the best 
precision for switchgrass yield and TN maybe 
achieved by random sampling.  

 

These results indicate that the coarse scale 
sampling was appropriate for determining the 
spatial variation of OC, while fine scale sampling 
was appropriate for switchgrass yield. Also, the 
relationship between the spatial dependence of 
NDVI obtained from aerial imagery and the 
spatial dependence of switchgrass yield from 

ground sampling also suggest that aerial imagery 
could be an appropriate sampling approach for 
estimating switchgrass yield. 

 

Finally, spatial patterns described for the different 
parameters indicates that spatial dependence of 
coarse scale OC was independent of soil type, 
fine scale switchgrass yield was greatly 
influenced by the soil type (clay content) and  
spatial dependence of TN could not consistently 
be identified from year to year on the same soil 
type. 
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