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Abstract

In this paper, the Archimedean t-conorm- and t-norm-bastmval-valued hesitant fuzzy ordered
weighted averaging (A-IVHFOWA) operator and the Archimedeasntom- and t-norm-based interva
valued hesitant fuzzy ordered weighted geometric (A-IVHFQVW@@erator are given by taking fully
account of the different weights associated with theiquéar ordered positions. Several desiraple
properties of the developed operators, such as commutatiétyipiatency, and boundedness, are stugied
in detail, and some special cases of these operaterarayzed as well. Furthermore, we apply the
proposed operators to develop a method for solving a multi-eritegision making (MCDM) problem
within the context of interval-valued hesitant fuzzynedats (IVHFES). Finally, a practical example|is
provided to illustrate the practicality and effectivenesthefdeveloped operators and method.

Keywords: Multi-criteria decision making; Hesitant fuzzy daterval-valued hesitant fuzzy set; t-conorm;
t-norm; OWA; OWG.
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1 Introduction

In the multi-criteria decision making (MCDM) problems, thecision makers (DMs) often cannot provide
their preference with single exact value, a margin ofreor some possibility distribution on the possible
values, but several possible values [1,2]. The fuzzy3$etr[d it existing extensions, such as the intuitionistic
fuzzy set [4], the interval-valued fuzzy set [5], the iméd-valued intuitionistuc fuzzy set [6], the type-2
fuzzy set [7], and the fuzzy multiset [8,9], do not dedhwhe situation. To circumvent this issue, Torrp [1
and Torra and Narukawa [2] proposed the concept of hesitazy tets (HFSs) to permits the membership
degree of an element to a set to be presented as Ispussible values between 0 and 1. Since its first
appearance, many scholars have paid great attentighe tdFSs [10-18]. For example, Xia and Xu [11]
presented several operators for aggregating hesitant fudaymation, and further investigated the
correlations among these aggregation operators. Xia et §l.dg\@loped a series of quasi-arithmetic
aggregation operators, ordered aggregation operator, inducedgation operators for hesitant fuzzy
information. Xu and Xia [13] proposed a variety of distance omeasand ordered distance measures for
hesitant fuzzy sets, and discussed their properties arnimelas their parameters change. Xu and Xia [14]
defined some distance measures and correlation coaffidier hesitant fuzzy elements, and investigated the
differences and correlations among them in detail.

However, it is noted that the membership function in & ld&n only take the form of crisp numbers, and it is
sometimes difficult to express the uncertain infororatiLater, Chen et al. [19,20] generalized the notion of
HFSs by allowing the membership function to assume viatevalues, and defined the interval-valued
hesitant fuzzy sets (IVHFSs). The core of an IVHF$& interval-valued hesitant fuzzy number (IVHFN)
[20], which is composed of some possible membership degmeges. Interval-valued hesitant fuzzy
numbers (IVHFNs) are a very useful tool to express asigrimaker’'s preference information under
uncertain or vague environments. With respect to MCDM probla which criterion values take the form
of IVHFEs, in order to get a decision result, an importtap is the aggregation of IVHFNs. Until now,
many different kinds of interval-valued hesitant fuzzggmegation operators have been proposed to
aggregate interval-valued hesitant fuzzy information. Cheh §0] developed a family of operators to fuse
interval-valued hesitant fuzzy information, such as the FWA operator, the IVHFWG operator, the
GIVHFWA operator, the GIVHFWG operator, the IVHFOWA oatar, the IVHFOWG operator, the
GIVHFOWA operator, the GIVHFOWG operator, the IVHFHdéperator, the IVHFHG operator, the
GIVHFHA operator, and the GIVHFHG operator. Zhang eff2il] developed several induced generalized
interval-valued hesitant fuzzy operators, including the IGI@MFA operators and the IGIVHFOWG
operator. It is clear that above aggregation operatorsasedion the algebraic operational laws of IVHFES
for carrying the combination process. The basic algebraiatpes of IVHFEs are algebraic product and
algebraic sum, which are not the only operations thatbeachosen to model the intersection and union of
IVHFESs. A generalized union and a generalized intersectidiVBFEs can be constructed from a general t-
norm and t-conorm, i.e., the instances of various t-normg-aodorms families can be used to perform the
corresponding intersections and unions of IVHFEs. For arsettion, a good alternative to the algebraic
product is the Einstein product, which typically gives the esamooth approximations as the algebraic
product. Equivalently, for an intersection, a good altévadab the algebraic sum is the Einstein sum. Wei
and Zhao [22] developed several new interval-valued hesitant faggsegation operators, such as the
HIVFEWA operator, the HIVFEWG operator, the HIVFEOW peyator, the HIVFEOWG operator, the |-
HIVFEOWA operator, and the I-HIVFEOWG operator.

The Archimedean t-conorm and t-norm [23,24] are generaliztédmany other t-conorms and t-norms,
such as the Algebraic, Einstein, Hamacher and Frank t-ceramocht-norms. The Archimedean t-conorm and

t-norm are generated by an additive funct'@(ﬁ) and its dual functionf (t) = g(1-t). When the additive

generatorg(t) is assigned different forms, we can obtain some spe&iitimedean t-conorms and t-

norms. Thus, the Archimedean t-conorm and t-norm are momraeand more flexible. Recently, Zhang
and Wu [25] treated the interval-valued hesitant fuzzy aggoegaperators with the help of Archimedean
operations and developed two new Archimedean t-conorm- aodn-based interval-valued hesitant fuzzy
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aggregation operators, including the Archimedean t-conormt-aadn-based interval-valued hesitant fuzzy
weighted averaging (A-IVHFWA) operator and the Archimedeaonerm- and t-norm-based interval-
valued hesitant fuzzy weighted geometric (A-IVHFWG) agper. Then, they applied these two operators to
develop an approach for MCDM within the interval-valued hesifuzzy context and provided a practical
example to demonstrate the proposed approach. It is netiaethe A-IVHFWA and A-IVHFWG operator
weight only the interval-valued hesitant fuzzy arguments take little account of the different weights of
the particular ordered positions of arguments. This papes ait introducing some “ordered” weighted
operators to aggregate interval-valued hesitant fuzzy argtsnased on the ideas of the OWA operator [26]
and Archimedean operations, such as the Archimedean trooaod t-norm-based interval-valued hesitant
fuzzy ordered weighted averaging (A-IVHFOWA) operator and Ahghimedean t-conorm- and t-norm-
based interval-valued hesitant fuzzy ordered weighted gean{@tiVHFOWG) operator. The prominent
characteristic of the A-IVHFOWA and A-IVHFOWG operatassthe reordering step in which the input
arguments are rearranged in descending order, in partianlinterval-valued hesitant fuzzy argument is not
associated with a particular weidhit rather a weighis associated with a particular ordered positibthe
interval-valued hesitant fuzzy arguments, which are hefpf relieving the influence of unfair information
on the decision result by assigning low weights to thdaésé” or “biased” arguments.

To do this, the rest of the paper is arranged as belovedtid® 2, we review some basic knowledge. Section
3 develops two interval-valued hesitant fuzzy ordered weilghdggregation operators based on Archimedean
t-conorm and t-norm. The properties and special caseesé thewly developed aggregation operators are
discussed as well. Section 4 gives a procedure to imptethenproposed operators to MCDM within

interval-valued hesitant fuzzy environments. Section pgses a numerical example to verify the proposed

method and compares it with the previous work. Concludémarks and further research directions are
included in Section 6.

2 Preliminaries

2.1 Hesitant fuzzy sets and interval-valued hesitarfuzzy sets

Definition 2.1 [1,2]. Let X be a reference set. A hesitant fuzzy set (HASyn X is in terms of a function
hA(X) that when applied tX returns a subset ({D,]] and is denoted by the following mathematical
symbol [18]:

A={<x,hA(x)>‘ X >§ @)

where hA(X) is a set of some values [lﬁ)]] which denote the possible membership degrees of the

elementx0 X to the setA. For simiplity, Xia and Xu [11] calledh= hA( X) a hesitant fuzzy element
(HFE). Let H be the set of all HFEs.

Example 2.1.Let X ={x, %, x}, A={(x,{0.8,0.8) (x { 0.4,0.3,012 (x {, 0.5,3)%, and
h :{0.4,0.3,0.}2. Then, A is a HFS onX andh is a HFE.

Definition 2.2 [20]. Let X be a fixed set and®D ([0,]]) be the set of all closed subintervals[ﬂf,]] , L.e.,
D([O,]]) ={a= [a" -y ]‘ da<d,a,d D[ 0,1} . An interval-valued hesitant fuzzy set (IVHFS) on

X is in terms of a function that when appliedXo returns a subset dD ([0,]]) .
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Chen et al. [20] expressed the IVHFS as:

A={( 030 @

where ﬁA(X) denotes all possible interval membership degrees ofléreentX ] X to the setA.. For
simiplity, Chen et al. [20] callet = FIA(X) an interval-valued hesitant fuzzy element (IVHFE). Etbe

the set of all interval-valued hesitant fuzzy elements @gs). If j/[ H then j7 is an interval number [27]

and can be denoted tﬂ:[f/",fﬂ } Wheref/L =inf y andf)J =Supy express the lower and upper

limits of J/, respectively. Obviously, if/L = VJ for any yJ Fl, then the IVHFESs are reduced to the HFEs.

Example 2.2.Let X ={ X, %, >g} ,

A={(x{[08.09[050p) (x{[ 030d%.03pk, 02 x{ . 0.4 foer0.g)}.

and h ={[0.3,0.$ [ 0.3,0.]4[, O.Z,q}3 Then, A is an IVHFS onX and h is an IVHFE.

Zhang and Wu [25] put forward the following comparison laws éongaring the IVHFES:

Definition 2.3 [25]. For an IVHFE ﬁ:{yif/D F\} :{[VL,VJ]‘VDE} ’S(E)ZZVDH(;"‘VJ) S

called the score function df, wherelﬁ is the number of intervals iR .

Definion 2.4  [25]. For an IVHFE h :{;71;7D ﬁ} :{[VL,V’ ]‘ yO F} :
> (lp = ()« - o7

2.
score function off .

V(ﬁ) = VD“ is referred to as the variance functioanf where S( ﬁ) is the

Definition 2.5 [25]. Let |’~1l and|’~12 be any two IVHFEs, and Ies(ﬁ) and V(ﬁ) (i =1,2) be the score

functions and the variance functionsk}f(i =1, 2), respectively. Then, the following conditions hold:

o w5{)> 1), vens >
@) If s( ) 5( ) then
@if v(R)<v(h), thenhy > h,.

i}
1
e=p

@ if v(ﬁ):v(h),then
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For three IVHFEsﬁ, ﬁl and I’~12 Chen et al. [20] developed several operational lawthéon as:
@ h ={[1—VJ J—V]\VDE}
@ RUR={[7 077 07 ] 7.0 by 0 )
@ RNR={[7 077 07 7.0 Ry 0 )

2.2 Archimedean t-norm and Archimedean t-conorm

Definition 2.6 [23,24].A function T :[0,]] ><[ 0,2] - [ 0,]_ is called a t-norm if it satisfies the following
four conditions:

1) T(l,a = a for all aD[O,J].
2 T(ab)=T(h g forall a,b0[0,].

b) =
@ T(aT(hqg)=T(T ab, §foralabco[0,].

4) Ifa<d andb<b foralla,a,bB0[0,], thenT (ab)< T( 4, bB).

Definition 2.7 [23,24].A function S:[O,]] ><[ 0,2] . [ 0,]_ is called a t-conorm if it satisfies the following
four conditions:

(1) S(0,a) = aforall ad[0,]].

2 S(abh= g b aforalab0fo0,].

® S(ag b= ¢ 6.a)b)forala,b cO[0,].

(4) Ifa<d andbs<b foralla,a,bB0[0,] thenS(abh< g 4 b.

Definition 2.8 [23,24]. A t-norm functionT(a, b) is called an Archimedean t-norm fif it is continuous and
T(a, a) < afor all aD(O,l) . An Archimedean t-norm is called a strictly Archimedearotm if it is

strictly increasing in each variable far, b (01) .

Definition 2.9 [23,24]. A t-conorm functionS( a t) is called an Archimedean t-conorm if it is continuous
and S( a a) > gfor all aD(O,l) . An Archimedean t-conorm is called a strictly Archimedeaanorm if it

is strictly increasing in each variable farbJ(0,1) -

It is well known [28] that a strict Archimedean t-noFFr( a, b) is characterized by its additive generagpr
asT(ab)= g‘l( o a+ d l)) whereg:[0,1] - [0+e0] is a strictly decreasing function such that
g(1)=0. A dual Archimedean t-conornS( a b) is expressed aS( a t) = fl( f( a)+ f( t)) with

f (t) = g(l—t) . Clearly, we havef ™ (t) =1- g'l(t).
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2.3 Archimedean t-norm- and Archimedean t-conorm-baed operational laws for
IVHFESs

To aggregate the interval-valued hesitant fuzzy informaidrang and Wu [25] used the Archimedean t-
norm and Archimedean t-conorm to proposed several nevatogaal laws for IVHFES.

Definition 2.10. Given three IVHFEsh, h, and h,, we define the following operational laws:
@ ROR={[s(7.55), 7 .74) 7.0 bro
=L () e () (0 ()4 1 (72)]
@ AOR={[T(7. 7). T(% 7)] 7.0 by .0 B
([0 (olit)+ ol72). o*( o)+ d2))]
@ AR={[ (a1(7)). (a1 ()] 7o 250
@ i ={[o* (0l ). > (1 )] 40

3 Interval-valued Hesitant Fuzzy Ordered Aggregatio Operators

7,0 hy,0 b}

It is well known that the ordered weighted avergg{@®WA) operator first introduced by Yager [26] has
achieved successful applications in many domai®s3F]. In this section, by combining the ordered
weighted averaging (OWA) operator [26] with the @ti®nal laws given in Definition 2.10, some new
operators to aggregate IVHFEs are developed, whostamental characteristics are also the reordering
steps, and then their desirable properties areisksal.

Definition 3.1. Let ﬁ (i=21,2;-- h) be a collection of IVHFESﬁU(i) be theith largest of them, and let

n
=(V\5,V\é,~~-,V\(I)T be the aggregation-associated vector satisfym@[o,]] and ZWi =1. An
i=1
Archimedean t-conorm- and t-norm-based intervalidl hesitant fuzzy ordered weighted averaging (A-

IVHFOWA) operator is a mappingd " — H such that

AVHFOWA (R, R, - ) =D (why,) @)

Theorem 3.1.Let ﬁ (i=1,2;-- h) be a collection of IVHFEsﬁU(i) be theith largest of them, and let

w= (W, W, V\(])T be the aggregation-associated vector satisfw@[o,]] and ZWi =1, then, the
i=1

aggregated value by using the A-IVHFOWA operatal$» an IVHFE, and
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A-IVHFOWA (F, -+, )

={f_l[§vvi f (750))]: f*[iw f(;;;(i))ﬂ )

i=1

Proof. For n = 2, because

W1~a(1) :{[ f_l(V\{ f(y;(l)))’ f_l(w f(V:(l))ﬂ /
why ) :{[ f_l(""z f(V;(z)))' ‘C_I(W2 f(yg(z)))} /

That is, the Eq. (4) holds far = 2 . Suppose that the Eq. (4) holds foe k, i.e.,

)= (S wrlr) (Sl

then, whenn =k +1, we have

Vo O 0y Zoy O B+ W O b(k)}

k+1

El(Wi ﬁa(i)) = (é( Whr(i) )) 0 ( W h(m))

R

- ) Yoty BPoty Vi) Dl Vo B b Fotiey B Moy
f -1( f [f —1[2\,\4 £ (V;(i))D + f ( £t (\N(+1 f (W(m}))))

:{f 1[2"" f (Vim)j’ f 1[2"" f (chm)ﬂ ot Dbty Paa O Py B P ey O hw}

i.e., Eqg. (4) holds fon = k+1. Thus, Eqg. (4) holds for at.
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In addition, sincef :[0,]] - [O,+00] is a strictly increasing functionf _1:[O,+00] - [0]] exists and is

also a strictly increasing function. Thus, by E4j, (for anyf/a(l) Dﬁa(l),f/g(z) O ﬁa(z) ""1170(n) O ﬁﬂ(n), we
have

n

0= f‘l[gw,f(o)]s f‘l[zwf(y;(i))Js f‘{éwf(f{jﬁ)ns f‘l[ n v,vf(l)j=1

i=1

i=1

which implies thatA-IVHFOWA (ﬁl, FIZ,---, F}l) is an IVHFE. The proof of Theorem 3.1 is completed
T

Especially, wherw = (l ,E e ,—j'j , the A-IVHFOWA operator is reduced to the A-IVHFEperator [25]:
nn n

A-VHFA (R, B, - ) =é(1 ﬁj

n

[z m]

The A-IVHFWA operator [25] weights only the intelwalued hesitant fuzzy arguments. However, by
Definition 3.1, the A-IVHFOWA operator weights thedered positions of the interval-valued hesitamtz

arguments instead of weighting the interval-vallesditant fuzzy arguments themselves. The prominent
characteristic of the A-IVHFOWA operator is the méering step in which the input arguments are

rearranged in descending order, in particularnéerval-valued hesitant fuzzy argumdi]tis not associated

©®)

ZD&,%Dﬁzu--,%Dﬁ}

with a particular weighW but rather a weightV is associated with a particular ordered posiiiarf the
interval-valued hesitant fuzzy arguments.

Example 3.1.Assume that, ={[0.7,0.$ [ O.5,0.b[, 0.3, q}4 h, ={[O.7,0.q [ 0.3,0.}} , and
|‘~13 :{[O.G,O.q [ 0.2,0.}} are three IVHFEs, and the aggregation-associategctor is

w= (0.2, 0.5, 0.$T . From Definition 2.3, we can calculate the scakigs of|’~ll, |’~12 and ﬁ3 as follows:

s(R)= (0.7+ O.8)+(0.25: 3o.()+( 03 0p_, e, s(R)= (0.7+ 0.93:g0.3+ 09 _ o6,
()= (0.6+0.8+( 0.2+ 0';8:0.475.
2% 2

Sinces(ﬂ) > S(Tl]) > 5(@), then ﬁa(l) =h, ={[O.7,0.q [ 0.3,0.§,
h,,=h={[07.04 [ 0.50p[, 0.3,d} andh,, =h ={[0.6,0.4 [ 0.2,08.
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s that g (t)=expl =L]-1 , thenf(t)=e (Lj—l, )= L
uppose el g (1) exp( t ] ! enf (t)=exp 1-t 9" (Y 1+log(1+t)
£l (t) :%, and the t-conorm and t-norm generatengQt) and f (t) are as follows:
a b
Iog(el‘a + P —1] 1
S(ah= T(ab)=

a b a  Ib
1+ Iog(el"’ﬂ1 +eb - 1J 1+ Iog(e a +eb - 1}

Then, according to Eqg. (4), we can obtain

A-IVHFOWA (i, 1, )
_ [[0.6823,0.881P[, 0.6698,0.841[1 , 0.6096,0.4¢10 , 0.57A04. [ 0.5883,0.881] , 0.5387,8GH ,
~ |[0.6573,0.791p], 0.6385,0.7619f , 0.5243,0.7470 , 0.41B40d] [ 0.4690,0.743 , 0.2745,055

Several properties of the A-IVHFOWA operator aregented as follows:
Theorem 3.2.Let ﬁ (i=1,2,-- n) be a collection of IVHFESs. Iﬁl', |’~1'2 , Fﬁ is any permutation of
|’~ll, Flz , FL then we have

A-VHFOWA (1, i, -, F{ ) = A-VHFOWA ( .-+, ) (6)
which is called the commutativity.

Proof. If ﬁa(i) is theith largest ofﬁ (i=1,2,-- n) and ﬁ;(i) is theith largest ofﬁ' (i=1,2,-- n),

respectively, thenﬁa(i) = F‘L(i) . Hencé-IVHFOWA (ﬁl’, FQ,---, F‘L) =A-IVHFOWA (h, h, ey h)
This completes the prodfl

Theorem 3.2 shows that the A-IVHFOWA operator ibust to permutations of the input IVHFEs and is
independent of the input IVHFE labels.

Theorem 3.3.Let ﬁ (i=1,2,-- n) be a collection of VHFEs. If all Fg (i=1,2,-- n) are equal, i.e.,
ﬁ = ﬁ={}71}7D ﬁ} ={[}7L,}7J]‘}7D ~I‘} , for all'i, then

A-IVHFOWA (f, B+, i) =A-VHFOWA (b b, §= 7)

which is called the idempotency.
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Proof. According to Definition 3.1, we have

AVHFOWA (R, R, - B) =D (why, ) =0 wr):[z Wj T h
h)=

Thus, A-IVHFOWA (R, f, -

Theorem 3.4.For a collection of IVHFEsﬁ {}7|
A~ = | min minj* , min min h* =
{|: i=1 yoR yL i=1 pOh VJ:”} {

h™ < A-IVHFOWA (R, B+, ) < T ®)

ﬁ}:{[yL VJ]‘VDh} (i=1,2,- ), let
[mr:axm_ v nqaxmaﬁ}‘} then,

i=1  jpOh i=1  jOh

which is called the boundedness.

Proof. For the simplicity of presentation, I(yt" mln mmyL VJ m|n mmVJ yL max maxy
y:. Ol #0Oh i=1

7 =maxmay’ h=A-VHFOWA (R, B, B) V:f‘l(Zw,f(f/;(i))] . and

=l jOh

pe(Sui()) o ome We(rr] o F={R
AIVHFOWA (R, B+, ) = h={[ 7,7 70 .

} , and

n

For anyi=1,2:--,Nn, we have j* = m|n mlny <y < maxmax/ =y, . Since f(t)
i=L pon R

(td [0,]]) is a monotonic increasing function, we get
S ()] i) )= (Swil)
i=1 i=1 i=1

which is equivalent to

t<ptsy, ©)
Similarly, we have

ppsy (10)

According to Definition 2.35(”):w, s( ~‘): A , ands(ﬁ*) = A . From Egs.
f

(9) and (10), we have

10
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P slPP) TulP ) Salrt ) _phep
2 2 a, 2 2

h h h

It follows that
S(r)< (A< {7
which implies h™ < A-IVHFOWA (ﬁ, ﬁz,---, h) < K. This completes the proafi

Theorem 3.4 implies that the aggregated value liyguthe A-IVHFOWA operator ranges between the
biggest IVHFE and the smallest IVHFE.

Theorem 3.5. Let ﬁ (i=1,2,-- n) be a collection of IVHFEs and |GN:(V\{,V\§,“',V\()T be the

n ~
aggregation-associated vector satisfyingl] [01] andZ:Wi =1, if h is an IVHFN, then
i=1

A-IVHFOWA (R, 0 Ry 0 -+, i O 1) = AIVHFOWA (T -+, )0 't (12)

Proof. Forany i =1,2,-- n, it follows from Definition 2.10 that

RO H:{[ () £(), 2 F() f(VJ))}‘ DF;,VDF}

Based on Theorem 3.1, we have

A-VHFOWA (ROR RO h-,

I:l

1

[ttty
_ [Z (e (f(72) VJ)] Oty Zaa Do+ Fogy DRy PO R
:{ 1[21: f( ) ] 1[21: f( ) (Vu)ﬂ7”(1)Dﬁv(1)’70(2)5Na(z)"“'Va(n)DF‘g(n),VDﬁ}

where ﬁa(i) is theith largest ofﬁi (i=1,2,-- n), on the other hand, according to Definition 248, can

obtain

11
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[

i

Bt ) (B )

i=1

0RO Fye 7, 0 B h}

which indicates that Eq. (11) holds. This complébesproof. ]

Theorem 3.6. Let ﬁ (i=1,2,-- n) be a collection of IVHFEs and IGWZ(V\{,V\Q,W,V\()T be the

n
aggregation-associated vector satisfyingl] [01] and ZWi =1,andr >0. Then, we have

A-IVHFOWA (rh, th,, -, rhi, ) = rA-IVHFOWA (R, i, -, Ry

i=1

(12)

Proof. For anyi =1,2,-- n, it follows from Definition 2.10 that

i ={[ {3 ) 1o ()] 7 6]

Based on Theorem 3.1 and Definition 2.10, we have

and

A IVHFOWA (rf th,,---,th,)

12
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where ﬁa(i) is theith largest ofﬁ (i=1,2,-- n), which indicates that Eq. (12) holds. This cortgsethe
proof of Theorem 3.6.]

According to Theorems 3.5 and 3.6, we can easilgiolthe following Theorem 3.7.
Theorem 3.7.Let ﬁ (i=1,2,-- n) be a collection of IVHFEs and IM/:(V\{,V\Q,W,V\{)T be the

n ~
aggregation-associated vector satisnygD[O,]] andZ:Wi =1,if r >0, h is an IVHFE, then
i=1

A-IVHFOWA (rh, O R, th, O h---, rf, O h) = A-IVHFOWA (R, b, -+, )0 1 (13)

In the following, we investigate some specific castthe A-IVHFOWA operator under the assumpticet th
the additive generatog is assigned different forms.

Case 1If ¢ (t) = —Iog(t), then the A-IVHFOWA operator is reduced to the RGWA operator defined
by Chen et al. [20]:

IVHFOWA (R, -, ) :{{1‘ I_J (1-7%)" |_] (= ﬂ(i))w} oty Oty 3+ oy 0 ﬁa(n)}(“)

Proof. If g(t)=-log(t).then f (t)=g(1-t)=-log(1-t) and f *(t)=1-€™ . Thus,

IVHFOWA (1, R+, B )
(7%

[ (Bt} (Sl e

I qu Iog(l Vi ) qulog(l—;)J ) ~
—_— 71 y

‘<1
f
=
;1
oD

[
eyl
™
fz

[
el

N

=4|1-e* 1

Yoty UPoty Fog By 1 Vo U hﬂ<")}

[ foeria) = lr)

Furthermore, if/- = j/* for any 7 OR (i =1,2,-- n), i.e,, A reduces to the HFER = UyDh

(i=1,2,-- n),then the Eq. (14) reduces to the HFOWA openatoposed by Xia and Xu [11]:

HFOWA(h’ AT ’h1) - Uya(l)Dha(l)'ya(Z]DhT(Z)"“'ya(n)an(n) {l_ I:J (1_ y"(i)) } (15)

13
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2-t
Case 2.1f g(t) =|Og(Tj, then the A-IVHFOWA operator reduces to the IVHRE® operator
developed by Wei and Zhao [22]:

IVHFEOWA (f, -, 7)) =

[ (gt (5]

wiog 2720 S 0
; ! g{l-f/b(i)J éwl g[l‘f};(i)]
_/le -1 € -1 . Dﬁ - 0 ~
N e o) e [y o) 2o Vo) H o)
ZWIIog fr Zwlog Py
| el:l o(i) +1 elfl a(i) +1
o 270 | of ([ =720 |
siETII {”[&J ]
e “1e = .
= RO R Yoty BNgys s Vo) Oy
log Illl[1+y‘§(‘) log - [hﬁ(')
i= l__b\ V=1 ( 1V
o ) )11 e ) ) 41

Furthermore, iff/i" =ViJ for any Dﬁ (i=1,2,--n), i.e.,ﬁi reduces to the HFEE =Uth{yi}

(i=1,2,-- n), then the Eq. (16) is transformed into the hesitazzy Einstein ordered weighted average
(HFEOWA) operator proposed by Yu [15]:

14
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n

I_J (v - [] (1-120)) an
[lj (L) + I_j (1-1)"

HFEOWA(hl,hz;'wmzuy()uh 32 V() by

f+(1-9)t _
Case 3.If g(t):log f , 8>0, then the A-IVHFOWA operator is reduced to the

IVHFHOWA operator:

mnel) gn(ﬁ)’ o as

IVHFHOWA(hl, Ry, n) = Yoy B0y oy O Do)

} vao)
ﬂ(u(e )7, ) +(6 m( 7))’

Proof. If g(t):log(wJ . then f(t)=g(1—t)=|og(%j and

A
ft (t) = 1}9?@ . Thus,

IVHFHOWA (R, -, 7))

() o (St

| e
-)|1=e 1-e 7 O OR
og {1+(9—1)Vb(. JW J o {1+(,9—1)f);(l) J” J o)) — o(y o(n) = "o(n)
1-0-¢e T 1-6-¢e )

_ Ij(“(e"l)f’?(i))w‘I_nl(l‘75(i))w |
ﬂ(“ (6-37)" +( |_](1 ) - i
[er(e-97)" -] (7))

_”(1+(91 o) +(6 ])l_](l— )

In particular, whend =1, the IVHFHOWA operator is degraded to the IVHFOV@erator (Eq. (14));
when 8 =2, the IVHFHOWA operator is degraded to the IVHFEOWerator (Eq. (16)).

W

15
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Furthermore, ify- =/ for any 7 OR (i =1,2,-- n), i.e., A reduces to the HFER = Uth

(i=1,2,-- n), then the Eq. (18) is transformed into the hesitazzy Hammer ordered weighted average
(HFHOWA) operator given by Zhou et al. [16]:

1+(6-1y,, )" -y )"
HFHOWA(R, by - 1) = Ul’a(nﬂha(nvVo(z)be(a,-l.yg(mDm D ( )) I_J ( ()) (19)

|j(1+(9 Vy,) + 91)|‘J(1— )

In particular, wherf =1, the HFHOWA operator is degraded to the HFOWA afmr(Eq. (15)); when
6 =2, then the HFHOWA operator is degraded to the HFEOMerator (Eq. (17)).

6-1
Case 4.If g( ) Iog( j 6 >1, then the A-IVHFOWA operator is reduced to thesingl-valued

gt
hesitant fuzzy Frank ordered weighted averagingdf#OWA) operator:
IVHFFOWA (f, -+, )
— _ V; _ B _ d Hl_f);(‘) _ W ~ ~
=4[1-log,| 1 ” JI- log| ” o) TNy v Vo O 0oy
(20)
Proof. If (t)=1lo g-1 , then f (t) =g (l—t) = Iog( -1 ) and
g g H[ -1 Hl—t _1
_ t
f*(t) =1-log, [ﬁj . Thus,
e

IVHFFOWA (R, B, )

— a5 oL Ay i i e 7 F
‘{ f (le f (Va(i))j' f [zl"" f("g(i))ﬂ Yoy O oy Vo D ho(n)}
2 -1 5 u f-1 )
6-1+ eI 9 G[glm')*] ] -1+ eI g u[ﬁg(‘)ﬂ] ]
=1|1-log, " 1-log, m Vo) oy Vo) B o)
lo . 61 lo . 6-1
’ I‘:![sl_y‘t(')—l} J ’ l‘:ll{sl_yg(‘)—lJ J
| e e
-1 )" !
0-1+ : 6-1+T]
I,_l [51%() _1] g _ 1] . - . -
=4]1-log, ; g1 " 1= log, ; o- w o B hoy Vo) B Moy
I u[al'“’“ —1J D[a e —J
- log,| 1+ 7 (6770 -1 | 1~ log 1(67%0 - " ||y oR 7. Oh
6 I:l ’ I:l o a(n) o(n)

16
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In particular, if @ — 1, then the IVHFFOWA operator is reduced to the INDYFA operator (Eq. (14)).

Furthermore, it~ = j for any ; Oh (i=1,2,-- n), i.e, A reduces to the HFER :Uth{yi}

(i=1,2,-- n), then the Eq. (20) is transformed into the hesifazzy Frank ordered weighted average
(HFFOWA) operator:

— _ d L=V i _ Y
HFFOWA(hl,hZ,...,PL)—Uygwuhaw,yg(z)mhg(z),_.,,yg(n)mb(n){1 IOQ(BD(Q o ) j} (21)

In particular, if @ — 1, then the HFFOWA operator is reduced to the HFOWgArator (Eq. (15)).

By combing the A-IVHFOWA operator with the geometniean, we next define an Archimedean t-conorm-
and t-norm-based interval-valued hesitant fuzzyemrd weighted geometric (A-IVHFOWG) operator:

Definition 3.2. Let ﬁ (i=1,2,-- n) be a collection of IVHFEsﬁU(i) be theith largest of them,

n
w= (V\{, W, V\()T be the aggregation-associated vector suchw;lﬁ[o,]] andZ:Wi =1, then an

i=1
Archimedean t-conorm- and t-norm-based intervaliwdl hesitant fuzzy ordered weighted geometric
(A-IVHFOWG) operator is a mappinlj ", H, such that

n

A-VHFOWG (R, R+, B) =0 (7) 22)

i=1
Theorem 3.8.Let ﬁi (i=1,2,-- n) be a collection of IVHFEsﬁa(i) be theith largest of them, and let
T n
W=(V\{, W, e, V\() be the aggregation-associated vector satisfyip@[o,]] andZ:Wi =1; then,
i=1
the aggregated value by using the A-IVHFOWG operiatalso an IVHFE, and

A-VHFOWG (f,, .-, i)

- {g'{i wo 750))) g_l[zn: " g(yg(i))ﬂ

i=1

(23)

Vo B Dy Yo B g Vo B !?kn)}

Example 3.2.Suppose thaﬂl, FE Fg w, andg(t) are shown as Example 3.1. Then, by Eq. (23), we
can obtain
A-IVHFOWG (R, i, )
_ [[0.6640,0.817p[, 0.2591,0.420P , 0.5521,0.4954 , 0.256%70. [ 0.3572,0.4845 , 0.2449,684
~ |[0.4488,0.688p[, 0.2528,0.407F , 0.4188,0.485 , 0.258866 | 0.3274,0.464 , 0.2403,60H]

The A-IVHFOWG operator has some desirable charnatites similar to the A-IVHFOWA operator as
follows. In should be noted that the proof of thebaracteristics are also similar to A-IVHFOWA. Téere,
we just list out these properties.

17
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Theorem 3.9 (Commutativity). Let ﬁll:lzﬁ be a collection of IVHFEs. Ifﬁl'ﬁ'zﬂ] is any
permutation ofﬁl, Flz , ﬁ] then we have

A-IVHFOWG (F, L+, 7 ) = AVHFOWG (R, -, ) (24)

Theorem 3.10 (Idempotency)Let F'i (i=1,2,-- n) be a collection oVHFEs. If alll F'i (i=1,2,--n)

are equal, i.e.ﬁ = F]={}71}7D F} ={[}7L,}7J }‘f/D F} , foralli, then

A-IVHFOWG (R, -, ) = A-lVHFOWG(h - B = h (25)

Theorem 3.11 (Boundedness)For a collection of IVHFEsﬁ ={}7|}7 ~} {[yL VJ]‘}/ O h}

(i=12,-n) let h ={m|n mlnyL min mln;/J }‘} {[max r_lnaXy max mag’ }‘}

i=1 j0Oh i=1  gOh

then,

h™ < A-IVHFOWG (, By, ) < T (26)

Theorem 3.12.Let ﬁ (i=1,2,-- n) be a collection of IVHFEs and Iew=(V\{, W, V\()T be the

n ~
aggregation-associated vector that satis‘ﬁ@ﬂ[O,]] andZ:Wi =1.If h is an IVHFN, then

i=1

A-VHFOWG (R, 0 R, A0 h-, ) O 1 = A-IVHFOWG( T b, h)O h  (27)

Theorem 3.13.Let ﬁ (i=1,2,-- n) be a collection of IVHFEs and Iew=(V\{, W, V\()T be the

n
aggregation-associated vector such tvat] [O,]] and Z:Wi =1, andr >0. Then, we have
i=1

A-IVHFOWG (R, ) = (A-vHFOWG (B, B -, ) (28)

Theorem 3.14.Let ﬁ (i=1,2,-- n) be a collections of IVHFEs and IWZ(V\{, W, -, V\q)T be the

n ~
aggregation-associated vector such tvat] [O,]] andZ:Wi =1.1f r >0 andh is an IVHFE, then
i=1

A-IVHFOWG (R O A,/ 0 -, } 0§ =(AvHFOWG (9 B, h)) O "hees)

In the following, we will investigate the relatidrip between the A-IVHFOWA and A-IVHFOWG operators.

18
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Theorem 3.15.Let ﬁ (i=1,2,-- n) be a collections of IVHFEs and IWZ(V\_{, W, -, V\q)T be the

n
aggregation-associated vector such tvat] [O,]] and ZWi =1. We then have the following:

i=1
(1) A-VHFOWA (R, g, -, fF) = (A-VHFOWG (B, T, -+, h))
@) A-|VHF0WG(&°,H;,---,ﬁC):(A-NHFOWA(h, l;h))
Proof. (1) According to Egs. (4) and (23), we can obtain

A-IVHFOWA (Ff, 5, -, f)

:{ f_l(izlvvi f (1_ NU(i))]’ f_l(zw f(l_ V;(I))j:| NJ(l) O F]a(l) 7}70(2) U F}(Q [ ’Va(n) U h(n)}

—

«

1N
7 N\

-

=

«Q
—_—

0
V\—’ -

N— 2
@
N
7 N\
M-
=
p\

T
N
Nl

N—
| I

= (A-VHFOWA (R, -+, )

The proof of Theorem 3.15 is completed.
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In what follows, we investigate some specific casfethe A-IVHFOWG operator under the assumptiort tha
the additive generatog is assigned different forms.

Case 1If g (t) = —Iog(t), then the A-IVHFOWG operator is reduced to the ROWG operator defined
by Chen et al. [20]:

|VHFOWG(F5,F12,-~- n)=ﬂ|‘| (75(i>)w |_| (710))@

Uy, 0 by, } (30)

Furthermore, ify- = j* for any Dﬁ (i=1,2,-- n),ie, hi reduces to the HFER = Uth
(i=1,2,-- n), then the Eq. (30) reduces to the HFOWG opegatoposed by Xia and Xu [11]:

HFOWG(h b, ;- ,h) = Uyg(l)mhg(l),ym)mm ety { |_J ch'(i)} (31)

2-t
Case 2.If g(t) = Iog(Tj, then the A-IVHFOWG operator is reduced to the REOWG operator

proposed by Wei and Zhao [22]:

750))“ 2|_] (720)" i o 2

1 |
—_—
N
|
N
R

3

+

1l I
—_—
/S\l
R
=
s
—_
v
S
~—
—_—
o~
~——

Furthermore, iy =/’ for any 7 OR (i =1,2,-- n), i.e., A reduces to the HFER = Uth
(i=1,2,-- n), then the Eq. (32) is transformed into the HFEOW@rator proposed by Yu [15]:

_ ZD Vot (33)
HFEOWG(hl ’hz " ’h]) - Uya(l)Dha(lj'ya(Z)Dha(Z)""'ya(n)Dnr(n) n n

[] (2-72)" + [] 0

f+(1-0)t
Case 3.If g(t) =Iog(¥} 6>0, then the A-IVHFOWG operator is reduced to therinal-

valued hesitant fuzzy Hammer ordered weighted g&ar{®&HFHOWG) operator:

20
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IS T T R

IVHFHOWG (R, B, -+, B) =

[ (e-(a-7 ))”“'+ -9 ()" |

In particular, if @ =1, then the IVHFHOWG operator is degraded to the FOMVG operator (Eq. (30)); if
6 =2, then the IVHFHOWG operator is degraded to the PFEOWG operator (Eq. (32)).

Furthermore, if/- = j/* for any 7 OR (i =1,2,-- ), i.e., A reduces to the HFER = Uth
(i=1,2,-- n),thenthe Eq. (34) is transformed into the HFHOW@rator given by Zhou et al. [16]:

Bﬂy
HFHOWG(h, ,h, ;- ,h,) = - - (35)
(hoh v 1) =U, o i s U (1+(9-1)(1-V0m))w+(9-1)|:jyé”m

In particular, whend =1, the HFHOWG operator is degraded to the HFOWG aiper(Eq. (31)); when
6 =2, then the HFHOWG operator is degraded to the HFBO\Werator (Eqg. (33)).

Case 4.If g( ) |Og(;

hesitant fuzzy Frank ordered weighted geometri¢ifFfFOWG) operator:

1
j @ >1, then the A-IVHFOWG operator is reduced to therivnal-valued

IVHFFOWG(h, R, - )

= {[logg (1+ I_I (9% - 1)“) ,Iogg[ 1+ I_l (9’"’5“ - ])W H

In particular, if@ — 1, then the IVHFFOWG operator is reduced to the NZN¥G operator (Eq. (30)).

(36)

Voty BNy v+ Vo U hﬂ(")}

Furthermore, if- = j/* for any 7 OR (i =1,2,-- ), i.e., A reduces to the HFER = Uth

(i=1,2,-- n), then the Eq. (36) is transformed into the hesifazzy Frank ordered weighted geometric
(HFFOWG) operator:

HFFOWG(FH ’FE .. ,FL) = Uy[,(l)Dhg@,Vg(z)Dha(Z)"“’y”(n)Dn;(n){ IOQ[ g Ij (gyau) _ )W' ]} (37)

In particular, if @ — 1, then the HFFOWG operator reduces to the HFOW@abpe (Eq. (31)).
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4 A Method for Multi-criteria Decision Making with Interval-valued
Hesitant Fuzzy Information

In the following, we will use the proposed operattw propose a method fowulti-criteria decision making
(MCDM) within the context of IVHFSs. LeY ={{ Y, m} be a set ofm alternatives, and let

G ={le G,..., Gh} be a collection of criteria whose weight vector &)= (cq,a)z,~~- ,a)n)T, with

n
w, O [OZI] ,1=4L2,-n, andZa)j =1, where, denotes the importance degree of the critef.?qn
j=1

The decision makers provide all the possible irtemalues for the alternativé¥, with respect to the
criterion G; , denoted by an IVHFH; ={}7“ ‘fﬂ DI,T} ={[J~](L,}?J]‘)? Dir} A (1=1,2,+- m;

j =1,2,-- n) constitute an interval-valued hesitant fuzzy dieci matrix R :(T;] )mxn , Which is shown
in Table 1.

Table 1. Interval-valued hesitant fuzzy decision matrixR

PoER

i1 ij

=<
P T
R
-

)

Y I’: e f" e F

m ml mj mn

=

In general, there are benefit criteria (i.e., tigger the criterion values, the better) and coseria (i.e., the
smaller the criterion values, the better) in a MCpkbblem. In such cases, we need transform the cost
criteria into benefit criteria, i.e., use the methio [36] to transform the interval-valued hesitdnzzy
decision matrixR = (f” )  into a normalized interval-valued hesitant fuzegidion matrixA=(E~3,j )

mx mxn’
where

aij - " , i:1'2,...’m, j:1,2'...’n (38)
ij

3 {r}i , for benefit criteriorG,

, for cost criteriorGj
where ﬁjc is the complement olfij such thatl’ijC :{[1— VUJ ,1- }T/JL] }T{ Dﬁ } :

Step 1. Transform the interval-valued hesitant fuzzy decisimatrix I§=(fij) into the normalized
mxn

interval-valued hesitant fuzzy decision matix= (aj ) _on the basis of Eg. (38).

mx

22



Zhang; BJMCS, 17(5): 1-34, 2016; Article no.BIMC3.22

Step 2.Utilize the A-IVHFOWA operator

& = A-IVHFOWA (&, 8, -, 3 ) = ﬁ(vv%)

=1

[t (et

i=1,2,- m (39)

>

(o) B @y Won B Borg s Hog ) U B

or the A-IVHFOWG operator

8 =AIVHFOWG (8,,3,,3 )= 0 ( W3)

=1

[rfgetea ol

B Koa U B Hog) 03y )}

i=1,2, ,m (40)

to fuse all of the performance valué§ (j=1,2,;-- Nn)in theith line of A and then derive the overall

performance valued ( i=1,2,--m ) of the alternative Y, ( i=1,2,--m ), where

(éw +8o(2 -, a8, (n)) is a permutation o(éil,érz,m ,'an), such thatéw(l) 2 éw(z) 2.2 él'cr(n)’
andw= ( V\‘)T is the weight vector of the ordered positions(é{g(l),aa(z) . am(n)) , with

W, D[O,ZI], j=1,2;-- ,n,andZn:Wj =1

i1

Step 3.According to Definitions 2.3 and 2.4, calculate tcore functions(a) and variance functions

V(&) of a (i=1,2,.- ,m ), and then rank all of the alternativ¥§(i =1,2,-- m) in descending
order as per Definition 2.5.

5 lllustrative Example

5.1 An illustrative example

In this subsection, a practical example (adaptech frierrera and Herrera-Viedma [37] is used to immgliet
the developed method.

Example 5.1.An investment company wants to invest a sum ofegyadn the best option. There is a panel
with five possible alternatives to invest the man@y Yl is a car company; (2Y2 is a food company; (3)
Y3 is a computer company; (ZYL is an arms company; (EXJ- is a TV company. The investment company
must take a decision according to the followingrfattributes: (1)G1 is the risk analysis; (2()32 is the

growth analysis; (Sﬁ3 is the social-political impact analysis; @4 is the environmental impact analysis.
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The weight vector of the four criterig, (j=1,2,3,4) is w:(0.1,0.3,0.5,0.)i . Assume that the
performance of the alternativéé (i =1,2,3,4,E) with respect to the criteriéSj (j=12,3,4) is

denoted by an IVHFEF“- ={}7”‘}~I/J I:][I} ={[}]{L,ff]‘y Dir} , wheref/ij =[}7“L,J~I/JJ} indicates the

possible interval values to which the alternafiesatisfies the criterio; . All of f; (i =1,2,3,4,5;

j =1,2,3,4) are contained in the interval-valued hesitangjudecision matrixR = (T[J )5x4 (see Table 2).

Table 2. The interval-valued hesitant fuzzy decision niex R

G G, G G,

Y, {[0.3, 0.5],[0.3, 0.4], {[0.7,0.9],[0.7,0.8], {[0.8,0.9],[0.5, 0.6]} {[0.3,0.4],[0.6,0.7]}
[0.2,0.3]} [0.6, 0.7], [0.5, 0.6]}

Y, {[0.5, 0.7], [0.5, {[0.7, 0.9],[0.5, 0.6], {[0.5,0.8]} {[0.3, 0.5], [0.6, 0.7],
0.6]} [0.4, 0.5]} [0.8, 0.9]}

Y, {[0.5,0.7][0.4, 0.6], {[0.8,0.9][0.6,0.7} {[0.6,0.7],[0.5,0.7] {[0.3,0.4],[0.7,0.8]
[0.3, 0.4]} [0.4, 0.5], 0.3, 0.4]}

Y, {[0.2, 0.3], [0.4, {[0.5, 0.7]} {[0.1,0.2],[0.3, 0.4], {[0.6,0.8],[0.4, 0.5]}
0.5]} [0.5, 0.7]}

Y, {[0.7, 0.8]} {[0.5, 0.6], [0.7, 0.9]} {[0.3, 0.5]} {[0.3, 0.4], [0.5, 0.7],

[0.8, 0.9]}
Table 3. The normalized interval-valued hesitant fuzzy ecision matrix A

G G, G, G,

Y,  {05,0.7],[06,
0.7], [0.7, 0.8]}

Y, {0.3,05],[04,
0.5}

Y, {[0.3,05],[04,
0.6], [0.6, 0.7]}

Y, {0.7,08] 05
0.6]}

Y, {0203])

{{0.7,0.9], [0.7, 0.8],
[0.6, 0.7], [0.5, 0.6]}

{[0.7, 0.9], [0.5, 0.6],
[0.4, 0.5]}
{[0.8, 0.9], [0.6, 0.7]}
{[0.5, 0.7]}

{[0.5, 0.6],[0.7, 0.9]}

{[0.1, 0.2], [0.4, 0.5]}

{[0.2, 0.5]}

{[0.3, 0.4], [0.3, 0.5],
[0.5, 0.6], [0.6, 0.7]}

{[0.8, 0.9], [0.6, 0.7],
[0.3, 0.5]}

{[0.5, 0.7]}

{[0.6, 0.7], [0.3, 0.4T}

{[0.5, 0.7], [0.3, 0.4],
[0.1, 0.2]}
{[0.6, 0.7], [0.2, 0.3]}

{[0.2, 0.4], [0.5, 0.6]}

{[0.6, 0.7], [0.3, 0.5],
[0.1, 0.2]}

Step 1.Among the considered criteriéE;j (j =1,3,4) are of the cost type arﬁ‘B2 is of the benefit type;

thus, R= (f” )5x4 needs to be transformed into a normalized interaéled hesitant fuzzy decision matrix

A= (a] )5x4 (see Table 3) according to Eg. (38).

Step 2. Utilize the

IVHFHOWA operator

(Eq.

(18)) (whose aswmted weight

vector is

W= (0.1,0.5,0.3,0.)i and 8=3) to fuse all of the performance valués (j =1,2,3,4) in theith

line of A and then derive the overall performance vafie(i =1,2,3,4,5) of the aIternativeYi

(1=1,2,3,4,5:
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[0.4283,0.693p[, 0.4567,0.713p , 0.5182,0.4156 , 0.548E80] [ 0.4835,0.6935 , 0.5106,037] ,
[0.5687,0.615p|, 0.5932,0.638f , 0.5449,0.1485 , 0.571E%4d [ 0.6239,0.68Q4 , 0.6463,01] ,
[0.4283,0.674]4[, 0.4567,0.695[D.5182,0.593p[, 0.5443,0.61]7B , 0.4835,0474.5106,0.6950 |,
[0.5687,0.593p[, 0.5932,0.6]]7B , 0.5449,0.4320 , 0.57029d. [ 0.6239,0.66]1 , 0.6463,8% ,
[0.4150,0.661P[, 0.4436,0.683D , 0.5058,0.9787 , 0.5%}Kd [ 0.4D7,0.6619 | 0.4981,0.68B¢
[0.5571,0.578f[, 0.5820,0.603B , 0.5330,0.1412 , 0.558396, [ 0.6132,0.6447 , 0.6361,08) ,
[0.4036,0.651P[, 0.4325,0.673F , 0.4952,0.9672 , 0.52Rd [ 0.4597,0.65]9 , 0.4874,03 ,
[0.5471,06679 [ 0.5723,0.5939 , 0.5227,0.7146 , 0.5087313 [ 0.6040,0.638( , 0.6272,0.6p0-
[0.3980,0.624p[, 0.3366,0.535 , 0.2764,0.4820 , 0.44634d] [ 0.3865,0.5334 , 0.3271,620) ,
[0.3729,0.576p[, 0.3109,0.48}1f , 0.2504,0.4256 , 0.4283%64 [ 0.3612,0.48]7 , 0.3013,058| ,
[0.3624,0.566B], 0.3002,0.470p0,2396,0.414p[, 0.4116,0.566B , 0.3506,08{7(.2906,0.414p
[0.3963,0.557)4[, 0.3546,0.51]7B , 0.3963,0.4838 , 0.354%4. [ 0.4557,0.61]9 , 0.4154,048
[0.4884,0.643), 0.4491,0.60BR , 0.4446,0.6054 , 0.40867d | 0.4446,0.6299 , 0.4040,039 ,
[0.5020,0.655p [, 0.4632,0.62/1f0,5332,0.684B[, 0.4956,0.652p , 0.5459,0450.5088,0.623p |,
[0.5459,0.679F [, 0.5088,0.647p , 0.5972,0.7¢31 , 0.56@Eq,. [ 0.6247,0.7249 , 0.5916,000] ,
[0.3650,0.517B[, 0.3228,0.475} , 0.3650,0.3451 , 0.32®4d] [ 0.436,0.574§ [ 0.3845,0.5356
[0.4590,0.608p[, 0.4188,0.570p , 0.4142,0.9¢[79 , 0.37226 [ 0.4142,0.5939 , 0.3729,65H ,
[0.4729,0.621p[, 0.4332,0.5851 , 0.5051,0.4525 , 0.466479 [ 0.5182,0.6237 , 0.4800,86¥] ,
[0.5182,0647 [ 0.4800,0.613( , 0.5714,0.6Y31 , 0.58589 | 0.6000,0.700] , 0.5655,0.6p4
__[[0.6709,0.8158[, 0.6916,0.84p , 0.5474,0.4479 , 0.578120 | 0.3980,0.5937 , 0.4276,08 ,
. _{[0.6527,0.800}3[, 0.6743,0.81J1p , 0.5252,0.4461 , 0.5%M®16. [ 0.3729,0.5677 , 0.4028 6] }
4, ={[0.5043,0.659p [, 0.4133,0.6001f , 0.3546,0.525 , 0.52700m [ 0.4379,0.6470[, 0.3800,057]}

ey
1

N

1\9')’
1

<,§D'
1

m

Step 3. According to Definition 2.3, we calculate the scs)rs( a) (i=1,2,3,4,5) of §
(i=1,2,3,4,5 as follows:

S(é&) =0.5968, S( éz) =0.4250 S( ?33) =0.5369, S( 5‘4) =0.6182 S( és) =0.5270

Step 4. Becauses(@) > S(a) > i@) > QNQ > @NQ then we determine the ranking order of
alternativesY; (i =1,2,3,4,95 asY, ~ Y,> ¥, ~ Y> Y. Thus, the best alternative ¥§.

It is noted that we leg = 3 in the above analysis. In fact, the paraméean be assigned different values
based on the decision maker’s preferences. To tigeds the variation of the ranking of five altetimas
regarding the value of the parameggrwe assigrg the values between 0 and 10, and calculate thresob

these five alternatives. The variations of the esaran be found clearly with respect to the vabfethe
parameter@ in Fig. 1.
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0.65
o6f R
0.55f B
[%2]
o
[«]
@
05F —s(Y1)|
—s(Y2)
s(Y3)
0.45p —s(Y4) |+
s(Y5)
04 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

thet
Fig. 1. Scores of alternatives derived by the IVHFHOWA op®tor
Fig. 1 demonstrates that all of the score functiobisined with the IVHFHOWA operator decreasefhs
increases from 0 to 10. Based on this informatiwa,can find that wherﬁD(O,lq, the ranking of the

four alternatives isy, - Y, = ¥, = Y > Y, and the best choice 1.

If the IVHFHOWA operator in the above example iplaeed by the IVTHFHOWG operator, then the score
functions of five alternatives are shown in Fig.F2om Fig. 2, we can see that all of the score tfans

obtained by the IVHFHOWG operator increase as #rarpeterd increases from 0 to 10. From Fig. 2, we
can also see that wh@D(O,lq, the ranking of the four alternativesYs> Y, - Y, > Y > Y, and the

best choice isY, .

0.7 ‘
—s(Y1)
0.65F| —s(Y2) A
s(Y3)
0.6 —s(Y4) 4
s(Y5)
0 0558 _— R
o e
o
Q
o 05F
0.45f i
0.4F B
035 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

thet
Fig. 2. Scores of alternatives derived by the IVHFHOWG ogrator
Fig. 3 illustrates the deviation degrees betweensttores derived by the IVHFHOWA operator and those

derived by the IVHFHOWG operator. From this reswe can find that the values obtained with the
IVHFHOWA operator are greater than those obtaindtt the IVHFHOWG operator, and the deviation

values decrease as the value of the parant®tecreases.
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0.14

0.12}

0.1

0.08}

0.06

Deviations

0.04

0.02

thet

Fig. 3. Deviations of scores derived by the IVHFHOWA andvVHFHOWG operators

Fig. 3 indicates that the IVHFHOWA operator canaitotmore favorable (or optimistic) expectationsg an
can therefore be considered an optimistic operafuite the IVHFHOWG operator has more unfavorable (
pessimistic) expectations, and can therefore beidered a pessimistic operator. The values of hameter

@ can be treated as the optimistic or pessimistielse According to Figs. 1, 2, and 3, we can cotelthat
the decision makers who have a negative percepfidhe prospects could use the IVHFHOWG operator

and choose a smaller value for the paramétewhile the decision makers who are optimistic dauge the
IVHFHOWA operator and choose a smaller value fergarameted .

If the IVHFFOWA (or IVHFFOWG) operator is replacéy the IVHFHOWA (or IVHFHOWG) operator,
then the score functions of alternatives are gimeRigs. 4 and 5, respectively. Fig. 4 shows thiabfathe

score functions obtained with the IVHFFOWA operatecrease as the paramefkincreases from 0 to 10,
from which we can obtain that wher&D(O,lq , the ranking of the five alternatives is

Y, > Y,> Y, > Y> Y and the best choice ¥ .

0.65

0.6 =

Scores

0.5r

0.45r

2 3 4 5 6 7 8 9 10
thet

Fig. 4. Scores of alternatives derived by the IVHFFOWA opator
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0.6
ossF—— 1
0.5F .
%]
[
S 045 |
O
(]
0.4F —s(Y)H
—s(Y2)
s(Y3)
035¢ ——s(Y4)| |
s(Y5)
1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

thet

Fig. 5. Scores of alternatives derived by the IVHFFOWG ogrator

Fig. 5 illustrates that all of the score functiooistained with the IVHFFOWG operator increase as the
parameter increases from 0 to 10. From this result, we @mtkat wherg [ (0,1q , the ranking of the

four alternatives iy, > Y, = Y, Y > Y, and the best choice ¥,.

0.07
—VY1
—Y2
0.06 Y3|
—Y4
N Y5
0.05F - b

Deviations

thet

Fig. 6. Deviations of scores obtained by the IVHFFOWA ah IVHFFOWG operators

Fig. 6 illustrates the deviation degrees betweerstiore functions derived by the IVHFFOWA operatod
those derived by the IVHFFOWG operator. From theseilts, we can determine that the values obtained
with the IVHFFOWA operator are greater than thost¢aimed with the IVHFFOWG operator, and the

deviation values decrease as the value of the maeaifd increases.

Fig. 6 indicates that the IVHFFOWA operator canaabtmore favorable (or optimistic) expectationsg an
can therefore be considered an optimistic operataife the IVHFFOWG operator has more unfavorable (
pessimistic) expectations, and can therefore bsidered a pessimistic operator. The values of #narpeter

@ can be treated as the optimistic or pessimistielse According to Figs. 4, 5, and 6, we can cofelthat
the decision makers who have a negative percepfitie prospects could use the IVHFFOWG operatdr an

choose a smaller value for the paraméerwhile the decision makers who are optimistic douse the
IVHFFOWA operator and choose a smaller value ferghrameted .
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5.2 Comparative analysis with other methods in théterature

Firstly, Chen et al.'s method [20] is utilized teal with this issue in order to make a comparis@h aur
method. In Ref. [20], Chen et al. proposed the I'ZN¥A operator (see Eg. (14)) based on the algebraic
operational laws.

Step 1.Use the IVHFOWA operator to fuse all of the prefere valuesd; (] =1,2,3,4) in theith line of
A and then derive the overall performance valﬁ,e (1=1,2,3,4,5) of the aIternativeYi
(i=1,2,3,4,5:

& =IVHFOWA (8, 8, 3, 2,)

Vo Baon Hoa & ¥oa U Aoy Yors U @(4}

n
1=

={[1—|j(1—f’i§m)% ’1_|_l(1_¢ii’(”)wi

The values of& (i=1,2,3,4,5 are not listed here due to the big data set.

Step 2. According to Definition 2.3, we calculate the scz)re(a) (i=1,2,3,4,5) of 5\
(i=1,2,3,4,5 as follows:

:M:“O“ s(3)=0.4342 s(3) = 0.5462 5(3,) = 0.6246

2,

s(a)=0.540€

n
—~
HD
~

Step 3.Becauses(3,)> S a)> 7@ > §d> 643, then we determine the ranking order of

alternativesY, (i =1,2,3,4,5 as Y, > Y, = Y,>= Y> Y, which is the same as that obtained by our
method which explains the validity of our method.

Secondly, Wei and Zhao's method [22] is utilizedd&al with this issue in order to make a comparisith
our method. In Ref. [22], Wei and Zhao proposed IWdFEOWA operator (see Eg. (16)) based on the
Einstein operational laws.

Step 1.Use the IVHFEOWA operator to fuse all of the prefere valuess; (] =1,2,3,4) in theith line

of A and then derive the overall performance vaiﬁe( i=1,2,3,4,5) of the aIternativeYi
(i=1,2,3,4,5.

a= |VHFEOWA(5111 Qs @ 34)
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The values oﬁi (i=1,2,3,4,5 are not listed here due to the big data set.

Step 2. According to Definition 2.3, we calculate the scsnrs(a) (i=1,2,3,4,5) of &
(i=1,2,3,4,5 as follows:

s(a)=0.6002 s(3)=0.4282 s(3)=0.5399, s(,)=0.6203 (&) =0.5320

Step 3. BecauseS( ) i q) £~§)> $~§> (S})t, then we determine the ranking order of

alternativesY, (i =1,2,3,4,5 asY, > Y, > ¥, > Y~ Y, which is the same as that obtained by our
method which also explains the validity of our nueth

Thirdly, for further comparison, the method promb&y Zhang and Wu in [25] is adopted to deal witis t
issue. In Ref. [25], an A-IVHFWA operator (“non-emd” operator) was proposed as follows:

A-VHFWA (R B -+, ) =0 (@ B) = ﬂ (Zw f(r )), f[Zw f(W)ﬂ

}71[' TLVZD h"”lyn u h}
1+(6-1)t
When f (t) =log [Mj ,8>0, the A-IVHFWA operator is reduced to the IVHFHWAearator

[33]:

ﬁ(1+(9 1) ;7})“‘ ﬁ(l- VL)“

D(1+(9 Np)" +(6- ])I_J (1-3 e ot
D(1+(3—1)Vﬁ) —”(1—;2J)

|‘J(1+(9 D) +(6- :I)I_J (1-7

IVHFHWA(ﬁl, R, ﬁ):

Step 1.Use the IVHFHWA operator (suppose tiét= 3) to fuse all of the preferenceiﬁ (j=1,2,3,9

in the ith line of A and then derive the overall performande (i =1,2,3,4,5) of alternativeY,
(i=1,2,3,4,5:

Step 2. According to Definition 2.3, we calculate the scoralues S( ér) (i=1,2,3,4,5) of §
(i=1,2,3,4,5 as follows:

s(3)=0.4961 s(a)=0.448z, s(3)=0.618z s(3,)=0.588, s(3)=0.585=

Step 3. BecauseS( ) S( a) £~§)> $~a> (S}), then we determine the ranking order of

alternativesY, (i =1,2,3,4,5 asY, > Y, > X > Y~ Y, which is slightly different from the results
derived by our approach and also Chen et al.'s ooktimd Wei and Zhao’s method.
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For better comparison, the ranking orders deriwetbbr different methods are summarized in Table 4:

Table 4. The ranking orders derived by four different mehods

Methods Aggregation operators Ranking orders

Our metho A-IVHFOWA Y, =Y~ Y- ¥~ Y
Chen et al.’s method [20] IVHFOWA Y, =Y~ Y- ¥~ Y
Wei and Zhao's method [22] IVHFEOWA Y, =Y~ Y- ¥~ Y
Zhang and Wu'’s method [Z A-IVHFWA Y, - Y, - ¥> Y~ Y

Table 4 shows that both Approach I, Chen et alé&thod, and Wei and Zhao's method produce the same
ranking, where the optimal aIternativeY§, while Zhang and Wu’s method produces the differanking,

where the optimal alternative % That is because the former three methods adapefed” weighted

operators (the IVHFHOWA, IVHFOWA and IVHFEOWA opé¢oas), while the latter method adopts “non-
ordered” weighted operator (the IVHFHWA operator).

1) Comparison among our method, Chen et al.’s metho@0], and Wei and Zhao’s method [22]

Chen et al.’'s method [20] adopts the IVHFOWA oparatWei and Zhao's method [22] adopts the
IVHFEOWA operator, and our method adopts the A-INDAWA operator. It is well known that the
IVHFOWA and IVHFEOWA operators are two special cas#¥ the A-IVHFOWA operator when the

additive generatog(t) = —Iog(t) andg(t) = IOQ(E} respectively. When we assign different forms
t

to the additive generatof , we can obtain several special interval-valueditduets fuzzy aggregation

operators. Therefore, the proposed operators aridochén this paper can provide us more choices and
flexibility than Chen et al.’s and Wei and Zhaofsecators and methods.

2) Comparison between our method and Zhang and Wu’s ntieod [25]

Compared with Zhang and Wu’s method [25], our méthssigns the largest and smallest arguments smalle
weights, which can relieve the influence of “unfa@rguments on the decision results. For example, i

Zhang and Wu's method, the smallest IVHEE={[O.1,0.E} [ O.4,0.§ in the first line ofA:(é\j) is

mxn

assigned a largest weighta((é13):0.5), while in our method,d, is assigned a smallest weight
(W(élg)zo.l) in order to relieve its influence on the decisimsult; therefore, a different optimal
alternativeY, is obtained. Therefore, our method makes the idecisaking more reasonable and reliable

than Zhang and Wu’s method.

From the above analysis, we can conclude that @thad is more flexible, reasonable, and reliab&nth
Chen et al.’s method [20], Wei and Zhao's methd@],[and Zhang and Wu’s method [25].

6 Conclusions

In this paper, some new ordered weighted aggreyaierators for IVHFEs based on Archimedean t-norm
and t-conorm, such as the A-IVHFOWA operator antVAFOWG operators, are proposed, and various
properties of these operators are investigatedn,Tiney are applied to establish a method for sghthe
MCDM problems in which the criterion values areegivin the form of IVHFEs. We have proved that the
proposed operators are a generalization of thdimgisperators based on algebraic t-norm and titono
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Einstein t-norm and t-conorm, and Hamacher t-nanchtaconorm, and thus they are more general ané mor
flexible. In addition, this paper has made some mamisons of the proposed method and the previouk wo
and analyzed their differences in details througlumerical example. In further research, it is ssagey and
meaningful to give the applications of the devetbpmperators to the other domains such as pattern
recognition, fuzzy cluster analysis, and uncerpgogramming.
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