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Abstract 
 

This paper introduces a new generalization of the generalized inverse Weibull distribution. This new 
distribution is named exponentiated transmuted generalized inverse Weibull distribution, which contains 
a number of distributions as special cases. The properties of the new distribution are discussed and 
explicit expressions for the quantiles, moments, moment generating function and order statistics are 
derived. Estimation of the model parameters is performed by maximum likelihood method. Finally, the 
usefulness of the distribution for modeling data is illustrated using real data.  
 

 
Keywords: Exponentiated transmuted generalized inverse Weibull distribution; quantiles; moment 

generating function; order statistics; maximum likelihood estimation. 
 

1 Introduction 
 
The statistics literature is filled with hundreds of lifetime distributions for describing and predicting real 
world phenomena. These distributions have been extensively used for modelling and analysis of lifetime 
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data in different areas of research, like engineering, medicine, reliability, etc. In this regard, it is observed 
that the inverse Weibull distribution is extensively used as it is found to provide reasonable fit in many 
practical situations.  
 

The transmuted generalized inverse Weibull (TGIW) distribution has been introduced by Merovci et al. [1]. 
The cumulative distribution function (cdf) of the TGIW is defined as  
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where α  is a scale parameter, γβ,  are shape parameters, and λ  is the transmuting parameter. Many 

authors dealing with the generalization of some well-known distributions. Aryal and Tsokos [2] defined the 
transmuted generalized extreme value distribution and they studied transmuted gumbel distribution. Aryal 
and Tsokos [3]  presented the transmuted Weibull distribution. Also Aryal [4] studied the various structural 
properties of transmuted log-logistic distribution. Khan and King [5] investigated the transmuted modified 
Weibull distribution. Also  Elbatal and Muhammed [6] studied the exponentiated generalized inverse 
Weibull distribution. In this paper, we introduce and study several mathematical properties of a new 
generalization model of the transmuted generalized inverse Weibull distribution called the exponentiated 
transmuted generalized inverse Weibull (ETGIW) distribution by introducing another shape parameter.  
   

The paper is organized as follows: In Section 2, we introduce the ETGIW distribution and some special sub-
models are derived. Section 3 discusses some important statistical properties including quantile, moments 
and moment generating function are studied. Some distributions of order statistics models are expressed in 
Section 4. Estimation of the parameters by maximum likelihood method is presented in Section 5. The 
usefulness of the distribution for modeling real life data is illustrated in section 6. Finally, we make some 
concluding remarks on our study. 
 

2 Exponentiated Transmuted Generalized Inverse Weibull Distribution 
 
The five parameter exponentiated transmuted  generalized inverse Weibull distribution ETGIW ( νγ,β,α, ) 

is given by the cdf 
 

      ,,...3,2,1ν,1)( 
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where α  is a scale parameter, νγ,β,  are shape parameters, and λ  is the transmuting parameter. 

Differentiating (1) with respect to t , and doing the necessary simplifications, gives the density function as 
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The survival and hazard (failure) rate functions of the (ETGIW) distribution are given by: 
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Some plots of the possible shapes of the density function, distribution function and hazard rate function of 
the (ETGIW) distribution for selected values of parameters.  
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Fig. 1. Exponentiated transmuted generalized inverse Weibull pdf 
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Fig. 2. Exponentiated transmuted generalized inverse Weibull cdf 
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Fig. 3. Exponentiated transmuted generalized inverse Weibull hazard rate function   
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The exponentiated transmuted generalized inverse Weibull distribution is very flexible (as seen from Table 
1). This is so since several other distributions follow as special cases from the (ETGIW) distribution, by 
selecting the appropriate values of the parameters as shown below: 
 

Table 1. The ETGIW distribution submodels 
 

Parameters Submodels 

0  Exponentiated Generalized Inverse Weibull 

1  Exponentiated Transmuted Inverse Weibull 

1,1    Exponentiated Transmuted Inverse Exponential 

2,1    Exponentiated Transmuted Inverse Rayleigh 

1  Exponentiated Transmuted Frechet 

1,0    Exponentiated Inverse Weibull 

1,1,0    Exponentiated Inverse Exponential 

2,1,0    Exponentiated Inverse Rayleigh 

0,1    Exponentiated Frechet 

1  Transmuted Generalized Inverse Weibull 

1,1    Transmuted Inverse Weibull 

1,1,1    Transmuted Inverse Exponential 

2,1,1    Transmuted Inverse Rayleigh 

1,1    Transmuted Frechet 

0,1    Generalized Inverse Weibull 

1,0,1    Inverse Weibull 

1,1,0,1    Inverse Exponential 

2,1,0,1    Inverse Rayleigh 

1,0,1    Frechet 

 
Table 1 shows the specific values of the parameters used to generate the above mentioned nineteen special 
cases.  
 

3 Statistical Properties 
 
This section explains statistical properties of the (ETGIW) distribution including the quantiles, random 
number generation function, moments and moment generating function. 
 

3.1 Quantiles 
 
The quantile function qt of  the (ETGIW) distribution is the solution of the following equation 
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The above equation has no closed form solution in qt , so we have to use numerical techniques, such as 

Newton- Raphson method, to get the quantile. By putting q=0.5 in (3) one gets the median. 
 

3.2 Random number generation 
 

A random variate T  from (ETGIW) distribution can be generated as ut  according to (3), where q 
 
is 

replaced by U ~  1,0U . 

 

3.3 Moments 
 
In this subsection we discuss the rth moment for (ETGIW) distribution is given by the following theorem. 
  
Theorm (3.1) If T is a continuous random variable has the ETGIW distribution, then the rth non-central 

moments,  r
r '  of T is given by the following 
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Proof: Starting with 
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From the fact that 
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Substituting from (6) into (5), we get 
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Now let
 

    
 tjitxx )( . Then ,     /1/11)(   xjixtt , and therefore 

equation 4 is finally derived completing the proof. As a result, the expected value E(T) and the variance 
Var(T) of the exponentiated transmuted generalized inverse Weibull random variable T are, respectively, 
given by 
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and the variance is 
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Where  2  is given by 
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The nth central moments, nm  can be obtained easily from the rth non-central moments through the relation 
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Thus the nth central moments of the ETGIW distribution is given by 
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Based on (4), the coefficient of variation, coefficient of skewness and coefficient of kurtosis of ETGIW 
distribution can be obtained according to the following relations 
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3.4 Moment generating function 
 
In this subsection we derived the moment generating function of the ETGIW distribution. 

  

Theorem (3.2) If T is a continuous random variable has the ETGIW distribution, then the moment 
generating function of T is given by 
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Proof: The moment generating function of the random variable T is given by 
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which completes the proof. 

 

4 Order Statistics 
 
In fact, the order statistics have many applications in reliability and life testing. The order statistics play an 
important role in statistical inference.  
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4.1 Some distributions of order statistics 
 
Let  )()2()1( ... nTTT   be the ordered observations in a random sample of size n drawn from 

exponentiated transmuted generalized inverse Weibull distribution with cdf F(t) ,given by (1) and pdf f(t) 

,given by (2). The pdf of (j)T , nj ,...,2,1  is given by 
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Therefore, the pdf of the largest order statistic )(nT , the smallest order statistic )(1T  and the median order 

statistic )1(mT   when n=2m+1 (n is odd number) are, respectively, given by 
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4.2 Joint distributions of ith and jth order statistics 
 
The joint pdf of two order statistics   j)(i T,T , for ,,...,1ji, n  of the ETGIW distribution is  
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Where 
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For the special case 1i  and nj  we get the joint distribution of the minimum and maximum as  
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Note that for 1ν   yields the order statistics of the transmuted generalized inverse weibull distribution. 
 

5 Estimation of the Parameters 
 
Now we derive the maximum likelihood estimators (MLEs) and discuss inference for the parameters of the 

ETGIW distribution. Let  n21 T,...,T,T  be a random sample of size n from an ETGIW  λγ,,β,αν,  

distribution then the likelihood function can be written as 
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Then, the log-likelihood function,   , becomes: 
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The log-likelihood function can be maximized either directly or by solving the nonlinear likelihood 
equations obtained by differentiating (7). The components of the score vector are given by 
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We can find the estimates of the unknown parameters by maximum likelihood method by these above non-
linear equations to zero and solve them simultaneously. From equation (8), we obtain the maximum 
likelihood estimate of ν in a closed form as follows 
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When estimates  λ̂,γ̂,β̂,α̂  known. Substituting from (13) into (9), (10), (11), and (12) , we get the MLEs 

 λ̂,γ̂,β̂,α̂  
. These equations cannot be solved analytically and statistical software can be used to solve 

them simultaneously. Therefore, we have to use mathematical package to get the MLE of the unknown 
parameters. For the five parameters exponentiated transmuted generalized inverse Weibull distribution pdf, 
all the second order derivatives exist. Thus we have the inverse dispersion matrix is given by 
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approximate variance covariance matrix. By solving this inverse of dispersion matrix, these solutions will 
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yield the asymptotic variance and covariances of these MLs for 


γ,β,α,ν  and 


λ . Approximate  a1100 

% confidence intervals for γβ,,αν, and λ can be determined respectively as 
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where a/2z  is the upper 
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percentile of the standard normal distribution. 

 

6 Data Analysis 
 
In this section, we use a real data set to show that the ETGIW distribution can be a better model than one 
based on the TGIW and GIW distributions. The data set given in Table 2 taken from Murthy et al. [7] page 
180 and represents 50 items put into use at t = 0 and failure times are in weeks. 
 

Table 2. 50 items put into use at t = 0 and their failure times in weeks 
 

0.013 0.997 4.520 6.572 13.006 
0.065 1.284 4.789 7.023 13.388 
0.111 1.304 4.849 7.087 13.842 
0.111 1.647 5.202 7.291 17.152 
0.163 1.829 5.291 7.787 17.283 
0.309 2.336 5.349 8.596 19.418 
0.426 2.838 5.911 9.388 23.471 
0.535 3.269 6.018 10.261 24.777 
0.684 3.977 6.427 10.713 32.795 
0.747 3.981 6.456 11.658 48.105 

 
The generalized inverse Weibull (GIW), transmuted generalized inverse Weibull (TGIW) and exponentiated 
transmuted generalized inverse Weibull (ETGIW) distributions are fitted to the data and MLEs of the 
parameters are given in Table 3. The values of the log-likelihood, Kolmogorove-Smirnov statistic (K-S), 
Akaike Information Criteria (AIC), and Consistent Akaike Information Criteria (CAIC) for the different 
fitted distributions are also given, and show that the ETGIW distribution gives a better fit than the others.  
  

Table 3. Maximum likelihood estimates, log-likelihood, K-S, AIC, and CAIC values for the different 
fitted distributions 

 

Model             K-S AIC CAIC 

GIW 1 0.854 0.479 1.044 0 168.638 0.199 343.276 343.797 
TGIW 1 2.383 0.530 1.143 -0.747 166.387 0.192 340.774 341.662 
ETGIW 0.502 0.504 0.549 0.962 -0.882 159.999 0.185 329.999 331.363 

  

From Table 3, we observe that the ETGIW distribution is a competitive distribution compared with other 
distributions. In fact, based on the values of the AIC and CAIC criteria as well as the value of the K-S 
statistic, we observe that the ETGIW distribution provides the best fit for these data among all the models 
considered. 
    

7 Conclusion 
 
In this paper, we introduce a new generalization of the inverse Weibull called the exponentiated transmuted 
generalized inverse Weibull distribution. Some mathematical  properties along with estimation issues are 
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addressed. It also provides further flexibility in modeling real data. An application of exponentiated 
transmuted generalized inverse Weibull distribution to real data show that the new distribution can be used 
quite effectively to provide better fits than other distributions. 
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