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Abstract
In this paper, we propose a SEIR-SEI epidemic model for malaria transmission which describes the
interaction between human and mosquito population, with the effects of antibodies produced by the
incidence rates for humans and mosquitoes respectively and two optimal controls. We introduce an
optimal problem with an objective function, where two control functions, use of treated bed-nets
and control effort on malaria treatment , have been used as control measures for infected individuals.
The existence of feasible region where the model is well-known is established. Stability analysis of
the disease -free equilibrium is investigated. The basic reproduction number R0, is obtained using
the next generation matrix approach. The existence of the endemic equilibrium is also specified
under certain conditions. Numerical simulations are carried out to confirm our analytic results and
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our simulation also suggests that, two control strategies are more effective than only one control in
controlling the increase of number of infected individuals in the Democratic Republic of the Congo
(DRC).

Keywords: Malaria transmission; stability analysis; antibody; optimal control.

1 Introduction

Malaria is a life threatening vector borne disease caused by parasites that are transmitted to people
through the bites of infected female Anopheles mosquitoes. It is a preventable and curable disease
[1]. In 2016, an estimated 216 million cases of malaria occurred world wide compared with 237
million cases in 2010 and 214 million new cases of malaria and deaths in 2015. Approximately 80%
of malaria death are concentrated in 15 countries most of them in Africa [2, 3]. The Democratic
Republic of the Congo(DRC)is one of the two major contributors to the global burden of sickness due
to malaria [4]. Mathematical models could mimic the process of malaria and provide very useful tool
to analyze the spread and control of malaria behavior. Several different mathematical models for
malaria had been formulated and studied since the first model was introduced by Ronald Ross [5].
In 2013, [6], proposed a seven dimensional ordinary differential equation modelling the malaria
transmission between humans and mosquitoes with non-linear forces of infection in form of saturated
incidence rates which produced antibodies in both human and mosquito populations in response to
the presence of parasite-causing malaria. According to their results,increasing the proportions of
antibodies has significant effect in reducing the transmission of the malaria infection. Altaf Khan
et al. [7] formulated a SEIR model with non-linear saturated rate and temporary immunity, they
assumed that the total population is constant, and the new born children are susceptible with no
migration. According to their results when R0 < 1 the disease-free equilibrium is stable locally as
well as globally and endemic equilibrium is stable locally as well as globally when R0 > 1. Their
theoretical results was verified by the numerical simulations. Ngwa and Shu [8] analyzed a model
which incorporate compartments for the mosquito population. They also introduce into their model
a class of persons who are partially immune to the malaria disease but may be infectious. They
assumed density dependent death rates in both vector and human populations so that the total
population varied with time through a modification of the logistic equation that included disease
related deaths. Chitnis et al, [9] evaluated the sensitivity of the reproduction number and the
endemic equilibrium. They also generalized the mosquito biting rate and included immigration in
a logistic model for the human population with disease-induced mortality. Jia Li [10] developed
a SEIR malaria model with stage-structured mosquitoes in which he included metamorphic stages
in the mosquito as well as a simple stage mosquito population where the mosquito population is
divided into two classes namely, the aquatic stage in one class and all adults in the other class.
He concluded that the possible occurrence of backward bifurcation makes the control of malaria
more difficult. Many works have been done on modeling the malaria transmission and control
using SEIR-SEI model see [11–13]. In this paper, we formulate a SEIR-SEI model with optimal
control strategies which is different from the above models by introducing a saturated incidence
function with antibodies vh, vv for humans and mosquitoes respectively, with two optimal control
strategies u1(t), u2(t) which differs from most of the mentioned models. Our main objective of this
study is to investigate the stability and the sensitivity analysis for the reproduction number, also
to show the effect of the antibodies on malaria transmission and how to control the disease with
the optimal control strategies. The rest of this paper is organized as follow: Section 2 presents the
SEIR-SEI model description and proved the positivity and boundedness of the solutions. In section
3, we analyze the model equilibria including the derivation of the basic reproduction number and
stability analysis. In section 4, we perform numerical simulations of the model. In section 5 a
sensitivity analysis of the basic reproduction number is presented. Section 6 is devoted to optimal
control analysis of the model with the numerical simulations and the conclusion is presented in
Section 7.
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2 Model Framework

The model is formulated for both humans population and mosquitoes population at time t. The
human population is divided into four compartments: Susceptible humans (Sh), Exposed humans
(Eh), Infectious humans (Ih), and Recovery humans (Rh) and that of the mosquitoes into three
compartments: susceptible mosquitoes (Sv), Exposed mosquitoes (Ev), and Infectious mosquitoes
(Iv), respectively. We denote Nh = Sh+Eh+Ih+Rh, Nv = Sv+Ev+Iv as the total size of humans
and mosquitoes, respectively. The mosquitoes have no recovered compartment and humans enter
the susceptible compartment either through birth or immigration. Infected individuals are assumed
to recover at a rate (mρ1 + cu2), m is the rate of spontaneous recovery u2 control on treatment of
infected individual c ∈ [0, 1] is the efficacy of treatment. Among those who recovered naturally, ρ1
part of them progress to a temporarily immune state and the reaming part immediately become
susceptible to re-infected. Similarly, among the recovered due the treatment control, ρ2 part of them
progress to a temporarily immune state and the remaining part immediately become susceptible to
re-infection. Thus, the model parameters and their description are listed in Table 1.

Table 1. Description of parameters for model (2.1)

Parameter Description

Λh Recruitment of the susceptible humans

Λv Recruitment of the susceptible mosquitoes

b Mosquito Biting rate

βh probability of biting by an infectious mosquito

βv probability of biting that results in transmission of parasite to Sv

µ Natural death rate of human

η Natural death rate of mosquito

δ disease induced death rate

δ1 Progression rate from Eh to Ih class

δ2 Progression rate from Ev to Iv class

w Loss of the immunity rate in human

m Infection human recovery rate

vh proportion of an antibody produced by human

vv proportion of an antibody produced by mosquito

By applying above assumptions, the SEIR-SEI model with optimal control for the dynamics of
malaria transmission is given by :

dSh

dt
= Λh − (1− u1)

bβhIvSh

1 + vhIv
+m(1− ρ1)Ih + cu2(1− ρ2)Ih + wRh − µSh,

dEh

dt
= (1− u1)

bβhIvSh

1 + vhIv
− (α1 + µ)Eh,

dIh
dt

= α1Eh −m(1− ρ1)Ih − cu2(1− ρ2)Ih − (mρ1 + cu2)Ih − (δ + µ)Ih,

dRh

dt
= (mρ1 + cu2)Ih − (µ+ w)Rh,

dSv

dt
= ΛV − (1− u1)

bβvIhSv

1 + vvIh
− ηSv,

dEv

dt
= (1− u1)

bβvIhSv

1 + vvIh
− (α2 + η)Ev,

dIv
dt

= α2Ev − ηIv,

(2.1)
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With the initial conditions: Sh(0) > 0,Eh(0) ≥ 0,Ih(0) ≥ 0, Rh(0) ≥ 0, Sv(0) > 0, Ev(0) ≥ 0,
Iv(0) ≥ 0.

The term bβhSh(t)Iv(t) is a bilinear incidence see [14], indicates the ratio at which the Sh(t) gets
infected by infectious mosquitoes Iv(t). In this paper, we use a saturated incidence function of

the form bβhSh(t)Iv(t)
1+vhIv(t)

, it produces the antibodies at vh ∈ [0, 1] in response to the existence of
antigens produced by infectious anopheles mosquitoes. Also mosquitoes develop antibodies against
the malaria parasites. Thus, we have a saturated force of infection of the form bβvIh(t)

1+vvIh(t)
, such

that vv ∈ [0, 1] is the rate at which antibodies are produced against the antigens contacted from
infectious humans. The model (2.1) without control strategies, that is u1 = 0 , and u2 = 0 becomes

dSh

dt
= Λh − bβhIvSh

1 + vhIv
+m(1− ρ1)Ih + wRh − µSh,

dEh

dt
=

bβhIvSh

1 + vhIv
− (α1 + µ)Eh,

dIh
dt

= α1Eh − (m+ δ + µ)Ih,

dRh

dt
= ρ1mIh − (µ+ w)Rh,

dSv

dt
= ΛV − bβvIhSv

1 + vvIh
− ηSv,

dEv

dt
=

bβvIhSv

1 + vvIh
− (α2 + η)Ev,

dIv
dt

= α2Ev − ηIv,

(2.2)

2.1 Positivity and boundedness of the solutions

We assume that all the variables of the model (2.2), that represent different human and mosquito
classes are nonnegative for all t ≥ 0. Then the system (2.2) is well-posed epidemiologically and
mathematically in a feasible region Γ introduced by

Γ := {(Sh, Eh, Ih, Rh, Sv, Ev, Iv) ∈ R7
+ : 0 ≤ Nh ≤ Λh

µ
, 0 ≤ Nv ≤ Λv

η
}.

Firstly, we introduce the following theorem.

Theorem 2.1. The solutions of the system (2.2) with non-negative initial conditions in the feasible
region Γ ⊂ R7

+ is positively invariant in Γ for all t > 0.

Proof. Assume there exist t1 > 0, such that Sh(t1) = 0, S
′
h(t1) ≤ 0 and Sh, Eh, Ih,Rh, Sv, Ev, Iv

> 0.
for 0 < t < t1, we have

dSh
dt

= Λh − bβhIv(t1)Sh(t1)
1+vhIv(t1)

+m(1− ρ1)Ih(t1) + wRh(t1)− µSh(t1)

= Λh + wRh(t1) > 0
(2.3)

which is a contradiction to our assumption. Hence Sh(t) > 0

Also let
t1 = Sup{t > 0 : Sh, Eh, Ih, Rh, Sv, Ev, Iv > 0}.

then we have

dEh
dt

= bβhIvSh
1+vhIv

− (α1 + µ)Eh,
dEh
dt

+ (α1 + µ)Eh = bβhIvSh
1+vhIv

,∫ t1
0

(e(α1+µ)tEh)
′

=
∫ t1
0

( bβhIv(r)Sh(r)
1+vhIv(r)

)e(α1+µ)rdr,

Eh(t1) = Eh(0)e
−(α1+µ)t1 + e−(α1+µ)t1 [

∫ t1
0

bβhIv(r)Sh(r)
1+vhIv(r)

e(α1+µ)rdr] > 0

(2.4)
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Hence Eh(t) > 0.

Next for Ih(t)

dIh
dt

= α1Eh − (m+ δ + µ)Ih,∫ t1
0

(e(m+δ+µ)Ih(t))
′
=

∫ t1
0

α1Eh(r)e
(m+δ+µ)rdr,

Ih(t1) = Ih(0)e
−(m+δ+µ)t1 + e−(m+δ+µ)t1 [

∫ t1
0

α1Eh(r)e
(m+δ+µ)rdr] > 0,

(2.5)

which contradicts Ih(t1) = 0, similarly for Rh(t). We assume that there exist t1 > 0, such that
Ih(t1) = 0, and Ih(t) > 0, then

dRh
dt

= mρ1Ih − (w + µ)Rh,∫ t1
0

(e(w+µ)Rh(t))
′
=

∫ t1
0

mρ1Ih(r)e
(w+µ)rdr,

Rh(t1) = Rh(0)e
−(w+µ)t1 + e−(w+µ)t1 [

∫ t1
0

mρ1Ih(r)e
(w+µ)rdr] > 0,

(2.6)

which contradicts Rh(t1) = 0

Also assuming that Sv > 0, t ∈ [0, t1], it follows that

dSv(t1)
dt

= ΛV − bβvIh(t1)Sv(t1)
1+vvIh(t1)

− ηSv(t1),

which is a contradiction. Hence there is no such time t1 for which Sv(t1) = 0,
Next for Ev we have

dEv(t1)
dt

= bβvIhSv

1+vvIh
− (α2 + η)Ev,∫ t1

0
(e(α2+η)tEv)

′
=

∫ t1
0

e(α2+η)t bβvIh(t1)Sv(t1)
1+vvIh(t1)

dt,

Ev(t1) = e−(α2+η)t1Ev(0) + e−(α2+η)t1 [
∫ t1
0

e(α2+η)r] bβvIh(r)Sv(r)
1+vvIh(r)

dr > 0,

(2.7)

which showing that Ev(t) > . Similarly, Iv(t) > 0.

3 Basic Reproduction Number and the Existence of
Equilibria

The most important epidemiologically threshold value which is used to determine the ability of an
infectious disease in pervading a population is the basic reproduction number R0 of the model(2.2).
The model(2.2) has a disease-free equilibrium given by E0(

Λh
µ
, 0, 0, 0, Λv

η
, 0, 0). We apply the next

generation matrix approach [15, 16] to find the basic reproduction number. Let F , V be the non-
negative matrix of the infection terms and the non-singular matrix of transition terms calculated
at E0 respectively.

F =



bβhIvSh
1+vhIv

0
bβvIhSv

1+vvIh

0
0
0
0


, V =



(α1 + µ)Eh

−α1Eh + (m+ δ + µ)Ih
(α2 + η)Ev

−α2Ev + ηIv
−Λh −m(1− ρ1)Ih + µSh − wRh

(µ+ w)Rh − ρ1mIh
−Λh + ηSv


.

Consequently, the next generation matrix FV−1
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FV−1 =


0 0 α2bβhΛh

ηµ(α2+η)
bβhΛh

ηµ

0 0 0 0

η(α1+µ)(m+δ+µ)
bβvΛv

η(m+δ+µ)
0 0

0 0 0 0



=


0 0 βvϕvhm

η(βv+η)
ϕvhm

η

0 0 0 0
βhϕhvmbµ

ηa(βh+µ)(µ+δ+γ)
βhϕhvmbµ
ηa(µ+δ+γ)

0 0

0 0 0 0


Then R0 is given by spectral radius of FV−1 which is denoted by ρ(FV−1) and defined as:

R0 = ρ(FV−1) =

√
b2α1α2βhβvΛhΛv

η2µ(α1 + µ)(m+ δ + µ)(α2 + η)
, (3.1)

3.1 Disease-free equilibrium

In this subsection, we investigate the local geometrical properties of the disease-free equilibrium of
the model (2.2) at E0 = (Λh

µ
, 0, 0, 0, Λv

η
, 0, 0) by taking the Jacobian matrix and obtained

J(E0) =



−µ 0 k1 w 0 0 −k2
0 −k3 0 0 0 0 k2
0 α1 −k4 0 0 0 0
0 0 ρ1m −k5 0 0 0
0 0 −k6 0 −η 0 0
0 0 k6 0 0 −k7 0
0 0 0 0 0 α2 −η


It is clear that λ1 = −µ , λ2 = −k5, λ3 = −η are negative eginvalues and the sign of the rest of the
eginvalues can be determined by the characteristic equation

f(λ) = λ4 + b1λ
3 + b2λ

2 + b3λ+ b4 = 0 (3.2)

where:
b1 = η + k3 + k4 + k7,

b2 = k3k4 + k3k7 + ηk3 + k4k7 + ηk4 + ηk7,

b3 = k3k4k7 + ηk3k4 + ηk3k7 + ηK4,

b4 = ηk3k4k7(1− α1α2k2k6
ηk3k4k7

) = ηk3k4k7(1−R2
0),

where k1 = m(1− ρ1),k2 = bβhΛh
µ

, k3 = (α1 + µ), k4 = (m+ δ + µ),k5 = (w + µ), k6 = bβvΛv
η

and
k7 = (α2 + η). Since all the parameters are positive then b1, b2, b3 and b4 are also positive when
R0 < 1.

By Using Routh-Hurwitz criterion [17], it can be seen that all the eigenvalues of the characteristic
equation (3.2) have negative real part if and only if:

D1 = b1 > 0, D2 =

∣∣∣∣b1 1
b3 b2

∣∣∣∣ > 0, D3 =

∣∣∣∣∣∣
b1 1 0
b3 b2 b1
0 b1 b3

∣∣∣∣∣∣ > 0, D4 =

∣∣∣∣∣∣∣∣
b1 1 0 0
b3 b2 b1 0
0 b4 b3 b2
0 0 0 b4

∣∣∣∣∣∣∣∣ > 0, (3.3)
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Obviously, all the eigenvalues of J(E0) have negative real parts when R0 < 1. This implies that
model (2.2) has a unique disease-free equilibrium E0 when R0 < 1 if and only if condition (3.3) is
satisfied, Thus, we have the following theorem.

Theorem 3.1. The system (2.2) has the disease-free equilibrium E0 if R0 < 1,which is locally
asymptotically stable if and onl.y if the condition (3.3) is satisfied and unstable if R0 > 1.

3.1.1 Endemic equilibrium

We assume that there exist an endemic equilibrium E∗ = (S∗
h, E

∗
h, I

∗
h, R

∗
h, S

∗
v , E

∗
v , I

∗
v ) for the model

(2.2) as

S∗
h =

ηΛhk5+[Λhk5(bβv+ηvv+vhα2βvΛv)+k1k2(η+(bβv+vv)I
∗
h)]I∗h

ηµk5+[α2βvΛvk5(b2βh+µvh)+k5µ(bβv+vv)]I
∗
h

, E∗
h =

k4I
∗
h

α1
, R∗

h =
ρ1mI∗h

k5
,

S∗
v =

Λv(1+vvI
∗
h)

bβvI
∗
h
+η(1+vvI

∗
h
)
, E∗

v =
bβvΛvI

∗
h

(α2+η)[bβvI
∗
h
+η(1+vvI

∗
h
)
, I∗v =

α2bβvΛvI
∗
h

bβvI
∗
h
+η(1+vvI

∗
h
)
,

(3.4)

and I∗h is a positive solution of the given equation

d1I
∗2
h + d2I

∗
h + d3 = 0, (3.5)

where

d1 = k3k4k5βh[α2b
3βhβvΛv(1 + α2βvΛv) + µ(bα2βvΛvvh + b2βv + bvv + Λvα2vvvhη + ηvv+

α2
2Λ

2
vβvbvh + b2βvα2Λv)] + k3k4k5µvv(vvη + a

¯
lpha2βv)− k1k2βvβhα1α2Λvb

2(bβv + vv)
d2 = k3k4k5βv[η(bµ+ α2b

2βhΛv + α2µΛvvh + bµ+ bµα2vvΛv)] + k3k4k5ηµvv(1 + η)−
α1α2b

2βvβhΛv[k5Λh(bβv + ηvv) + α2β
2
vΛvvh + ηk1k2]

d3 = η2k3k4k5µ(1− α1α2b
2βhβvΛvΛh
ηµk3k4

)

For d1 > 0, d2 > 0, and d3 < 0, an endemic equilibrium point exists and when d3 > 0, the model has
no positive solution. Numerical simulations in section 4, also confirm the existence of an equilibrium
and it’s stability when R0 > 1.

4 Numerical Simulations

In this section, we use our model (2.2) to simulate the reported annual malaria human infected cases
from WHO [18,19]. We present numerically the behavior of the system (2.2), using the parameter
values in Table 2 and by considering the initial conditions. The numerical simulations are conducted
using Matlab software and the simulation results given in Figures(1-5) to clarify the models behavior
for the values of model parameters. Fig 1 (a) shows the simulation of the reported malaria cases
in DRC from 2007 to 2013 and Fig 1(b) shows the prediction of human malaria for DRC 2007
to 2030. Fig 2(a-e) presents the model (2.2) solution with parameter values from Table 2, for
the human and mosquito compartments respectively. Figures 3(a-d) and Figures 4(a-c) illustrates
the varying effects of ratios of antibodies vh, vv on human and mosquito populations, while the
remaining parameters maintain the same as in Table 2, where R0 < 1 and b=0.161. In particular,
Fig 3(a) shows the behavior of the susceptible human Sh(t), when the antibody vh, increases in
ratio. An increase in the ratio of the antibody reduces the acute decrease in the susceptible human
population. The volumes of the exposed human Eh(t), and infectious human Ih(t), population
in Fig 3(a) and Fig 3(c), decrease with increase presence of the antibody vh. Consequently, the
decreased number of infectious human contributes to increase in the number of recovered human
Rh(t) as seen in Fig 3(d).

Similarly, in Fig 4(a), the number of susceptible mosquitoes Sv(t), decreases with time. But,
increasing the ratio of antibody, vv prevent the reduction in susceptible mosquitoes Sv(t). In Figures

7
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4 (b) and (c), the number of exposed and infectious mosquitoes population decreases due to increase
in resistance to the malaria parasite.

Generally, Figures 5(a-d) and Figures 6(a-c) show the varying effects of ratios of antibodies vh, vv
on humans and mosquitoes population, where the other parameter are maintained as in Table 2,
where R0 is greater than one and b=0.39. So far,when we increase the ratio of the antibody with
b = 0.39 andR0 > 1, it has lower effect in reducing the burden of the endemic malaria infection when
compared with Figures 3(a-c). Figures 6(a,b,c) present the effect of the mosquitoes resistance to the
malaria on susceptible, exposed and infectious mosquito populations, where the human- mosquito
contact rate is increased. Clearly, the number of infectious mosquito decreases with increased in
the ratio of antibody, vv.

Table 2. Parameter values for model (2.2)

Parameter Value Source

Λh 0.0043 Assumed

Λv 0.0071 Assumed

b 0.39 [20]

µ 0.0000472 [21]

w 0.00274 [21]

η 0.1 [21]

βh 0.048 [22]

βv 0.48 [22]

α1 0.08333 [22]

α2 0.48 [22]

m 0.0035 [22]

δ 0.083 [23]

ρ1 0.23 Fitting

ρ2 0.331 Fitting

vh 0.29 Fitting

vV 0.3 Fitting

5 Sensitivity Analysis of R0

In this section, we investigate the nature of the system by conducting sensitivity analysis of the
reproduction number R0.
(a) If the value of b is reduced from 0.39 to 0.24 and the values of other parameters are
maintained then R0 is reduced from 1.4946 to 0.9198.
(b) If the value of β1 is reduced from 0.0833 to 0.0000233 and the other parameters
remain the same then R0 is reduced from 1.4946 to 0.8595.
(c) If we reduced the value of α2 from 0.48 to 0.048 and the other parameters are the same then
R0 will reduced from 1.4946 to 0.9357.
(d) If the value of m is increased to 0.4435 then R0 will reduced to 0.6060.
(e) If we reduced the value of βh to 0.0195 then R0 will reduced to 0.9381.
(f) If the value of βv is reduced to 0.18 then R0 will reduced to 0.9153.

8



Osman et al.; JAMCS, 28(6): 1-17, 2018; Article no.JAMCS.44029

(a)

2007 2008 2009 2010 2011 2012 2013

Year

0

1

2

3

4

5

6

7
I h(t

)
106 Democratic Republic of the Congo 

(b)

2005 2010 2015 2020 2025 2030

Year

0

0.5

1

1.5

2

2.5

I h(t
)

107 Democratic Republic of the Congo 

Figure 1: Comparisons of the reported malaria cases from WHO (red curve) and the
solution of infectious human Ih for model (2.2). (a): Simulation of the reported malaria
cases in DRC from 2007 to 2013. (b): Prediction of human malaria for DRC 2007 to
2030.
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Figure 2: Solution of model (2.2) with parameters from Table 2.

6 Analysis of Optimal Control

In this section, we make use of Pontryagin’s Principle in order to find the necessary conditions that
establishes the presence of optimal control of the malaria transmission model. We include time
dependent controls into the SEIR-SEI malaria model and attempt to explore the suitable optimal
control strategy for setting the malaria under control. We use two control variables, the control
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Figure 3: The behaviors of susceptible, Exposed, Infectious and Recovered humans for
different values of vh when R0 < 1 and b=0.161.

u1(t) represents the effort on preventing malaria infections through the use of treated bed-nets and
the control effort on malaria treatment of infected individuals u2(t).The objective function used for
the model is similar to [24–26],and is given by

J(u1, u2) =

∫ tf

0

(A1Eh +A2Ih +
B1

2
u2
1 +

B2

2
u2
2)dt, . (6.1)

where A1 and A2 are the balancing cost factors due to scale while B1 and B2,denote the weighting
constants for making use of prevention strategy using treated net-bed and the control effort on
malaria treatment of infectious individuals. Consequently, we attempt to expect an optimal control
u∗
1, u

∗
2 such that,

J(u∗
1, u

∗
2) = minJ(u1, u2),∆ = {(u1, u2)|0 ≤ ui ≤ 1, i = 1, 2}. (6.2)

dSh

dt
= Λh − (1− u1)

bβhIvSh

1 + vhIv
+m(1− ρ1)Ih + cu2(1− ρ2)Ih + wRh − µSh,

dEh

dt
= (1− u1)

bβhIvSh

1 + vhIv
− (α1 + µ)Eh,

dIh
dt

= α1Eh −m(1− ρ1)Ih − cu2(1− ρ2)Ih − (mρ1 + cu2)Ih − (δ + µ)Ih,

dRh

dt
= (mρ1 + cu2)Ih − (µ+ w)Rh,

dSv

dt
= ΛV − (1− u1)

bβvIhSv

1 + vvIh
− ηSv,

dEv

dt
= (1− u1)

bβvIhSv

1 + vvIh
− (α2 + η)Ev,

dIv
dt

= α2Ev − ηIv,

(6.3)
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Figure 4: The behaviors of Susceptible, Exposed and Infectious mosquitoes for different
values of vv when R0 < 1 and b=0.161.

The optimal control must conform the necessary conditions that is emanated from the Pontryagin
Maximum Principle [27].This concept transpose the equations (6.2) and (6.3) into a type of problem
characterised with minimizing pointwise a Hamililtonian H, with respect to u1 and u2

H = A1Eh +A2Ih + B1
2
u2
1 +

B2
2
u2
2

+λ1

{
Λh − (1− u1)

bβhIvSh
1+vhIv

+m(1− ρ1)Ih + cu2(1− ρ2)Ih + wRh − µSh

}
+λ2{(1− u1)

bβhIvSh
1+vhIv

− (α1 + µ)Eh}
+λ3{α1Eh −m(1− ρ1)Ih − cu2(1− ρ2)Ih − (mρ1 + cu2)Ih − (δ + µ)Ih}
+λ4{(mρ1 + cu2)Ih − (µ+ w)Rh}
+λ5{ΛV − (1− u1)

bβvIhSv

1+vvIh
− ηSv}

+λ6{(1− u1)
bβvIhSv

1+vvIh
− (α2 + η)Ev}

+λ7{α2Ev − ηIv}

(6.4)

where λ1, λ2, λ3, λ4, λ5, λ6 and λ7, represent the adjoint variables.

The system solution is attained by suitably taking partial derivatives of the Hamiltonian (6.4) with
respect to the associated state variable.

Theorem 6.1. Given an optimal control u∗
1, u

∗
2 and the solutions Sh, Eh, Ih, Rh, Sv, Ev, Iv of the

corresponding state systems (2.1) and (6.3) that minimize J(u1, u2) over Γ. Then there exist adjoint
variables λ1, λ2, λ3, λ4, λ5, λ6, λ7, satisfying

−dλi
dt

= ∂H
∂i

(6.5)

Where i = 1, 2, 3, 4, 5, 6, 7 and with transversality conditions

λ1(tf ) = λ2(tf ) = λ3(tf ) = λ4(tf ) = λ5(tf ) = λ6(tf ) = λ7(tf ) = 0 (6.6)
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Figure 5: The behaviors of Susceptible, Exposed, Infectious and Recovered humans for
different values of vh when R0 > 1 and b=0.39.

and
u∗
1 = min

{
1,max(0, 1

2B1

(
bβhIvSh
1+vvIv

(λ2 − λ1) +
bβvIhSv

1+vvIh
(λ6 − λ5)

)}
(6.7)

u∗
2 = min

{
1,max(0, Ih

2B2
(c(1− ρ2)λ3 − cρ2λ4 − c(1− ρ2)λ1)

}
(6.8)

Proof. Theorem 4.1 and Corollary 4.1 of [27] gives the conditions of possible existence of an optimal
control based on the convexity of the integrand of J(u1, u2) with respect to u1 and u2 a priori
boundedness of the state solutions, and the resulting Lipschitz characteristics of the state system of
the ODE’s with the state variables. The Hamiltonian function determined at the optimal control
level leads to the adjoint variables. Thus, the adjoint equations can be rearranged as

dλ1
dt

= (1−u1)bβhIv
1+vvIv

(λ1 − λ2) + µλ1

dλ2
dt

= −A2 + (α1 + µ)λ2 − α1λ3

dλ3
dt

= −A2 − (m(1− ρ1) + cu2(1− ρ2))λ1 + (m+ cu3 + δ + µ)λ3 − (mρ1 + cu2ρ2)λ4+

(1−u1)bβvSv

1+vvIh
(λ5 − λ6) +

(1−u1)bβvvvIhSv

(1+vvIh)2

dλ4
dt

= (µ+ w)λ4 − wλ1

dλ5
dt

= (1−u1)bβvIhSv

1+vV Ih
(λ5 − λ6) + ηλ5

dλ6
dt

= (α2 + η)λ6 − α2λ7

dλ7
dt

= (1−u1)bβhSh
1+vhIv

(λ1 − λ2) +
(1−u1)bβhvhSh

1+vhIv
(λ2 − λ1) + ηλ7
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Figure 6: The behaviors of Susceptible, Exposed and Infectious mosquitoes for different
values of vv when R0 > 1 and b=0.39.

6.1 Numerical simulations of optimal control

In this section, we discuss the numerical outcomes of our various optimal control strategies on the
spread of malaria in DRC.

6.1.1 Malaria Prevention u1(t) Control only

In this strategy, prevention effort targeting the use of treated bed-net u1(t) was employed while the
control u2(t) = 0 is employed to optimize the objective function J(u1, u2). In Fig 7(a) , there is
a significant different between the cases with control u1 ̸= 0,u2 = 0 and the cases without control
u1 = u2 = 0, the number of exposed mosquitoes decreases till the day 3 but starts increasing after
that. The strategy is not effective in reducing the number of exposed mosquitoes Ev. Similarly it is
not effective in reducing the number of exposed humans in Fig 7(c). In Fig 7(b) and (d), there are
no significant difference between the cases with control and those that without control. It is clear
that the strategy employed is not effective in reducing the number of infective mosquitoes Iv and
malaria infective humans Iv respectively.

6.1.2 Malaria Prevention treatment u2(t) Control only

In this strategy, treatment effort is employed to optimize the objective function J(u1, u2) when u1

is set to be zero. In Fig 8(a),(b),(c),(d), there are no significant difference between the cases with
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Figure 7: Simulations of the model showing the effect of malaria prevention only on
transmission. Fig 6 (a) and (b) represents the behavior infected humans and infected
mosquitoes respectively. Dashed line represents system without control (u1 = 0, u2 = 0)
and solid line shows the system with control (u1 ̸= 0, u2 = 0.)

control and that without control. Therefore the strategy is not effective to reduce the number of
Exposed mosquitoes, Infectious mosquitoes, Exposed humans and Infectious humans respectively.

6.1.3 Malaria Prevention u1(t) and u2(t) Control only

In this strategy malaria prevention treated bed-net control u1(t) and malaria treatment effort control
u2(t) are used to optimize the objective function J(u1, u2). It is obvious in Fig 9(a) that there is
a significant difference between the number of exposed mosquitoes Ev under control, compared
to those without control the number of exposed mosquitoes were initially controlled but it starts
rising after day 4. The strategy is not effective in controlling Ev. In Fig 9(b), there is no significant
difference between the number of infectious mosquitoes Iv under the control and without control.
The strategy is not effective in controlling the Infectious mosquitoes Iv. In Fig 9(c), there is a
significant difference between the number of Exposed humans Eh with control and without control,
the number of Eh was initially controlled but starts rising before day 18. This strategy is not effective
in controlling Exposed humans. In Fig 9(d), there is a significant difference between the presence
of control and without control cases. It was observed that the number of malaria Infections in
humans Ih which was increasing initially has been reduced. This indicates that the control strategy
employed is effective in reducing the number of malaria Infected humans.
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Figure 8: Simulations of the model showing the effect of malaria prevention only on
transmission. Fig 6 (a) and (b) represents the behavior infected humans and infected
mosquitoes respectively. Dashed line represents system without control (u1 = 0, u2 = 0)
and solid line shows the system with control (u1 = 0, u2 ̸= 0.)
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Figure 9: Simulations of the model showing the effect of malaria prevention only on
transmission. Fig 6 (a) and (b) represents the behavior infected humans and infected
mosquitoes respectively. Dashed line represents system without control (u1 = 0, u2 = 0)
and solid line shows the system with control (u1 ̸= 0, u2 ̸= 0.)

15



Osman et al.; JAMCS, 28(6): 1-17, 2018; Article no.JAMCS.44029

7 Conclusion

In this paper, we formulated and analysed a seven-dimensional differential equation model for
malaria transmission in human and mosquito populations with non-linear incidence forces of infections
for human and mosquito with two optimal control strategies, use of treated bed-nets u1(t) and
control effort on malaria treatment of infected individual u2(t). We established the feasible region
where the model is mathematically and epidemiologically well-posed. The existence and stability of
a disease-free equilibrium was shown when u1(t) = u2(t) = 0. Furthermore, we obtained the basic
reproduction number ,R0, by applying the next generation matrix method. Further we showed
that there exists a unique endemic equilibrium point for the model when R0 > 1. Our numerical
simulation results showed that increasing the ratios of antibodies has significant effect in reducing
the transmission of the malaria infection. In addition to that, we used two optimal control strategies
u1(t) and u2(t) to minimize the infected human individual (to control the infectious human Ih(t)).
Numerical simulation for the optimal control suggests that the two controls u1(t) and u2(t) together
are more effective in reducing the number of infected human than one control strategy. In future
we will study the spatial pattern of malaria transmission. This will deal with the consideration of
environmental, genetic and infections risk factors. We will also add more control strategies.
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