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Abstract

We construct exponential objects in categories of generalized uniform hypergraphs and use
embeddings induced by nerve-realization adjunctions to show why conventional categories of
graphs and hypergraphs do not have exponential objects.
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1 Introduction

It is well-known that exponential objects do not exist in conventional categories of graphs [1]. We
extend these results to categories of hypergraphs. To do this, we introducing categories of (X,M)-
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graphs and reflexive (X,M)-graphs, which are categories of presheaves1 on two-object categories
(Definition 2.1). We concretely construct exponential objects for any given category of (reflexive)
(X,M)-graphs and use these constructions to prove that the exponential closures of categories of
uniform hypergraphs are categories of (X,M)-graphs.

The categories of (reflexive) (X,M)-graphs should be thought of as categories of generalized k-
uniform hypergraphs where k is the cardinality ofX. The objects can be viewed as generic containers
for sets of vertices and sets of arcs, where a monoid M informs the type of coherence involved.

There are two features of categories of (reflexive) (X,M)-graphs which distinguish them from the
more conventional categories of uniform hypergraphs. The first is that the edges have incidence in
multisets. The other is the presence of unfixed edges. In the case X is a two-elements set, the only
unfixed edges are 2-loops, which are called bands in Brown et al. [1]. We prove that unfixed edges
are necessary for the construction of exponentials in conventional categories of graphs.

As a consequence of our constructions we address the problem that the category of k-uniform
hypergraphs (as defined in Dofler and Waller [2]) lacks connected colimits, exponentials and does
not continuously embed into the category of hypergraphs. We prove that there exists a continuous
embedding of the category of k-uniform hypergraphs in a category of (X,M)-graphs (Proposition
5.1) which preserves any relevant categorical structures (e.g., colimits, exponentials, injectives,
projectives). Therefore, working in a category of (reflexive) (X,M)-graphs provides a better
categorical environment for constructions on uniform hypergraphs.

The notation and definitions used in this paper follow Riehl [3].

2 (X,M)-Graphs

We begin with a definition.

Definition 2.1.

1. Let M be a monoid and X a right M -set. The theory for (X,M)-graphs, G(X,M), is the
category with two objects V and A and homsets given by

G(X,M)(V,A) := X,

G(X,M)(A, V ) := ∅,
G(X,M)(V, V ) := {idV },
G(X,M)(A,A) :=M.

Composition is defined as m ◦ x = x.m (the right-action via M), m ◦m′ = m′m (monoid
operation of M).

2. Let M be a monoid such that the set Fix(M) := {m′ ∈M | ∀m ∈M,m′m = m′ } is non-
empty. Let X := {xm′ |m′ ∈ Fix(M) } be the right M -set with right-action xm.m

′ := xmm′

for each m ∈M and xm′ ∈ X. The theory for reflexive (X,M)-graphs, rG(X,M), is the same
as for G(X,M) but with

rG(X,M)(A, V ) := {ℓ},

and composition ℓ ◦m = ℓ, ℓ ◦ xm′ = idV , and x ◦ ℓ = x for each m ∈M and m′ ∈ Fix(M).

1Recall a category of presheaves is one which is equivalent to a functor category [Cop,Set] for
some small category C.
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The category of (X,M)-graphs (resp. reflexive (X,M)-graphs) is defined to be the category of

presheaves Ĝ(X,M) := [Gop(X,M),Set] (resp. r̂G(X,M) := [rGop(X,M),Set].)

By definition, an (X,M)-graph G : Gop(X,M) → Set has a set of vertices G(V ) and a set of arcs G(A)
along with right-actions for each morphism in G(X,M). For example, x : V → A in G(X,M) yields a
set map G(x) : G(A) → G(V ) which takes an arc α ∈ G(A) to α.x := G(x)(α) which we think of
as its x-incidence.2 For an element m in the monoid M , the corresponding morphism m : A → A
in G(X,M) yields a right-action α.m := G(m)(α) which we think of as the m-associated partner of
α. If G is a reflexive (X,M)-graph, the ℓ-action can be thought of as the extraction of a loop from
a vertex. We call a loop equal to x.ℓ a distinguished loop for vertex x. It can be thought of as
the arc-proxy for the vertex. This will allow us to map arcs to vertices, or more precisely, arcs to
distinguished loops.

Each (X,M)-graph G induces a set map ∂G : G(A) → G(V )X such that ∂G(α) : X → G(V ) is
the parametrized incidence of α, i.e., α.x = ∂G(α)(x). The x-incidence can be recovered from a
parametrized incidence by precomposition of the map _x^ : 1 → X which names the element x in X.
Observe that the m-associated partner of an arc α in G has the parametrized incidence such that
the following commutes

X

∂G(α.m)

22
⟨idX ,_m^⟩

// X ×M
action // X

∂G(α)
// G(V ).

If G is a reflexive graph, ∂G(x.ℓ) = _x^◦!X where !X is the terminal set map.

Let X be a set. We define the following submonoids of the endomap monoid End(X):

o(X) := {idX}
s(X) := Aut(X) (the submonoid of automaps)

ro(X) :=
{
f ∈ End(X)

∣∣ f = idX or ∃x ∈ X, ∀x′ ∈ X, f(x′) = x
}

rs(X) := ro(X)∪ s(X)

h(X) = rh(X) := End(X).

Thus there are the following inclusions as submonoids in End(X):

o(X)
��

��

// // s(X) // //
��

��

h(X)

ro(X) // // rs(X) // // rh(X) .

The right-action of M ⊆ End(X) on X is given by evaluation, e.g. x.f := f(x).3

Definition 2.2. Let X be a set.

1. The theory for oriented X-graphs (resp. symmetric X-graphs, hereditary X-graphs) is
defined as oGX := G(X,o(X)) (resp. sGX := G(X,s(X)), hGX := G(X,h(X))). The category
of oriented X-graphs (resp. symmetric X-graphs, hereditary X-graphs) is its category of

presheaves ôGX (resp. ŝGX , ĥGX).

2Note that we use the categorical notation of evaluation of a presheaf as a functor for the set
of vertices G(V ) and set of arcs G(A) rather than the conventional graph theoretic V (G) and E(G)
for the vertex set and edge set.

3Note that the monoid operation on End(X) is given by f · g = g ◦ f .
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2. The theory for reflexive oriented X-graphs (resp. reflexive symmetric X-graphs, reflexive
hereditary X-graphs) is defined as rGX := rG(X,ro(X)) (resp. rsGX := rG(X,rs(X)), rhGX :=
rG(X,rh(X))).

4 The category of reflexive oriented X-graphs (resp. reflexive symmetric X-

graphs, reflexive hereditary X-graphs) is its category of presheaves r̂oGX (resp. r̂sGX , r̂hGX).

The various categories of X-graphs can be thought of as models for k-uniform hypergraphs where
k is the cardinality of X and the arcs take its incidence relation in multisets of vertices.

Example 2.1.

1. When X = ∅, the categories of oriented, symmetric and hereditary X-graphs is the category
Set×Set.

2. When X = 1 is a one element set, the categories of oriented, symmetric and hereditary graphs

is the category of bouquets, i.e., the category of presheaves on V
s // A ([4], p 18). The

categories of reflexive, reflexive symmetric and reflexive hereditary X-graphs is the category
of set retractions.

3. When X = {s, t}, the categories of oriented, reflexive, symmetric, reflexive symmetric graphs
are the categories of directed graphs, directed graphs with degenerate edges, undirected graphs
with involution in Brown et al. [1].

The following is an example of a reflexive symmetric X-graph where i : X → X denotes the
non-trivial automap.

G a

ℓa

�� α0 //
oo
α1

b

β0

BB

β1

\\

ℓb

�� γ0 //
oo
γ1

c

ℓc

��

G(A) = {α0, α1, β0, β1, γ0, γ1, ℓa, ℓb, ℓc},
G(V ) = {a, b, c}
α0.s = a, α0.t = b, β0.s = b, β0.t = b,

γ0.s = c, γ1.t = b,

a.ℓ = ℓa, b.ℓ = ℓb, c.ℓ = ℓc,

α0.i = α1, β0.i = β1, γ0.i = γ1

Each loop extracted from a vertex via ℓ is depicted by a dotted arrow. We will call these
arrows distinguished loops. They should be thought of as proxies for the vertices. Notice
that for a distinguished loop ℓa, we have ℓa.i = ℓa since ℓ ◦ i = ℓ in rsGX . However, a
non-distinguished loop may not be fixed by the right-action of i, as is the case with β0 and β1
above. If a loop δ has a distinct i-pair (i.e., δ.i ̸= δ), we call it a nonfixed loop (or a 2-loop
in the case X = 2).5 If δ is fixed by the i-action (i.e., δ.i = δ) it is called a fixed loop (or a
1-loop).

To connect this definition to undirected graphs, we identify edges which are i-pairs and define
the set of edges G(E) as the quotient of the set of arrows G(A) under this automorphism
defined by the i-action.6 There is an incidence operator ∂ : G(E) → G(V )2 which defines for
an i-pair the set of boundaries. Then an undirected representation for G can be given as

4In each case, X can be verified to be the submonoid of fixed elements given in the definition
of a reflexive theory.

5In Brown et al. [1], it is called a band.
6In the subsequent, we reserve the term edge for the equivalence class of arcs under the group

s(X).
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G a

ℓa

α0∼α1
b

β0∼β1

2

ℓb

γ0∼γ1
c

ℓc G(E) = {α0 ∼ α1, β0 ∼ β1, γ0 ∼ γ1, ℓa, ℓb, ℓc},
G(V ) = {a, b, c}
(α0 ∼ α1).∂ = {a, b}, (β0 ∼ β1).∂ = {b, b},
(γ0 ∼ γ1).∂ = {b, c}, ℓa.∂ = {a, a}, ℓb.∂ = {b, b},
ℓ.c = {c, c}.

We have placed a 2 in the loop which came from the 2-loop β0 ∼ β1 even though the quotient
has identified them. Keeping a distinction between fixed loops and nonfixed loops is necessary
for constructions of exponentials (see Corollary 5.4 below).7

3 The Yoneda Embedding

In the category of (X,M)-graphs the representable V := G(X,M)(V,−) consists of one vertex
corresponding to the identity morphism and an empty arc set. In the reflexive case, V := rG(X,M)(V,−)
also has one distinguished loop corresponding to the morphism ℓ : A → V . The representables
A := G(X,M)(A,−) and A := rG(X,M)(A,−) each have vertex set equal to X corresponding to
each morphism x : V → A and arc set equal to M . The right-actions are given by Yoneda, e.g.,
σ = Y (σ) : A→ A. Observe that each representable has no nonfixed loops.

Example 3.1. Let X = {s, t}. The Yoneda embedding gives the following diagrams,

ôGX : V v1
s

//

t
// vs

a1 // vt A

r̂oGX : V v1

aℓ

��

s
//

t
//

oo
ℓ

vs

asℓ

�� a1 // vt

atℓ

��
A

s◦ℓ

��

t◦ℓ

XX

ŝGX : V v1
s

//

t
// vs

a1∼ai
vt A i

ff

r̂sGX : V v1

aℓ
s

//

t
//

oo
ℓ

vs

asℓ

a1∼ai
vt

atℓ

A i
ff

s◦ℓ

��

t◦ℓ

XX

where i : {s, t} → {s, t} is the non-trivial automapping, s, t are the symmetric X-graph morphisms
which pick out vs and vt respectively, and i is the symmetric X-graph morphism which swaps vs
with vt and a1 with ai. In the reflexive case, ℓ is the terminal morphism, s ◦ ℓ, t ◦ ℓ takes each arc
to asℓ and atℓ respectively, and i swaps loops asℓ with atℓ and a1 with ai.

7In the subsequent, if a loop has no number written inside it is assumed to be a fixed loop.
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4 Exponentials

Let G and H be (reflexive) (X,M)-graphs. By Yoneda and the exponential adjunction,

GH(V ) = Ĝ(X,M)(V ,G
H) ∼= Ĝ(X,M)(V ×H,G)

GH(A) = Ĝ(X,M)(A,G
H) ∼= Ĝ(X,M)(A×H,G)

with right-actions being defined by precomposition. For instance, given f : A×H → G (i.e., an arc
in GH), for each x ∈ X, f.x := f ◦ (x×H) : V ×H → G. The evaluation morphism is defined on
components

evV : Ĝ(X,M)(V ×H,G)×H(V ) → G(V ), (γ, v) 7→ γV (idV , v),

evA : Ĝ(X,M)(A×H,G)×H(A) → G(A), (δ, a) 7→ δA(idA, a).

Thus for (X,M)-graphs, the vertex set GH is given by G(V )H(V ) since V has just a single vertex
with no arcs. For reflexive (X,M)-graphs, since V is the terminal object, V ×H ∼= H, the vertex

set is given by the homset GH(V ) = Ĝ(X,M)(H,G).

To give a description of the arc set of the (reflexive) (X,M)-graphGH , we define a set map analogous
to taking a homset of a category

G : G(V )X → 2G(A), (vx)x∈X 7→ {β ∈ G(A) | ∀x ∈ X, β.x = vx } .

We recall that the graph A×H has a parametrized incidence operator

∂ : A×H(A) → ((A×H)(V ))X .

For each set map f : X ×H(V ) = (A×H)(V ) → G(V ) we compose to obtain the following diagram.

A×H(A)

∂

��

Gf :=GfX∂
// 2G(A)

(X ×H(V ))X
fX

// G(V )X

G

OO

We see that Gf := GfX∂(aσ, α) is the set of arcs in G with the same set of incident vertices
determined by the value of f on the incident vertices of the arc (aσ, α) in A×H(A). Observe that
a morphism g : A×H → G is determined on the arcs of H(A), i.e., given an arc (aσ, α) ∈ A×H(A)
we have gA(aσ, α) = gA(a1, α).σ.

The general formula for the arc set of exponentials of non-reflexive (X,M)-graphs is as follows

GH(A) =
⊔
f∈(GH (V ))X

∏
α∈H(A)Gf (a1, α).

Thus an arc in GH is given by a pair (f = (fx)x∈X , g) where (fx : H(V ) → G(V ))x∈X is a family
of set map and g : H(A) → G(A) is an element in the product

∏
α∈H(A)Gf (a1, α). Note that

((fx)x∈X , g) is an arc in GH which implies f : X ×H(V ) → G(V ) has at least one extension to a
morphism A×H → G.

Given a family of set maps (fx : H(V ) → G(V ))x∈X , we define f : H(V )X → G(V )X where f(h)(x) :=

fx(h(x)) for each h ∈ H(V )X and x ∈ X. Then the set of arcs has an equivalent description

GH(A) =
{
((fx)x∈X , g) ∈ (GH(V ))X ×G(A)H(A)

∣∣∣ f ◦ ∂H = ∂G ◦ g
}
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i.e., it is the set of pairs ((fx)x∈X , g) such that g(α).x = fx(α.x) for each α ∈ H(A) and x ∈ X. In
diagram form we require that the following commute

H(A)

∂H

��

g
// G(A)

∂G

��

H(V )X
f

// G(V )X .

The right-actions are given by ((fx)x∈X , g).x = fx for each x ∈ X and ((fx)x∈X , g).σ = ((fσ(x))x∈X , g.σ)
for each σ ∈M where g.σ : H(A) → G(A) takes α to g(α.σ). In other words, the following commute
for each x ∈ X and σ ∈M .

G(V )
%%

%%J
JJ

JJ
JJ

JJ
J

H(V )

((fx)x∈X ,g).x
88rrrrrrrrrr

//
ιx // A×H

((fx)x∈X ,g)
// G

A×H

((fx)x∈X ,g).σ

##σ× 1
// A×H

((fx)x∈X ,g)
// G

where ιx : H(V ) → A×H sends vertex v to (x, v).

In the reflexive case, given a family of morphisms (fx : H → G)x∈X , we define f : X ×H(V ) →
G(V ), (x, v) 7→ fx(v). Then the formulas above hold for the reflexive case as well. We have

GH(V ) = r̂G(X,M)(H,G)

GH(A) =
⊔
f∈(GH (V ))X

∏
α∈H(A)Gf (a1, α).

Alternatively, GH(A) =
{
((fx)x∈X , g) ∈ (GH(V ))X ×G(A)H(A)

∣∣∣ f ◦ ∂H = ∂G ◦ g
}
as above. Then

an arc in GH is given by a pair ((fx)x∈X , g) where (fx)x∈X is a family of graph morphisms fx : H →
G and g : H(A) → G(A) is an element in the product

∏
α∈H(A)Gf (a1, α). Then for each x ∈ X,

((fx)x∈X , g).x = fx. Given a morphism k : H → G (i.e., a vertex in GH), k.ℓ = ((k)x∈X , kA) where
kA : H(A) → G(A) is the evaluation of k at the arc component. For each σ ∈ M , ((fx)x∈X , g).σ =
((fx.σ)x∈X , g.σ) where g.σ : H(A) → G(A) takes α to g(α.σ).

The evaluation morphism ev : GH ×H → G for (reflexive) (X,M)-graphs is given as

evV : GH(V )×H(V ) → G(V ), (h, v) 7→ h(v),

evA : GH(A)×H(A) → G(A), (((fx)x∈X , g), α) 7→ g(α).

Example 4.1.

1. Let X be a nonempty M-set. Then the exponential of V V in Ĝ(X,M) is the terminal object
1, which has one vertex and one fixed loop. This is an example of a creation of an arc from
two (X,M)-graphs with no arcs.

More generally, for an arbitrary (X,M)-graph G, GV is the (X,M)-graph with vertex set
GV = G(V ) and arc set GV (A) = G(V )X with right-actions f.x = f(x), f.σ = f ◦σ for each
x ∈ X, f ∈ GV (A) and σ ∈M .

2. Let X be a set with cardinality greater than 1 and consider the symmetric X-graph Γ such that
L(V ) := {v} and L(A) := {0, 1} where 0.σ = 0 and 1.σ = 1 for each σ ∈ s(X). The vertex set
for LA is a singleton {v} since L(V ) is a singleton. The set AA = { (a1, aσ) |σ ∈ s(X) } ∼=
s(X) and thus the set of arcs is LA(A) ∼= Set(s(X), {0, 1}). We show that LA contains a
nonfixed loop. Consider a loop given by a set map g : s(X) → {0, 1} such that idX 7→ 0 and
σ 7→ 1 for the permutation σ : X → X which swaps distinct elements x and x′ and leaves the

7
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rest fixed. Then g.σ(σ) = g(σ ◦ σ) = g(idX) = 0 and thus g.σ ̸= g. Therefore LA contains a
nonfixed loop.

For example, when X = {s, t}, the exponential LA has the following undirected representation.

LA v

00

11 01∼10

2

LA(A) = Set(s(2), {0, 1}) = {00, 11, 01 ∼ 10}

LA(V ) = {v}
00.i = 00, 11.i = 11, 01.i = 10

where i : 2 → 2 is the non-identity automorphism and xy : s(2) → s(2) is the set map
xy(idX) = x, xy(i) = y for x, y ∈ {0, 1}. Evaluation on arcs is given by projection, e.g.,
evA(xy, a1) = x.

3. Let X be a set of cardinality greater than 1 and consider the reflexive symmetric X-graph L
such that L(V ) := {v} and L(A) := {0, 1}. For each σ ∈ s(X), we set i.σ = i for i = 0, 1. We

also set v.ℓ = 0. The vertex set of the exponential LA is r̂G(X,rs(X))(A,L) = L(A) = {0, 1}
by Yoneda. Using the construction above we obtain the arrow set

LA(A) = L(A)X ×Set(rs(X), {0, 1}).

We show that LA contains a nonfixed loop. Consider the loop
((1)x∈X , g : rs(X) → {0, 1}) such that g(idX) = 0 and g(σ) = 1 for the automorphism σ
which exchanges two elements in X and thus g.σ(idX) = g(σ) = 1 and g.σ(σ) = g(idX) = 0.
Then ((1)x∈X , g).σ ̸= ((1)x∈X , g) showing g is a nonfixed loop in LA.

For example, when X = {s, t}, the exponential LA has arc set equal to 22 ×Set(22, 2), i.e.,
it has 26 = 64 elements. Each arc can be represented by a 6-digit binary number. The
exponential object LA is given as follows.

LA

7

0

4

16

0yzwu1∼1ywzu0

000000

0yzzu0

0yzwu0 ∼ 0ywzu0
2

1

111111

1yzzu1

1yzwu1 ∼ 1ywzu1
2

7

4

LA(A) = { (xyzwuv) |x, y, z, w, u, v ∈ {0, 1} }

LA(V ) = {0, 1}
(xyzwuv).s = x, (xyzwuv).t = v,

(xyzwuv).i = (vywzux).

where i : 2 → 2 is the non-identity automap. We see that LA has 16 fixed loops (with 7 non-
distinguished fixed loops at each vertex), 8 non-fixed loops (4 at each vertex) and 16 edges
between vertices. It is helpful to keep track of the edges associated to the digits (x

s
y
ℓs

z
a1
w
ai
u
ℓt
v
t
).

Then evaluation evA : LA(A)×A → {0, 1} is given by projection to the corresponding digit,
e.g., evA((x

s
y
ℓs

z
a1
w
ai
u
ℓt
v
t
), ℓs) = y.8

8In Plessas [5] [Proposition 2.3.1], it is proven that the category of conceptual graphs does not
have exponentials by attempting to construct the corresponding exponential LA. We have given a
constructive reason why it failed. Namely, the objects in the category of conceptual graphs lack
2-loops.
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5 Interpretations in Conventional Categories

More conventional categories of graphs, uniform hypergraphs, and hypergraphs can be given as
certain comma categories. These are cocomplete categories and thus admit nerve-realization adjunc-
tions between categories of (reflexive) (X,M)-graphs induced by the obvious interpretation functors
which we define in the subsequent.

5.1 Nerve-Realization Adjunction

Let I : T → M be functor from a small category T to a cocomplete category M . Since the Yoneda
embedding y : T → T̂ is the free cocompletion of a small category there is a essentially unique
adjunction R ⊣ N : M → T̂, called the nerve realization adjunction, such that Ry ∼= I.

T

I
��
??

??
??

??
y

// T̂

R ⊣
��

OO

N

M

The nerve and realization functors are given on objects by

N(m) =M(I(−),m),

R(X) = colim
(c,φ)∈

∫
F
I(c)

respectively, where
∫
F is the category of elements of X ([6], Section 2, pp 124-126).9

We call a functor I : T → M from a small category to a cocomplete category an interpretation
functor. The category T is called the theory for I and M the modeling category for I. An
interpretation I : T → M is dense, i.e., for each M -object m is isomorphic to the colimit of the
diagram I ↓ m → M, (c, φ) 7→ I(c), if and only if the nerve N : M → T̂ is full and faithful ([7],
Section X.6, p 245). When the right adjoint (resp. left adjoint) is full and faithful we call the
adjunction reflective (resp. coreflective).10

We are interested in when the nerve also preserves any exponentials which exist. For the purpose
of this paper, we show that if an interpretation is dense, full and faithful, then the nerve not only
preserves limits, but also any exponentials which exist.

Lemma 5.1. An interpretation functor I : T → M is full and faithful iff c := y(c) is a NR-closed
object for each T-object c, i.e., the unit ηc : c→ NR(c) at component c is an isomorphism.

Proof. The unit of the adjunction ηG is defined as the following composition

G
φ

∼=
// T̂(y(−), G)

R(y,G)
// M(Ry(−), R(G))

ψ

∼=
// M(I(−), R(G)) = NR(G) ,

where φ is given by Yoneda, R(y,G) is the map of homsets given by application of R, and ψ is
precomposition by the isomorphism I ∼= Ry. For a representable, c, there is an isomorphism
ρ : M(I(−), R(c)) → M(I(−), I(c)) by postcomposition by the isomorphism I ∼= Ry. Thus ρ ◦ ψ ◦
R(y,G) evaluated at T-object c′ takes a T-morphism f : c′ → c to I(f) : I(c′) → I(c). Thus I is full
and faithful iff ηc is an isomorphism.

9In Applegate and Tierney [6], the nerve functor is called the singular functor.
10It implies M is equivalent to a reflective (resp. coreflective) subcategory of T̂.

9
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Proposition 5.2. If an interpretation functor I : T →M is dense, full and faithful, then R ⊣ N is
reflective and N preserves any exponentials that exist in M .

Proof. Suppose that G and H are M -objects such that the exponential GH exists in M . Since I is
assumed to be full and faithful, by Lemma 5.1 above, c ∼= NR(c) for each T-object. Thus we have
the following string of natural isomorphism:

N(GH)(c) ∼=M(R(c)×H,G) (Yoneda, R ⊣ N , exponential adjunction)

∼= T̂(NR(c)×N(H), N(G)) (N is full and faithful, preserves limits)

∼= T̂(c×N(H), N(G)) (c is NR-closed)

∼= N(G)N(H)(c) (Exponential adjunction and Yoneda).

Since the right-action structures are determined by the Yoneda embedding, N(GH) ∼= N(G)N(H)

in T̂.

5.2 Interpretations in Categories of F -Graphs

We follow the definition given in Jakel [8].

Definition 5.1. Let F : Set → Set be an endofunctor. The category of F -graphs GF is defined to
be the comma category GF := Set ↓ F .

In other words, an F -graph G = (G(E), G(V ), ∂G) consists of a set of edges G(E), a set of vertices
G(V ) and an incidence map ∂G : G(E) → F (G(V )). A morphism

(fE , fV ) : (G(E), G(V ), ∂G) → (H(E), H(V ), ∂H)

is a pair of set maps fE : G(E) → H(E) and fV : G(V ) → H(V ) such that the following square
commutes

G(E)

∂G

��

fE // H(E)

∂H

��

F (G(V ))
F (fV )

// F (H(V )).

It is well-known that the category of F -graphs is cocomplete with the forgetful functor U : GF →
Set×Set creating colimits [8].

Let G(X,M) be a theory for (X,M)-graphs and q an element in F (X) such that F (m)(q) = q for
each m ∈ M where m : X → X is the right-action map. We define I(V ) := (∅, 1, !1), and
I(A) := (1, X, _q^) where !1 : ∅ → 1 is the initial map and _x^ : 1 → X the set map with evaluation
at x ∈ X. On morphisms, we set

(x : V → A) 7→ I(x) := (!1, _x^) : (∅, 1, !1) → (1, X, _q^),

(m : A→ A) 7→ I(m) := (id1, F (m)) : (1, X, _q^) → (1, X, _q^).

Verification that I : G(X,M) → GF is a well-defined interpretation functor is straightforward.

5.3 Interpretations in Reflexive F -Graphs

For categories of graphs with vertices as degenerate edges, we generalize the definition of conceptual
graphs in Plessas [5] (Definition 2.1.1, p 16).

10
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Definition 5.2. Let F : Set → Set be an functor and η : idSet ⇒ F a natural transformation.
The category of reflexive F -graphs rGF has objects G = (G(P ), G(V ), ∂G) where G(P ) is a set,
G(V ) ⊆ G(P ) is a subset and ∂G : G(P ) → F (G(V )) is a set map. An F -graph morphism f : G→ H
consists of a set map fP : G(P ) → H(P ) such that the following commutes

G(V )
xx

xxrrr
rrr η

��

fV // H(V )

η

��

&&

&&MM
MMM

M

G(P )

∂G &&LL
LLL

L
fP // H(P )

∂Hxxrrr
rrr

F (G(V ))
F (fV )

// F (H(V ))

where fV is the set map fP restricted to G(V ).11

In other words, a reflexive F -graph G consists of parts G(P ) with a subset of vertices G(V ) and an
incidence operation ∂G : G(P ) → F (G(V )) which considers a vertex v to be a degenerate edge in the
sense that ∂G|G(V ) = η. A reflexive F -graph morphism f : G→ H that maps an edge to a vertex is
one where e ∈ G(P )\G(V ) has fP (e) ∈ H(V ).

The category of reflexive F -graphs is cocomplete. Indeed, the empty F -graph is the initial object.
Given a family of F -graphs (Gi)i∈I the coproduct is given by taking the disjoint union of parts with
incidence operator induced by the universal property of the coproduct on the cocone

( Gi(P )
∂Gi // F (Gi(V ))

F (si)
// F (

⊔
I Gi(V )) )i∈I

where si : Gi(V ) →
⊔
I Gi(V ) is the coproduct inclusion. Given a pair of morphisms f, g : G → H,

the coequalizer coeq(f, g) has part set equal to H(P )/ ∼ where ∼ is the equivalence generated by
the relation f(a) ∼ g(a) for each a ∈ G(P ) and vertex set equal to the image of H(V ) → H(P )/ ∼.
The incidence ∂coeq(f,g) : coeq(f, g) → F (coeq(f, g)(V )) is induced by the universal property of
coequalizer

G(P )
f

//

g
// H(P )

∂H

��

// coeq(f, g)

vv

∂coeq(f,g)

��

F (H(V )) // F (coeq(f, g)(V )).

It is straightforward to verify that these are well-defined reflexive F -graphs which enjoy universal
properties.

Let rG(X,M) be a theory for reflexive (X,M)-graphs. Define the set MA := M
∼ where ∼ is the

equivalence relation such that m ∼ m′ iff there exists an invertible n ∈M such that mn = m′. This
makes MA a right M-set with the obvious action. Let q : MA → F (X) be a set map such that for
each m ∈M we have F (m) ◦ q = q ◦m

MA
m //

q

��

MA

q

��

F (X)
F (m)

// F (X)

11By naturality η : idSet ⇒ F the middle square always commutes.

11
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where m : MA →MA is the right-action map. Define I(V )(P ) = 1 (and thus has a single vertex with
no edges) and I(A)(P ) = MA, with vertex set I(A)(V ) = X and inclusion I(A)(V ) ↩→ I(A)(P )12

with incidence defined by δI(A) := q. For morphisms we assign for each xm ∈ X and m ∈M

(xm′ : V → A) 7→ I(xm′)P := _m′
^ : 1 →MA,

(m : A→ A) 7→ I(m)P := m : MA →MA,

(ℓ : A→ V ) 7→ I(ℓ)P :=!MA : MA → 1 (the terminal set map)

which is readily verified to define an interpretation functor I : rG(X,M) → rGF .

In the following, we will consider the properties of the nerve realization adjunction R ⊣ N induced
by I as well as the restriction to an adjoint equivalence between fixed points.13

5.4 The Category of Hypergraphs

We recall that a hypergraph H = (H(V ),H(E), φ) consists of a set of vertices H(V ), a set of edges
H(E) and an incidence map φ : H(E) → P (H(V )) where P : Set → Set is the covariant power-set
functor. In other words, we allow infinite vertex and edge sets, multiple edges, loops, empty edges
and empty vertices.14 In other words the category of hypergraphs H is the category of P -graphs.

Let X be a set and apply the definition for the interpretation given above for sGX with q := X in
P (X). Note that for each automap σ : X → X, P (σ) is the identity map. Thus the interpretation
I : sGX → H is a well-defined functor.

The nerve N : H → ŝGX induced by I takes a hypergraph H = (H(E), H(V ), φ) to the symmetric
X-graph N(H) with vertex and arc set given by

N(H)(V ) = H(I(V ), H) = H(V ),

N(H)(A) = H(I(A),H) =
{
(β, f) ∈ H(E)×H(V )X

∣∣∣P (f) = φ(β)
}

Notice that if a hyperedge e has less than #X incidence vertices the nerve creates multiple edges and
if a hyperedge has more than #X incidence vertices there is no arc in the correponding symmetric
X-graph given by the nerve.

The realization R : ŝGX → H sends a symmetric X-graph G to the hypergraph R(G) =
(R(G)(E), R(G)(V ), ψ) with vertex, edge sets and incidence map given by

R(G)(V ) = G(V ),

R(G)(E) = G(A)/ ∼, (∼ induced by s(X)),

ψ : R(G)(E) → P (R(G)(V )), [γ] 7→ { v ∈ G(V ) | ∃x ∈ X, γ.x = v } .

For a symmetric X-graph morphism f : G → G′, the hypergraph morphism R(f) : R(G) → R(G′)

has R(f)V := fV and R(f)E := [fA] where [fA] :
G(A)
∼ → G′(A)

∼ is induced by the quotient.

Let k be a cardinal number. Recall that a hypergraph H = (H(E),H(V ), φ) is k-uniform provided
for each edge e ∈ H(E), the set φ(e) has cardinality k.

12Recall X = Fix(M).
13Recall that the fixed points of an adjunction F ⊣ G : A → B are the full subcategories

A′ and B′ of A and B consisting of objects such that the counit and unit of the adjunction are
isomorphisms. This in particular implies that A′ is equivalent to B′.

14An empty vertex is a vertex not incident to any edge in H(E). An empty edge is an edge e
such that φ(e) = ∅.
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Proposition 5.1. Let k be the cardinality of X and I : sGX → H be the interpretation above.
The fixed points of the nerve realization adjunction R ⊣ N : H → sGX is equivalent to the category
of k-uniform hypergraphs, kH. Moreover, the inclusion i : kH → ŝGX preserves limits and any
exponential objects which exist in kH.

Proof. It is clear that the fixed points is the category of k-uniform hypergraphs and that the
product (respectively, equalizer) of k-uniform hypergraphs in ŝGX is k-uniform. Thus the inclusion

i : kH → ŝGX preserves limits. To show that N must preserve any exponentials that exist, suppose
that GH is an exponential object in kH. We have the following natural isomorphisms:

N(GH)(V ) = kH(I(V ), GH) ∼= kH(I(V )×H,G)

∼= ŝGX(NI(V )×N(H), N(G))

∼= ŝGX(V ,N(G)N(H)) ∼= N(G)N(H)(V ),

N(GH)(A) = kH(I(A), GH) ∼= kH(I(A)×H,G)

∼= ŝGX(NI(A)×N(H), N(G))

∼= ŝGX(A,N(G)N(H)) ∼= N(G)N(H)(A).

Therefore, N preserves any exponentials which exist in kH.

Corollary 5.2. If k is a cardinal number greater than 1, the category of k-uniform hypergraphs
does not have exponentials.

Proof. Example 4.1(2) provides us with a counterexample.

5.5 The Category of Power Graphs

Let X and Y be sets. We define the symmetric X-power of Y , denoted ΠX(Y ), as the multiple
coequalizer of (σ : ΠX(Y ) → ΠX(Y ))σ∈s(X) where σ is the σ-shuffle of coordinates in the product.
This definition extends to a functor ΠX : Set → Set. Note that if j : X ′ → X is a set map, then
there is a natural transformation ΠX ⇒ ΠX′ induced by the universal mapping property of the
product. In particular, when X → X ′ = 1 is the terminal map, we have idSet = Π1 ⇒ ΠX which
we denote by η : idSet ⇒ ΠX .15

To define an interpretation functor I : sGX → GΠX
, we let q be the unordered set (x)x∈X in ΠX(X).

Since ΠX(σ)(x)x∈X = (x)x∈X for each automap σ : X → X, the interpretation is well-defined.

Lemma 5.3. The interpretation I : sGX → GΠX
is dense, full and faithful.

Proof. It is clearly full and faithful. To show it is dense, let (E, V, φ) and (K,L, ψ) be GΠX
-objects

and λ : D ⇒ ∆(K,L, ψ) a cocone on the diagram D : I ↓ (E, V, φ) → GΠX
. Let e be an edge in E

and f : X → V be the set morphism with ΠXf = φ(e). Then (_e^, f) : I(A) = (1, X,⊤) → (E, V, φ)
is an object in I ↓ (E, V, φ) and thus there is a morphism λ(_e^,f) =: (_e′^, g) : D(_e^, f) = (1, X,⊤) →
(K,L, ψ). By the compatibility of the cocone, this gives us a uniquely defined h : E → K, e 7→ e′ on
edges. Similarly for each vertex v ∈ V , there is a morphism (!E , _v^) : I(V ) = (∅, 1, !1) → (E, V, φ)
and a cocone inclusion (!K , _w^) : D(!E , _v^) = (∅, 1, !1) → (K,L, ψ) giving us a factorization on
vertices k : V → L. Since ψ◦h(e) = ΠX(kf)◦⊤ = ΠX(k)◦φ(e) for each edge E, (h, k) : (E, V, φ) →
(K,L, ψ) is a well-definedGΠX

-morphism which necessarily is the unique factorization of the cocone.
Therefore, I is dense.

15Note that in the case X = 2, the category of ΠX -graphs is the category of undirected graphs
in the conventional sense in which morphisms are required to map edges to edges.
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Note that the realization functor takes a ŝGX-object and quotients out the set of arcs by s(X). Hence
the unit of the adjunction ηP : P → NR(P ) is bijective on vertices and surjective on arcs. Hence
the adjunction is epi-reflective.

For a GΠX
-object (B,C, φ), the embedding given by the nerve functor is given by

N(B,C, φ)(V ) = GΠX
(I(V ), (B,C, φ)) ∼= C,

N(B,C, φ)(A) = GΠX
(I(A), (B,C, φ))

= { (e, g) | e ∈ B, g : X → C s.t. ΠXg = φ(e) } .

The right-actions are by precomposition, i.e., (e, g).x = (e, g ◦ _x^), (e, g).σ = (e, g ◦ σ).

Let us show that all loops in the objects of the full subcategory of ŝGX equivalent to GΠX
are fixed

loops. A loop in a GΠX
-object (B,C, φ) is an edge e ∈ B such that φ(e) is (v)x∈X in ΠX(C) for

some v ∈ C. Therefore, there is only one morphism (_e^, f) : I(A) → (B,C, φ) and thus (_e^, f ◦σ) =
(_e^, f) for each σ ∈ s(X). Hence, each object in the reflective subcategory of ŝGX equivalent to GΠX

has only fixed loops.

Corollary 5.4. If X has cardinality greater than 1, the category GΠX
does not have exponentials.

Proof. By the above observation, it is enough to show that there exist objects G and H in GΠX

such that N(G)N(H) has a nonfixed loop in Ĝ(X,s(X)). Set H := I(A) and G be the graph with one

vertex and an s(X)-loop. Then N(G)N(H) = LA as defined in Example 4.1(2) which we have shown
has a nonfixed loop.

5.6 The Category of Reflexive Power Graphs

Let rGΠX
be the category of reflexive ΠX-graphs.16 To define an interpretation functor I : rsGX →

rGΠX
, note that MA

∼= X ⊔ 1. Let η : idSet ⇒ ΠX be the natural transformation defined above and
q : X ⊔ 1 → ΠX(X) the map induced by the singleton assignment ηX : X → ΠX(X), x′ 7→ (x′)x∈X
and ⊤ : 1 → P (X), x 7→ (x)x∈X . Since ΠX(σ)(x)x∈X = (x)x∈X for each automap σ : X → X and
ΠX(x′)(x) = (x′)x∈X for each constant map x′ : X → X, the interpretation is well-defined.

Lemma 5.5. The interpretation functor I : rsGX → rGΠX
is dense, full and faithful.

Proof. It is clearly full and faithful. To show it is dense, let G and H be rGΠX
-objects and

λ : D ⇒ ∆H a cocone on the canonical diagram D : I ↓ G → rGΠX
. It can be verified that I(A)

classifies the parts set G(P ) of a graph G up to precomposition by automorphism A′ → A′. In

other words, G(P ) ∼=
rGΠX

(I(A),G)

∼ and H(P ) ∼=
rGΠX

(I(A),H)

∼ where ∼ is the equivalence relation
induced by automorphisms of I(A). Thus we define hP : G(P ) → H(P ), [e] 7→ [λe] where [e] is the
equivalence class of the morphism e : I(A) → G and λe : D(e) → H is the component of the natural
transformation λ. Since λ is a cocone, the map is compatible with incidence operations and the
restriction to vertex sets, hV : G(V ) → H(V ). Thus h : G → H is the unique factorization which
shows the colimit of D is G.

Note that the realization functor takes a r̂sGX-object and quotients out the set of arcs by s(X). Hence
the unit of the adjunction ηP : P → NR(P ) is bijective on vertices and surjective on arcs. Hence
the adjunction is epi-reflective.

The full subcategory of r̂sGX induced by the nerve functor consists of reflexive symmetric X-graphs

16When X = 2, the category of reflexive ΠX -graphs is the category of conceptual graphs as
given in Plessas [5].

14



Schmidt; JAMCS, 28(6): 1-16, 2018; Article no.JAMCS.44037

which have no nonfixed loops. Indeed if G is a rGΠX
-object then N(G)(A) = rGΠX

(I(A), G) and
so if e : I(A) → G is a loop, i.e., for each x ∈ X there is a v : I(V ) → I(A) such that e ◦ I(x) = v,
then e ◦ I(σ) = e.

Corollary 5.6. If X has cardinality greater than 1, the category rGΠX
does not have exponentials.

Proof. By the above observation, it is enough to show that there exist objects G and H in GΠX

such that N(G)N(H) has a 1-loop in Ĝ(X,s(X)). Let H := I(A) and G be the graph with one vertex

and two 1-loops. Then N(G)N(H) = LA as defined in Example 4.1(3) which we have shown has a
nonfixed loop.

6 Conclusion

By separating syntax ((X,M)-graph theories) from semantics (categories of (X,M)-graphs), we
can construct precisely what kinds of incidence edges should possess in the objects of a category
of (X,M)-graphs. This is a step towards a “universal graph theory” which would allows us to
prove in a general setting what constructions are possible in the various categories of graphs and
hypergraphs.

We have given one instance of how this can be used to prove the existence/non-existence of a
particular structure, namely exponentials. Then since categories of (X,M)-graphs are toposes, we
can rephrase certain unresolved conjectures into (intuitionistic) set theoretic language. For example,
Hedetniemi’s conjecture which states χ(G×H) = min(χ(G), χ(H)) where χ(G) is the chromatic
number for a graph G can be rephrased as follows: for each natural number n, given the complete
graph Kn on n vertices, if KG×H

n has an element, then either KG
n has an element or KH

n has an
element, where the interpretation is taking place in the topos ŝG2.

17 Another way to say this is that
if KG×H

n has a 1-loop, then either KG
n has a 1-loop or KH

n has a 1-loop. It is then straightforward
to generalize the statement of Hedetniemi’s conjecture to other categories of (X,M)-graphs by
using different “coloring” objects in place of Kn.

18 Once a proof is found of the specific case of
Hedetniemi’s, it may be possible to generalize the result to specific categories (X,M)-graphs with
coloring object K thereby getting to the essence of the result.

Using categorical semantics for this purpose alone is by no means the end of the story. For example,
in Schmidt [9], we show that the same procedure can be used to characterize injective/projective
objects in categories of graphs and hypergraphs. In fact, any well-behaved object constructed via
categorical methods in conventional categories of graphs and hypergraphs can be translated via
nerve-realization functors where it can be more easily characterized categorically.

Another advantage of using categorical semantics is to construct essential geometric morphisms
between the various categories of (X,M)-graphs by using obvious functors between the (X,M)-
graph theories. Then since conventional categories of graphs and hypergraphs act as model categories
for (X,M)-graph theories, we are able to easily compose these essential geometric morphisms to
conventional categories of graphs and hypergraphs. Then constructions can be transferred via
these functors and since right (left) adjoint functors preserve limits (colimits) many universal
constructions are preserved. For example, the functors described in Section 3 in Dofler and Waller
[2] can be factored through certain categories of (X,M)-graphs using the obvious interpretation
functors.

17Recall that an element in an object G is a morphism from the terminal object 1 to G.
18It is worth noting that given a coloring (X,M)-graph object K, the category of K-colored

(X,M)-graphs is the slice category Ĝ(X,M) ↓ K, which is again a presheaf topos.
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