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Abstract 
 

Overtime finite mixtures of Normal in regression have gained popularity and also shown to be useful in 
modelling heterogeneous data. This study examines the effects of prior and sample size in regression 
mixtures of Normal models with Bayesian approach. Monte Carlo experiment was carried out on the 
Normal mixtures model in order to examine the strength of priors and also to know the suitable sample 
size to produce stable results. Results obtained from the experiment indicate that an informative prior 
gives a reliable estimate than non-informative prior while large sample sizes maybe needed to obtain 
stable results. 
 

 
Keywords: Bayesian; montecarlo; normal models; prior. 
 

1 Introduction 
 
In regression models, assumptions about the functional forms and distributions can be made. However, real 
life situations especially with the use of economic theory do not tells us the functional forms and 
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distributions of an economic model. There are many techniques that have been developed to overcome this 
problem; one of such techniques is by mixing together different distributions also termed as mixture of 
models. There are numerous literature on mixture of models [1-5].  
 
A typical example of mixture models is called normal models. Normal model is a kind of model that allows 
whole distributions to have unknown forms. It also has a flexible distribution that can be obtained by mixing 
several distributions together while the resulting flexible distribution can in turn be used for approximation 
of unknown distribution of interest The major advantage of using mixtures of Normal distribution is the 
flexibility in modelling strategy and also simple to work with [6]. Mixture of Normal distribution can also 
accommodate skewness and multimodality in error distribution [7]. 
 
Apart from Normal mixtures model, other notable examples of non-normal mixtures have been largely 
demonstrated in the literature. Lee and McLachlan [8] used a multivariate skew t-distribution, Andrews and 
McNicholas [9] utilized a multivariate t-distribution, Weibull distribution by Sultan et al. [10], Lakshmi and 
Vaidyanathan [11] employed Gamma distribution and skew-normal distribution by Zellner et al. [12] among 
others. However, due to computational convenience and applicability to other methods such as Bayesian and 
Maximum Likelihood (ML) methods in the estimation of model parameters, Normal mixtures model has 
been found useful in many applied works than non-normals distribution [13]. 
 
Prior distribution plays a major role in Bayesian modelling. It reflects the information about an uncertain 
parameter that is combined with new data to yield a posterior distribution. However, wrong choice of prior 
can lead to incorrect inferences and decisions [14]. The major challenge in the estimation of mixture models 
is the incorporation of right prior in the model being considered for estimation. Just as the prior distribution 
plays a key role in Bayesian inference, sample size must also be taken into consideration. If the sample size 
is small or available data gives indirect information about the parameters of interest, the prior distribution 
will also become more relevant. 
 
This present work examines the effects of sample size and prior type on regression mixtures model. It will 
help to determine the kind of prior for the estimation of Normal mixtures while suitable sample size will be 
determined with the aid of Monte Carlo study. The remainder of the paper is arranged as follows. In section 
2, we briefly give the regression model and Bayesian estimation procedures involving a mixture of Normals. 
For comparative purposes, the performance of the priors across different sample sizes with the aid of 
numerical studies is provided in Section 3. Section 4 provides results of analyses from Monte Carlo 
experiment. Section 5 concludes.  
 

2 Materials and Methods 
 
2.1 Bayesian inference based on Normal mixture model 
 
Consider a linear regression model given as: 
 

� =��  �                     (1) 

 
Where,  
 
� = (��, . . . , ��)

′ ,     � =  (��, . . . , ��)
′ 

 

� = �
1 ��� … ���
⋮ ⋮ ⋱ ⋮
1 ��� … ���

�  

 
and  
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� = (��, . . . , ��)
′ 

 
If the assumption where � is iid N(0, ℎ��) for � = 1, . . . , � is replaced by letting �� to have a mixture of 
different distributions, we have: 
 

� = ∑ ���
�
��� (�� + ℎ

�

�
��  ���)                   (2) 

 
where, 
 

��� is ��� N(0,1), for � = 1,… ,� and � = 1,… ,�,  it means (��  + ℎ
�

�� ��  ���) is  also normal random 

variable with mean and precision of �� and ℎ�, respectively. 

 
��, ℎ� and ��� are parameters to be estimated and ∑ ��� = 1�

��� . 

 
But ��� shows the components in mixture where ith  error can be drawn.  Hence, ��� can be zero or 1, for 

= 1,… ,� , since it is difficult to know when the ith error is taken from, we let �� for � = 1,… ,�
 
be the 

probabilities of error being drawn. 
 
Therefore, equation (2) denotes that the regression error component is a weighted average of �  with 

different density functions.  Furthermore, we can stack the parameters �, , ��, and � as: 

 

� = �

��
⋮
��

� ,   = �
ℎ�
⋮
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�,  ��= �

���
⋮
���

�,  and � = �
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Thus, �� is drawn from a multinomial density function and is defined as: 
 
��~ � (1, �)  
 
Where,   
 

� = �

��
⋮
��

�  

 
Therefore, the likelihood function is given as: 
 

P(�| �, , �, �) =v 
�

(��)
�

��
 ∏ {∑ ��

�
��� �ℎ� exp [

���

�
 (�� − �� − �

′��)
�]}�

���                 (3) 

 
The prior for this study is the one that will allow for computation conveniences. Hence, we will use a 
Dirichlet distribution and is given by: 
 
�~ � (��),                      (4) 
 
Where,  
 
 0 ≤ �� ≤ 1 and ∑ ��

�
���  = 1 

 
Because of identification problem of the model as obtained in (literature), we place the following restrictions 
on the prior as: 
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ℎ��� < ℎ�                    (5) 

 
���� < ��                    (6) 

 
and  
 
���� < ��                    (7) 
 
Where, � = 2,… ,�      
 
A prior has to be assumed for restriction parameter in (6) in order for the � to be normal [6]. Therefore, we 
have: 
 

P(�)  ��(�|��, ��). � (��,< �� <. . .  ��)                   (8) 

 
Where, �(. ) is an indicator function and is given as: 
 

  �(�)= �
1, �� � ℎ����
0   ��ℎ������

�  

 
We also assume an independent Normal-Gamma prior using the following: 
 
� ~ �(��, ��)                             (9) 
 
ℎ� ~�(��

�   ��, ��
�)                           (10) 

 
In order to obtain the posterior distribution we treat � as a latent data, the likelihood can then be written as: 
 

P(�|�, �, , �, �) = 
�

(��)
�

��
 ∏ {∑ ���

�
��� �ℎ� exp [

���

�
 (�� − �� − �

′��)
�]}�

���              (11) 

 
Multiplying (11) and (4) to obtain marginal distribution of �, we have 
 
�~ � (�∗)                    (12) 
 
Where, 
 
�∗ = �� + ∑ ��

�
���                   (13) 

 
Again, multiplying (11) and (8), we have: 
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Where, 
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Lastly, to obtain the conditional posterior for both � and , we combine (11) with (9) and (10), we have: 
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Thus, (13), (15), (17) are then used to carry out posterior inference for desired different estimates. 
 

2.2 Model comparison 
 
In this study, three popular information criteria will be used to select best component among the competing 
components in the mixtures. These information criteria have been found to be easy in calculations and also 
do not rely on prior information [15]. These information criteria are; Akaike Information Criterion (AIC), 
Bayesian Information Criterion (BIC), and Hannan-Quinn (HQ). 
 
Akaike Information Criterion (AIC): This was proposed by Akaike [16]. It is defined as: 
 
AIC  = 2ln [P(y|)] – 2p                 (18) 
 
A model with a smallest AIC is chosen to be the best. In simulation study, it has been observed that method 
of AIC is upwardly biased especially with respect to class enumeration mixture models (Van Horn et al., 
2009). This makes most researchers to use BIC and HQ. 
 
Bayesian Information Criterion (BIC): It is the most popular information criterion and does not rely on 
specific sampling distributions but the observed data. It takes into account of sample size, likelihood 
function, and number of parameters. BIC was proposed by Schwarz [17] and is simply defined as: 
 
BIC  = 2ln[P(y|)] – Pln(N)                 (19) 
 
A model with a smallest BIC is chosen to be the best. 
 
Hannan-Quinn (HQ): It is an alternative to both AIC and BIC. This was introduced by Hannan and Quinn 
[18]. It is given as: 
 
HC = ���� + 2k ln (ln(N))                   (20) 
 
where, ���� is the log-likelihood, k is the number of parameters, and N is the number of sample size. 
 

3 Monte Carlo Experiment 
 
In order to examine the effects of sample size and prior kind in Normal mixture model, we present a Monte 
Carlo experiment in this section. Thus, the model for the experiment is given as: 
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�� = ��                      (21) 
 
Where, �� is the mixture of Normal distributions 
 
�� is the dependent variables for different models 
 
The sample sizes for the Normal mixtures model are set as: N= 10, 25,100, and 10000 
 
We will use Gibbs sampler, a typical example of Markov Chain Monte Carlo (MCMC) for Posterior 
simulation [19, 6] for more details). This Gibbs sampler has advantages due to its flexibility in evaluation of 
conditional distributions. An initial burn-in-period of �� = 1000 will be discarded and include �� = 10,000 
replications in the experiment.  
 
Bayesian inference will be done using � =3 and the equations of the model are given as: 
 
Equation 1: First Normal 
 
��= -2, ℎ� = 16, ��= 0.65  
 
Equation 2: Second Normal 
 
��= 2, ℎ� = 16, ��= 0.25 
 
Equation 3: Third Normal 
 
��= 0, ℎ� = 4, ��=0.10 
 
Informative prior hyper parameters: 
 

�� = , ��= (10000)� ��, ��
�   �� = 1, ��= 0.1, and �� = �� 

 
Where, �� is an m-vector of ones 
 
We create a non-informative prior by setting the hyper-parameters as follows: 
 
�� = 0�, ��= ��, ��

�   �� = 0, ��= 0, and �� = �� 

 
It is necessary to assess the convergence of MCMC simulation. This is done by calculating the Convergence 
Diagnostic (CD) test statistics [20, 21, 22, 6] for more details). The primary aim of CD is to test the equality 
of the means of the first and latter part of a Markov chain. It has a property of asymptotically standard 
normal distribution. Hence, the CD statistics based on Geweke [19] is given by: 
 

CD =  
����� ����

 �
���
��

�
���
��

                     (22) 

 
Where, ��� and ��� are variance of first and last set draws 
 
���� and ���� are estimates of mean of first and last set of the draws 

 
�� and �� are number of first and last draws 
 
Decision rule: If CD is less than |1.96| for all the parameters considered, it indicates that convergence of the 
MCMC algorithms has been achieved. 
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Another MCMC diagnostic is the Numerical Standard Error (NSE); this measures the approximation due to 
error. It is computed as: 

 

NSE = 
��

√�
                     (23) 

 

Where � is the number of replication 

 

�� is standard error 

 

4 Results and Discussion 
 
The results of Monte Carlo are reported in this section. Tables 1, 3, 5, and 7 contain information criteria for 
the simulated data while summary of the parameter estimates for the selected model for each simulated data 
were presented in Tables 2, 4, 6, and 8. The summary of the parameter estimates entails posterior means & 
standard deviation and MCMC results; NSE and Geweke’s convergence diagnostic test. The information 
criteria for model comparison are AIC, BIC, and HQ. Figs. 1-4 show the histogram for mixtures of Normal 
models for different samples with both informative and non-informative priors in appendix. The primary aim 
of the figures is to show that all mixtures of Normals are flexible. 

 

In Tables 1 and 3, model � =2 is preferred for all the information criteria presented using informative prior 
but the values for non-informative prior were not available. All the information criteria used select the 
correct value of � =3 as shown in Tables 5 and 7. These show that information criteria are useful for 
selecting the number of components in Normal mixtures. Non-informative prior does not yields any value 
for AIC, BIC, and HQ for small sample sizes (10 and 25), this is due to small data sets and lack of vital 
information used in the analysis. 

 

It can be seen that the estimation results (mean and standard deviation) for the parameters appear quite 
reasonable. For example, the true model is estimated with reasonably accurate results for both informative 
and non-informative priors (see Tables 2, 4, 6, and 8) except for small sample sizes (10 and 25) in the case 
of non-informative. Also, the Posterior means obtained for both informative and non-informative priors are 
closer to their true values. 

 

Results from Tables 2, 4, 6, and 8 show that convergence of our algorithms has been achieved with the use 
of Geweke’s CD for both informative and non-informative priors across the sample sizes except for small 
sample sizes (10 and 25) in the case of non-informative prior. The NSE revealed in Tables 2 and 4 for 
informative prior indicate that we are achieving reasonably precise estimates. However, Tables 6 and 8 show 
that all the estimates are more accurate for both informative and non-informative priors when sample sizes 
are 100 and 500. 

 
Table 1. Results of Information criteria for model comparison when the sample size is 10 

 

 Informative prior Non-informative prior 

Model AIC BIC HQ AIC BIC HQ 

� =1 -28.4896 -29.3973 -29.9959 NaN NaN NaN 

� =2 -2.1991 -4.0146 -5.2116 NaN NaN NaN 

� =3 -9.8260 -12.5493 -14.3449 NaN NaN NaN 
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Table 2. Parameter estimates for Mixtures of Normals when the sample size is 10 
 

 Informative prior   Non-informative prior   

 Mean Standard 
deviation 

Geweke 
CD 

NSE Mean Standard 
deviation 

Geweke 
CD 

NSE 

�� 1.9 0.1 -0.8 0.0025 NaN NaN NaN NaN 

�� 2.1 0.3 -1 30.9197 NaN NaN NaN NaN 

�� 787.11 5998 -0.3 59.7089 NaN NaN NaN NaN 

ℎ� 15.0 8.7 0.3 0.00023 NaN NaN NaN NaN 

ℎ� 15.7 15.2 -0.2 0.0433 NaN NaN NaN NaN 

ℎ� 1 4.8 -0.5 0.0455 NaN NaN NaN NaN 

�� 0.6 0.1 -1.5 0.0007 0.3343 0.2364 -0.2096 0.0021 

�� 0.3 0.1 1.1 0.0005 0.3327 0.2346 -0.0860 0.0015 

�� 0.1 0.1 1 0.0006 0.3330 0.2344 0.3390 0.0025 
 

Table 3. Results of information criteria for model comparison when the sample size is 25 
 

 Informative prior Non-informative prior 

Model AIC BIC HQ AIC BIC HQ 

� =1 -48.9656 -52.6222 -53.4868 NaN NaN NaN 

� =2 -19.3209 -26.6342 -28.3635 NaN NaN NaN 

� =3 -27.1439 -38.1137 -40.7077 NaN NaN NaN 
 

Table 4. Parameter estimates for mixtures of normals when the sample size is 25 
 

 Informative prior   Non-informative prior   

 Mean Standard 
deviation 

Geweke 
CD 

NSE Mean Standard 
deviation 

Geweke 
CD 

NSE 

�� -2 0.1 -0.8 0.0008 NaN NaN NaN NaN 

�� 0.6 0.7 0.6 0.0072 NaN NaN NaN NaN 

�� 7890 5962.2 -0.4 50.3148 NaN NaN NaN NaN 

ℎ� 13.6 5 -0.7 0.0525 NaN NaN NaN NaN 

ℎ� 0.6 0.4 -0.3 0.0029 NaN NaN NaN NaN 

ℎ� 1 4.5 0.8 0.0334 NaN NaN NaN NaN 

�� 0.7 0.1 -0.1 0.0006 0.3360 0.2376 -0.6283 0.0022 

�� 0.3 0.1 -0.3 0.0006 0.3344 0.2386 0.8530 0.0015 

�� 0 0 1.2 0.0003 0.3296 0.2352 -0.1148 0.0119 
 

Table 5. Results of information criteria for model comparison when the sample size is 100 
 

 Informative prior Non-informative prior 

Model AIC BIC HQ AIC BIC HQ 

� =1 -219.6922 -227.5077 -227.4368 -216.5908 -224.4063 -224.3354 

� =2 -12.5749 -28.2059 -28.0641 -66.0433 -81.6744 -81.5326 

� =3 -23.3656 -0.0809 0.1318 -22.2968 -45.7433 -45.5306 
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Table 6. Parameter estimates for Mixtures of Normals when the sample size is 100 
 

 Informative prior   Non-informative prior   
 Mean Standard 

deviation 
Geweke 
CD 

NSE Mean Standard 
deviation 

Geweke 
CD 

NSE 

�� -2.0344 0.0242 -0.5044 0.0001 -1.9732 0.0282 0.3717 0.0001 
�� -0.0093 0.2066 -1.8023 0.0029 0.0296 0.1375 -0.6136 0.0019 
�� 1.9819 0.0547 -0.3113 0.0004 1.9842 0.0474 -0.2296 0.0005 
ℎ� 26.8084 4.7438 -0.8602 0.0499 22.5401 4.4384 0.5951 0.0487 
ℎ� 4.4379 2.8282 0.5376 0.0301 4.7663 2.1953 1.3604 0.0378 
ℎ� 14.8194 4.4074 0.4357 0.0529 18.9650 5.6422 -0.5589 0.0793 
�� 0.6492 0.0472 -0.5574 0.0004 0.5712 0.0491 0.0175 0.0003 
�� 0.0910 0.0300 0.6091 0.0004 0.1591 0.0367 0.3505 0.0003 
�� 0.2597 0.0434 0.1779 0.0005 0.2698 0.0438 -0.3364 0.0003 

 
Table 7. Results of Information criteria for model comparison when the sample size is 500 

 
 Informative prior Non-informative prior 
Model AIC BIC HQ AIC BIC HQ 
� =1 -1036 -1048.6 -1046.46 -1036 -1048.6 -1046.4 
� =2 -172.3097 -197.5974 -193.1940 -172.3120 -197.5997 -193.1963 
� =3 6.5322 -31.3992 -24.7941 6.5681 -31.3633 -24.7582 

 
Table 8. Parameter estimates for Mixtures of Normals when the sample size is 500 

 
 Informative prior   Non-informative prior   
 Mean Standard 

deviation 
Geweke 
CD 

NSE Mean Standard 
deviation 

Geweke 
CD 

NSE 

�� -2.0099 0.0130 1.2286 0.0001 -2.0096 0.0129 1.2619 0.0001 
�� 0.0067 0.0705 0.3555 0.0004 0.0068 0.0701 0.2912 0.0004 
�� 1.9613 0.0232 -0.3974 0.0002 1.9602 0.0230 -0.4129 0.0002 
ℎ� 18.3615 1.4447 1.3921 0.0155 18.4600 1.4539 0.3272 0.0153 
ℎ� 3.9135 0.9566 0.0848 0.0128 3.9410 0.9663 0.1282 0.0141 
ℎ� 16.5943 2.2060 0.3556 0.0169 16.8236 2.2405 0.3255 0.0171 
�� 0.6594 0.0209 0.5661 0.0003 0.6594 0.0209 0.5801 0.0003 
�� 0.1068 0.0140 0.8358 0.0002 0.1068 0.0140 0.7070 0.0002 
�� 0.2338 0.0186 -1.3586 0.0002 0.2338 0.0186 -1.2717 0.0002 

 

5 Conclusion 
 

The importance of mixtures of Normal in modelling of fat-tailed and multi-modal distributions has 
necessitated its investigation. Inappropriate choices of prior and sample sizes can leads into wrong inference 
in applied research works especially in regression mixture modelling. In this paper, Bayesian inference was 
carried out on regression with Normal mixtures using finite mixture modelling to know the kind of prior and 
sample sizes that are suitable for posterior inference. It was deduced that all the information criteria were 
consistent with one another and gave the same conclusive results for model comparison of Normal models. 
The parameter estimates of the posterior were also reasonable especially for informative prior while a great 
variability was demonstrated with large sample sizes (100 and 500). The numerical standard errors are 
accurate for large sample sizes. However, with the use of small samples gave imprecise results and these can 
lead to wrong inference.  
 
It is apparent from the results that the choice of prior plays a major role in regression mixture of Normal 
models with Bayesian approach. Informative prior performed well in both large and small sample sizes for 
model comparison of Normal models and parameter estimates. Thus, the researcher is advised to choose an 



 
 
 

Ojo et al.; AJPAS, 10(4): 60-71, 2020; Article no.AJPAS.64432 
 
 
 

69 
 
 

informative prior and large sample when dealing with Normal mixtures of models to obtain stable results. 
There are so many directions for further research. We assume standard linear model for regression mixtures 
of Normal model characterized by correlated predictors and a situation when sample sizes are both balanced 
and unbalanced, We plan to further the research in that regards in our future paper. 
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Appendix 
 

 
 

Fig. 1. Histogram for mixtures of Normals when sample size 10 with informative prior 
 

 
 

Fig. 2. Histogram for mixtures of Normals when sample size 25 with informative prior 
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Fig. 3. Histogram for mixtures of Normals when sample size 100 with informative prior 
 

 
 

Fig. 4. Histogram for mixtures of Normals when sample size 500 with informative prior 
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