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ABSTRACT 
 

During the last two decades, the implementation of histochemical, immunohistochemical, electron 
microscopy, and recently developed molecular techniques has greatly contributed to our 
knowledge of skeletal muscle, both normal and sick. This article reports the presence of muscular 
atrophy and fibrosis in Xiphophorus maculatus from an ornamental fish farm. We do not know the 
origin of this muscular pathology and the purpose of this work is to summarize some of the findings 
with optical microscopy and electron microscopy shared by all. Although we cannot establish the 
etiology of this atrophy, we will try to correlate the ultrastructural alterations with the muscular 
histopathology. Muscular atrophy is a pathology characterized by loss of normal muscle mass. It is 
caused by a decrease in the total number of muscle cells or by a substantial reduction in the 
substance of individual muscle cells. It is likely that the cases reported here represent a pathology 
involving causes concurrent with nutritional problems and disorders of muscle innervation. 
Therefore, future studies should investigate further about the potential of neurodegenerative 
disorders. Several experimental models can use muscular atrophy and are suitable for 
investigations of the underlying mechanisms of this pathology. 
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1. INTRODUCTION 
 
During the last two decades, the application of 
histochemical, immunohistochemical, electron 
microscopy, and recently developed molecular 
techniques has greatly contributed to our 
knowledge of skeletal muscle, both normal and 
diseased [1,2]. In mammals and humans, during 
this time, much has been learned about the 
functional importance of muscle structure and 
how subcellular organization enables energy 
transformations that convert chemical energy into 
mechanical work [3]. 
 

Part of this new information has clarified the 
significance of the structures under the optical 
microscope and therefore helped the pathologist 
in the diagnosis of diseases affecting the skeletal 
muscle [4]. This article reports the presence of 
muscular atrophy and fibrosis in Xiphophorus 
maculatus from an ornamental fish farm. We do 
not know the origin of this muscular pathology 
and the purpose of this work is to summarize 
some of the findings with optical microscopy and 
electronic microscopy that are shared in the 
literature.  Although we cannot establish the 
etiology of this atrophy, we will try to correlate the 
ultrastructural alterations with the muscular 
histopathology. The major diagnostic problem for 
the pathologist when observing muscle lesions is 
to establish the differential diagnosis between a 
strictly muscular pathology and a neurological or 
neuromuscular pathology [5,6]. 
 

In mammals, a relatively small percentage of 
striated muscle tissue samples present dramatic 
pathological changes under optical or electron 
microscopies [7]. In fish, common diagnostic 
problems include muscle atrophy, muscular 
dystrophy, or myositis. Since histopathological 
changes are often non-specific, it is necessary to 
take into account the entire clinical history, 
growth, and extent of the pathology in one or 
several fishes, the food ingested, and the water 
quality, among others. In many cases, the 
pathologist is often disappointed by the absence 
of significant microscopic abnormalities in the 
muscle. In such cases, the study of the muscle 
ultrastructure can also provide information that 
contributes to the diagnosis. 
 

2. MATERIALS AND METHODS  
 
Thirty-three Xiphophorus maculatus (16 females 
and 17 males) were sent to our laboratory by an 

ornamental fish farmer, which presented a 
change in the linear posture of the body. Their 
body was arched with dropped cephalic and 
caudal regions and they lost their rectilinear 
posture during swimming. The average length of 
these animals was 3.7 +/- 1.1 cm.  All these 
animals were raised in the same pond at a 
temperature ranging between 26 and 28°C. On 
the other hand, 10 other Xiphophorus maculatus 
from the same breeder, raised in another pond 
and presenting a normal appearance, were 
studied (Fig. 1). All fish were fed with Tetramin 
Flakes Tetra© food. The animals were 
euthanized in a 100 ppm M-222 bath (Western 
Chemical, USA). The fish were processed whole, 
with a previous longitudinal cut from the cephalic 
to the caudal regions, fixed in Bouin liquid for 12 
hours, and then transferred to 70% ethyl alcohol, 
included in paraplast. Then, they were sectioned 
at 3 μm, and stained with hematoxylin and eosin, 
Masson's trichromic, and Panotic of Del Rio 
Hortega, modified for sections embedded in 
paraplast [8].  

 

 
 

Fig. 1. A:  Normal X. maculatus, with straight 
muscular posture. B: X. maculatus with 

muscular posture, where the curved body can 
be observed. Bar: 1 cm 

 

Fragments of muscle tissue were fixed for 
transmission electron microscopy in 0.2% 
glutaraldehyde post-fixed in osmium tetroxide 
and later prepared according to the protocol 
described previously [9]. Thick sections stained 
with toluidine blue were used to locate tumor 
areas. Next, ultrafine sections were prepared and 
stained with uranyl acetate and lead citrate, and 
examined under a Jeol JEM-8T electron 
microscope (Jeol, Tokyo, Japan). 
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3. RESULTS 
 

3.1 Optic Microscopy 
 

The different histological sections exhibited a 
proliferation of fibroblasts among the muscle 
fibers of all skeletal muscles, both from the 
abdominal wall and from the dorsal and cranial 
regions. The muscle fibers were observed 
"immersed" and surrounded by fibroblasts with 
abundant intercellular matrix that resulted in 
atrophied fibers, and even with some fibers 
almost disappearing and being replaced by 
fibroconective tissue (Figs. 2 and 3).  The 
Panotic staining revealed that the fibers began to 
lose their striations until fragments of fibers 
without striations were observed (Fig. 4). In 
animals that did not present macroscopic 
alterations, the normal skeletal muscle 
architecture, with their respective striations, was 
observed. No lesions were observed in the heart, 
pancreas, or any other organ.  
 

3.2 Electron Microscopy 
 
We observed peripheral loss of myofilaments 
from myofibrils. In some sectors severely 
atrophied myofibrils were observed, 
characterized by fragmentation and the formation 
of Z-bands. In addition, remains of the myofibers 
were observed, persisting as a tube of basal 

layer that in some cases are phagocytized by 
macrophages. In other sectors, focal myofibrillar 
degeneration alternated with myofibrils in 
regeneration was observed. In other sectors the 
folding of the myofiber surface membrane was 
noted, as well as mitochondria grouping and 
myofibril disorganization. Areas of disorganized 
myofibrils were observed, marked by residual Z 
material in the area below the sarcolema. 
Severely affected myofibers with a redundant 
basal lamina, focal fragmentation of the plasma 
membrane, and changes in the sarcoplasm, with 
a marked thickening of the capillary base lamina 
were observed (Figs. 5, 6 and 7). 
 

4. DISCUSSION 
 
The fact that skeletal muscle tissue is susceptible 
to only few pathological changes is not 
surprising. The basic histopathological patterns 
recognizable under optical microscopy are few: 
normal trophism, hypotrophy, hypertrophy, 
dystrophy, and myositis [10,11,12]. "Myopathy" is 
a non-specific term meaning intrinsic muscle 
disease. Myopathies of various types are 
produced with varying histopathological patterns. 
In mammals, during the late stage of various 
muscle diseases, in which myofiber destruction 
and replacement by connective, fat, and fibrous 
tissues are extreme, the underlying pattern of the 
disease may disappear [13,14].  

 

 
 

Fig. 2. Muscle of the dorsal region, where proliferation of fibroconective tissue (*) is observed 
between the muscle fibers (FM), which are "immersed" between the fibroblasts. Remaining 

adipose tissue (L) is observed. H-E. Bar: 20 µ 
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Fig. 3. Abdominal wall with proliferation of fibroconective tissue that surrounds and 
compresses muscle fibers (wide arrows). Melanin is seen in the visceral peritoneum (short 

arrow). Masson's trichrome. Bar: 50 µ 
 

 
 

Fig. 4. Abdominal wall with proliferation of fibroconective tissue (*), atrophic muscle fibers 
(arrow) and fibers with loss of striations (FM). Panotic. Bar: 50 µ 
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Fig. 5. Electron micrograph illustrating myofibrils with atrophy. Loss of myofibrils (MF) is 
indicated at the arrow. An elongated mitochondrion (M) is present in the lower portion of the 

figure. Z bands are observed (Z). Bar: 1 µ 
 

 
 

Fig. 6. Electron micrograph of a severely atrophic myofiber illustrating fragmentation of 
myofibrils (MF) and smuclging of Z bands (Z). Note the large amount of collagen (C) 

surrounding the myofiber. Terminal sacs of the sarcoplasmic reticulum filled with dense 
granular material are indicated at the arrow. Bar: 1 µ 
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Fig. 7. Electron micrograph illustrating focal myofibrillar degeneration (arrow). The 
mitochondria (M) are in the contracted state. Bar: 0.5 µ 

 

 
 

Fig. 8. Electron micrograph illustrating the appearance of a spiral annulet (ringbinden) from 
muscular atrophy. Note the area of disorganized myofilaments marked by residual Z material 

in the area beneath the sarcolemma. This area (S) appears in light micrographs as a 
sarcolemmal pad. The transverse myofilaments of the ringbinden are illustrated at TF. 

Normally oriented myofilaments are present at F. Bar: 0.5 µ 
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Due to confusion about the term "muscle 
atrophy", some word definition is required. As 
used clinically to describe a muscle, "atrophy" 
refers to a decrease in the size of a previously 
normal muscle. When used in reference to 
individual myofibrils, "atrophy" is generally used 
to describe abnormally small myofibers [15]. 
However, small myofibers can result from a 
variety of pathological processes. For example, 
motor nerve rupture leads to denervation 
atrophy. Although the role of the peripheral nerve 
in maintaining skeletal muscle is clear, the 
mechanism behind it is unknown [16].  Several 
studies investigated the causes of muscle 
atrophy in fish [17,18].  Roberts and his 
collaborators have extensively studied 
degenerative and inflammatory changes in 
skeletal muscles of teleostean fishes 
[19,20,21,22]. 
 
Chronic pancreatitis, which is a characteristic of 
diseases such as infectious pancreatic necrosis 
in the late stages of pancreatic injury, presenting 
marked acinar atrophy, is accompanied by 
degenerative changes in the cardiac and skeletal 
muscles [23,24]. In this work we found no 
pancreatic or cardiac lesions, with the pathology 
restricted only to the skeletal muscle. 
 
Ferguson [25] reported degenerative muscle 
injuries due to vitamin E and selenium deficits, 
particularly when fish live at temperatures lower 
than that required by the species. This picture 
was called "nutritional muscle dystrophy" (NMD), 
similar to that occurring in other animals [26]. In 
this case, apparently there is no nutritional 
deficit. Firstly, because the administered food 
has a formula that covers the needs of this 
species and secondly because all the animals 
were fed with the same food in all the tanks 
where they were raised.  
 
Some authors reported muscle inflammatory 
processes, myositis, by bacterial infections [27]. 
We found no inflammatory infiltrates or necrosis, 
although we have observed a late stage of the 
inflammatory process and, therefore, we 
expected to see at least minimal areas of 
necrosis and inflammatory infiltrates in some of 
the 33 X. maculatus.  
 
The ultrastructural findings presented in this work 
are similar to those described in the mammalian 
literature. These alterations indicate muscular 
atrophy. Regarding individual myofibers, we 
observed the following three types of atrophy: 
"simple" atrophy, characterized by a decrease in 

the size of the myofibers, but preserving the 
normal sarcomeric structure of the individual 
myofibers; "dedifferentiation" atrophy, in which 
there is destruction and loss of myofibers, with 
loss of myofilaments; and "degenerative" 
atrophy, in which there was a total loss of 
myofibers and irreversible changes that lead to 
cell necrosis and subsequent replacement by 
fibroconective tissue [28,29]. Therefore, atrophy 
can result from denervation, disuse, metabolic 
insufficiency, mechanical compression, and other 
various causes [30]. The time required for 
denervation atrophy varies considerably in 
different animal species.  One or two weeks after 
the cross section of a motor nerve, almost all 
myofibers show signs of nuclear changes 
consisting of rounding, increased nucleolar size, 
and central migration of nuclei [31].  
 
The myofibers become gradually smaller and 
rounder in cross-section, but striations persist. It 
is controversial whether number of nuclei 
increase or not. Since they do not experience 
mitosis and amitosis is doubtful, it is possible that 
the redistribution or division of satellite cell nuclei 
is responsible for the apparent increase in the 
number of nuclei in the diseased muscle. The 
occasional myofibers may be fragmented and 
surrounded by macrophages, suggesting 
degeneration. It is believed that the presence of 
"target fibers" is characteristic of denervation 
atrophy. These myofibers have three distinct 
zones: a compact central myofibril core that lacks 
crossed striations; a less dense intermediate 
zone with few myofibrils; and a less affected 
outer zone. In prolonged cases of atrophy, 
hyaline bodies may appear inside the fibers. In 
late stages, as the myofibers disappear, the 
interstitial spaces are filled with increasing 
amounts of connective and fibrous tissue [32]. In 
some cases, distinct groups of atrophic 
myofibers are dispersed among larger and more 
normal looking miofibers. This pattern is a 
consequence of the innervation of multiple 
myofibers by branches of a single axon.  
 
This work did not allow the observation of 
different types of synaptic vesicles in the motor 
end plates. Nevertheless, Radaelli [33] described 
different vesicles for Sparus aurata and Anguilla 
anguilla under electron microscopy.  
 
The growth of the lateral muscle after hatching 
has been morphometrically studied in Sparus 
aurata in order to identify and quantify 
hyperplasia and hypertrophy of the muscle fibers, 
revealing that hypertrophic growth occurred at all 
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ages, but was the dominant mechanism of 
muscle growth only in the juvenile and adult 
phases [34]. 
 

Because of the widespread use of zebrafish in 
developmental biology studies, a wide range of 
tools and experimental techniques has been 
brought together. Recently, it has been evident 
that these could be used in the analysis of 
neurodegenerative diseases and muscle 
pathologies such as atrophy [35,36]. On the 
other hand, these models also highlight atrophic 
muscle injuries associated with chemicals such 
as alcohol or copper oxide nanoparticles [37,38]. 
However, the damage to muscle tissue in 
zebrafish and other fish species is different from 
that found in X. maculatus, being characterized 
by fibrillar and perimisial degeneration, 
inflammation, vacuolar degeneration, and 
atrophy [39]. 
 

5. CONCLUSION 
 
We did not find an etiological cause for this 
muscle injury. Muscular atrophy is a pathology 
characterized by loss of normal muscle mass. It 
is caused by a decrease in the total number of 
muscle cells or by a substantial reduction in the 
substance of individual muscle cells. It is 
possible that the causes are concurrent to 
nutritional problems and disorders in muscle 
innervation.  
 
In this sense, we should investigate further and 
deepen studies on possible neurodegenerative 
disorders. Several experimental models can use 
muscle atrophy and are adequate for 
investigations of the underlying mechanisms of 
muscle atrophy. 
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