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ABSTRACT 
 
Aims: Some bacterial responses to oxidative stress also diminish antibiotic susceptibility; also, 
some antibiotics do increase oxidative stress within bacterial cells. Linkage or cross-resistance to 
prooxidants and antibiotics could facilitate the selection of antibiotic resistance and/or virulence. We 
made this survey in order to detect this possible linkage in Escherichia coli isolates. 
Methodology: The susceptibility of 102 E. coli clinical (causative of urinary or gastrointestinal 
infections) and environmental (rural or urban dust) isolates towards paraquat, H2O2, and antibiotics 
was measured using disc assays. Catalase and superoxide-dismutase (SOD) activities were 
measured. 
Results: Susceptibility to prooxidants was similar across isolates of all four sources, but urinary and 
urban dust isolates were more resistant to antibiotics. H2O2 "resistant" organisms had more 
antibiotic resistance phenotypes, particularly towards sulfadiazine and tetracycline. Paraquat 
"resistance" seems associated to beta-lactam resistance; but paraquat "susceptibility" seems 
associated to resistance towards chloramphenicol, gentamicin, ciprofloxacin and nitrofurantoin. 
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Prooxidant disc assays correlate to catalase and superoxide-dismutase activities. A weak 
relationship H2O2/antibiotic-resistance, but not superoxide/antibiotic-resistance, is suggested. 
Conclusion: Overall, antibiotics exerting their action through oxidative stress, do not seem to have 
resulted in the co-selection of oxidative stress resistance, or vice versa. However, a possible link 
between resistance to some antibiotics and to H2O2 might contribute to co-selection between these 
two chemical insults. 
 

 
Keywords: Superoxide; hydrogen peroxide; oxidative stress; antibiotic resistance. 
 
1. INTRODUCTION 
 
The linkage between bacterial susceptibility 
towards antibiotics, and towards some reactive 
oxygen species (ROS; particularly superoxide, 
O2

·-
, and hydrogen peroxide, H2O2), have been 

explored extensively. On the one hand, some 
responses to oxidative stress, such as the one 
governed by the soxRS genes in E. coli and 
other gram-negative bacteria, include 
mechanisms that reduce the activity of several 
antibiotics. This is accomplished mainly by a 
diminished cytoplasmic accumulation of the 
drugs both, by reduced permeability and by 
increased efflux. Strains lacking these regulatory 
genes are more susceptible to several 
antibiotics, while mutants constitutively 
expressing the soxRS regulon are less 
susceptible to antibiotics than their wild-type 
counterparts [1,2]. This has been documented in 
other bacterial species (e.g., [3]). Similarly, the 
bacterial response governed by OxyR towards 
H2O2 and related oxidative stress, also regulates 
antibiotic resistance in E. coli and other gram-
negative bacteria [4]. On the other hand, a 
number of papers have reported that some 
antibiotics, especially those deemed 
"bactericidal", increase the intracellular 
production of ROS [5], up to the point that this 
has been proposed to be the actual mechanism 
of their antimicrobial action [6]. Although this 
does not seem to be the case [7], some 
antibiotics are likely to increase the levels of 
ROS within the bacterial cell, perhaps 
contributing to the overall stress during antibiotic 
exposure [8]. It is therefore possible that 
increased resistance towards ROS might confer 
some protection against antibiotics that produce 
oxidative stress. As bacteria, both as human 
commensal/pathogens (e.g., [9]), or in the open 
environment (e.g., [10,11]), commonly face 
prooxidants and antibiotics, mechanisms that 
protect against both may have potential 
repercussions in the efficacy of antibiotic 
treatments. Most of these observations, however, 
come from laboratory strains and conditions, but 
little is known about the occurrence of such 

phenomena in clinical or environmental settings. 
Here, the activity of representative antibiotics, 
and known sources of ROS (H2O2 and paraquat, 
a known generator of intracellular O2

·-
), was 

tested against a group of clinical and 
environmental E. coli isolates. This is, to our 
knowledge, the first attempt at co-relating the 
susceptibility towards prooxidants and antibiotics, 
in a set of isolates from very diverse origin. 

 
2. MATERIALS AND METHODS 
 
2.1 Isolates 
 
A total of 102 E. coli isolates were included: 24 
causative of community-acquired urinary tract 
infection (Uri); 21 from fecal samples from 
patients with diarrhea, where the isolate was 
deemed causative of the illness (Fec); 27 from 
outdoor rural dust (RD), collected at the 
Mezquital Valley, close to irrigation canals 
receiving raw wastewater from Mexico City; and 
30 from urban dust (UD) collected at Mexico City. 
All organisms were identified using standard 
biochemical methods, and kept in glycerol-
containing (25%) liquid media, under liquid 
nitrogen. 

 
2.2 Antibiotic and Prooxidant 

Susceptibility Assays 
 
Susceptibility towards ampicillin, amoxicillin-
clavulanate, cefotaxime, sulfadiazine, 
chloramphenicol, tetracycline, gentamicin, 
ciprofloxacin and nitrofurantoin, was assessed by 
the method of disc diffusion on Mueller-Hinton 
agar plates [12] and using commercially-
available antibiotic discs (BBL, 10, 20/10, 30, 
250, 30, 30, 10, 5 and 300 µg, respectively). 
Susceptibility to paraquat and hydrogen peroxide 
was also assessed by disc diffusion, plating 
~5x108 CFU of each strain on LB agar plates, 
and then filter paper discs containing either 400 
µg of paraquat (PQ, Sigma), or 8.8 µmol of H2O2 
(freshly prepared by dispensing concentrated 
solution, Sigma) were placed on top [13]; 
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inhibitory halos around each disc were measured 
after a 35 ºC/overnight incubation.  
 

2.3 Catalase and Superoxide-dismutase 
Activity Assays 

 
Catalase activity was measured by a 
"foamometric” assay [14], where ~1x10

9
 cells 

from overnight cultures, in 100 µL distilled water, 
(with or without further incubation at 55 ºC/15 
min, to distinguish heat-labile HPI encoded by 
katG, from heat-stable HPII encoded by katE) 
were mixed with 100 µL 1% triton X and 100 µL 
30% H2O2, and the height of the foam column 
generated by the oxygen bubbles was measured 
after a 10 min incubation at room temperature, 
and compared to a calibration curve performed 
using known concentrations of bovine liver 
catalase (Sigma). Superoxide-dismutase (SOD) 
activity was semi-quantified using SOD activity 
gels [15], running crude extracts obtained by 
mixing 0.1-mm zirconium beads with pelleted 
mid-exponential phase cells suspended in 50 
mM Tris, 0.2 M NaCl, pH 7.5 buffer. 
 

3. RESULTS 
 
3.1 Susceptibility to Antibiotics and 

Prooxidants 
 
Overall results of oxidants and antibiotics 
susceptibility are shown in Fig. 1. Table 1 
contains average data of inhibitory halos around 
discs containing PQ or H2O2, and number of 
antibiotic resistance phenotypes. Fec isolates 
had PQ halos 11% larger than average; UD 
isolates had H2O2 halos 11% larger than 
average; and Uri and UD isolates were resistant 
to more antibiotics than Fec and RD isolates. 
 

3.2 Prooxidant and Antibiotic Resistant 
and Susceptible Organisms 

 
In order to simplify the analysis of the data, 
organisms were deemed "resistant" if inhibitory 
halos of oxidants were below one standard 
deviation (SD) of the global averages, or above 
one SD of the average number of resistances; 
and "susceptible" if halos were one SD above, 
and number of resistances were one SD below 
the global averages (Table 2). Both PQ

R
 and 

PQS organisms were more resistant to antibiotics 
(13% and 27%, respectively, measured as the 
difference in the average number of resistance 
phenotypes), while H2O2

R were 20% more 
resistant to antibiotics, compared to the total 

average. Among Uri isolates, susceptibility to 
PQ, H2O2 and antibiotics are less common than 
average; among Fec isolates, PQ susceptibility is 
more common, and H2O2 resistance is less 
common than average; among RD isolates, PQ, 
H2O2 and antibiotics' resistance are more 
common than average, while the opposite results 
were observed from UD isolates. 

 
3.3 Individual Antibiotics and Prooxidant 

Susceptibility 
 
Results for individual antibiotics are shown in 
Table 3. Resistance to PQ seems linked to 
resistance to ampicillin and amoxicillin-
clavulanate (tetracycline resistance is more 
common among both, PQ

R
 and PQ

S
 subgroups); 

while susceptibility to PQ seems linked to 
resistance to chloramphenicol, gentamicin, 
tetracycline, nitrofurantoin and, particularly, to 
ciprofloxacin. Resistance to H2O2 seems linked 
to resistance to sulfadiazine and tetracycline 
(chloramphenicol resistance is more common 
among both, H2O2

R
 and H2O2

S
 subgroups). Uri 

isolates are particularly more resistant to 
ampicillin and amoxicillin-clavulanate, than the 
global average; and UD isolates are more 
resistant to chloramphenicol, gentamicin, 
nitrofurantoin, ciprofloxacin and sulfadiazine, 
than the average. 
 
3.4 Catalase and SOD Activities and 

Prooxidant Disc Assays 
 
Susceptibility to H2O2, measured as inhibitory 
halos in the disc assay, did correlate with 
production of catalase HPII encoded by katE. 
Average activity per 1x109 cells among H2O2

R 
isolates was 43.4 (SD 22.9) units of HPI and 44.3 
(SD 18.7) units of HPII; while among H2O2

S
 

isolates was 31.4 (SD 31.4; p = 0.402, Student t 
test) units of HPI, and 7.7 (SD 9.7; p = 0.002) 
units of HPII. On the other hand, susceptibility to 
paraquat in the disc assay showed that, while 
resistant isolates have a uniform SOD activity, 
susceptible ones had a diversity of SOD profiles, 
especially affecting the inducible, Mn-SOD (Fig. 
2). 

 
4. DISCUSSION 
 
Overall, a strong correlation between resistance 
to oxidative stress and antibiotics was not found. 
Isolates able to withstand higher concentrations 
of H2O2 seem to also be able to resist the effect 
of more antibiotics (a 20% increase); however,
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Fig. 1. Susceptibility distribution of clinical and environmental E. coli isolates towards 
prooxidants and antibiotics. Inhibitory halos in mm around discs containing paraquat (A) or 
H2O2 (B), and number of antibiotic resistance phenotypes per isolate (C) are shown in each 

panel, along with the global average. Organisms with values one standard deviation above or 
below average were considered susceptible (S) or resistant (R), respectively (except for 

antibiotic resistance) 
 

Table 1. Susceptibility towards oxidants and antibiotics among clinical and environmental 
isolates of E. coli. 

 
 total Uri Fec RD UD 
 x(SD) x(SD) ratio  x(SD) ratio x(SD) ratio x(SD) ratio 

PQ 14.7(3.8) 13.5(2.4) 0.92 16.3(4.4) 1.11 13.5(3.0) 0.92 15.7(4.3) 1.07 
H2O2 25.6(3.4) 24.3(1.5) 0.95 25.8(2.8) 1.01 23.3(2.6) 0.91 28.4(3.4) 1.11 
ATB 3.0(1.8) 3.5(1.6) 1.17 2.2(1.6) 0.73 2.5(1.7) 0.83 3.7(1.9) 1.23 
Data are: averages (x) with standard deviations (SD) of inhibitory halos, in mm, for PQ and H2O2; and of number 

of antibiotic resistances (ATB). Uri, isolates from urinary infections; Fec, isolates from diarrheal samples; RD, 
isolates from rural dust; UD, isolates from urban dust. Ratio is the quotient between each subgroup value and the 

total; those with a difference ≥10% are in bold. 
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Table 2. Susceptibility towards oxidants and antibiotics among clinical and environmental isolates of E. coli. 
 

Data are: averages (x) with standard deviations (SD) of diameter of inhibitory halos, in mm, for paraquat (PQ) or hydrogen peroxide (H2O2), or of number of antibiotic 
resistance phenotypes (nATB), for subpopulations deemed “susceptible” (S) or “resistant” (R; see text). Ratio is the quotient of each group’s average and total average; or the 
number of isolates (n) of each source, and the percentage (%) for each group; and the difference (dif) between each group’s percentage and the total percentage. Ratio or dif 

values with a difference ≥10% are in bold 
 

Table 3. Resistance towards individual antibiotics, among oxidants’ resistant and susceptible subgroups, and among each source subgroup 
 

 AM AMC CTX SD C GM TE CIP FM 
 n(%) dif n(%) dif n(%) dif n(%) dif n(%) dif n(%) dif n(%) dif n(%) dif n(%) dif 
total 55  9  2  80  42  13  71  24  11  
PQR 13(76) +21 4(24) +15 0 -2 14(82) +2 6(35) -7 2(12) -1 15(88) +17 3(18) -6 1(6) -5 
PQ

S
 7(54) -1 0 -9 0 -2 11(85) +5 7(54) +12 3(23) +10 11(85) +14 6(46) +22 3(23) +12 

H2O2
R 7(50) -5 1(7) -2 1(7) +5 13(93) +13 8(57) +15 3(21) +8 13(93) +22 3(21) -3 2(14) +3 

H2O2
S
 8(47) -8 1(6) -3 0 -2 14(82) -2 11(65) +23 2(12) -1 8(47) -24 2(12) -12 3(18) +7 

Uri 22(92) +37 7(29) +20 2(8) +6 20(83) +3 3(13) -29 3(13) 0 18(75) +4 6(25) +1 1(4) -7 
Fec 8(38) -17 1(5) -4 0 -2 15(71) -9 4(19) -23 2(10) -3 13(62) -9 2(10) -14 2(10) -1 
RD 10(37) -18 0 -9 0 -2 18(67) -13 11(41) -1 2(7) -6 22(81) -10 5(19) -5 0 -11 
UD 15(50) -5 1(3) -6 0 -2 27(90) +10 25(83) +41 6(20) +17 18(60) -11 11(37) +13 8(27) +16 

AM, ampicillin; AMC, amoxicillin-clavulanate; CTX, cefotaxime; SD, sulfadiazine; C, chloramphenicol; GM, gentamicin; TE, tetracycline; CIP, ciprofloxacin; and FM, 
nitrofurantoin. 

 PQ H2O2 nATB Uri Fec RD UD 
 x(SD) ratio x(SD) ratio x(SD) ratio n(%) dif n(%) dif n(%) dif n(%) dif 

Total 14.7(3.8)  25.6(3.4)  3.0(1.8)  24  21  27  30  
PQR 10.6(0.5) 0.72 25.1(3.4) 0.98 3.4(1.7) 1.13 5(29) +5 2(12) -9 8(47) +20 1(6) -24 
PQ

S
 22.6(2.6) 1.54 27.1(4.0) 1.06 3.8(1.6) 1.27 1(8) -16 5(38) +17 1(8) -19 6(46) +16 

H2O2
R 14.3(3.5) 0.97 21.7(0.6) 0.85 3.6(2.1) 1.20 2(14) -10 1(7) -14 10(71) +44 1(7) -23 

H2O2
S
 15.2(4.7) 1.03 31.7(2.1) 1.24 2.8(1.6) 0.93 0 -24 3(18) -3 1(6) -21 13(76) +46 

ATB
R
 15.2(3.5) 1.03 25.2(2.5) 0.98 5.7(0.8) 1.9 5(23) -1 4(19) -2 3(14) -13 9(43) +13 

ATBS 14.3(3.3) 0.97 25.3(3.2) 0.99 0.6(0.5) 0.21 1(5) -19 6(30) +9 9(45) +18 4(20) -10 
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Fig. 2. Superoxide dismutase activity of PQ
R
 and PQ

S
 isolates 

Superoxide dismutase (SOD) activity gels are shown for organisms considered “resistant” (A) or “susceptible” (B) 
to paraquat; the enzyme activity is revealed as transparent bands within a dark background, with Fe-SOD being a 

constitutive enzyme, Mn-SOD an inducible one, and faint hybrids between them. Strain ATCC 25922 was 
included as a wild-type control, and activity of some representatives of each group, labeled as the diameter of the 

inhibitory halo around the paraquat disc are shown. “Resistant” organisms had a very uniform activity, while a 
diversity of SOD profiles was observed in “susceptible” organisms.  

 
individual antibiotic-resistance phenotypes 
associated to H2O2-resistance, sulfadiazine and 
tetracycline are considered as "bacteriostatic" 
agents. Regarding paraquat, it was the most 
susceptible isolates the ones with higher number 
of antibiotic resistance phenotypes, including the 
bactericidal fluoroquinolone ciprofloxacin and, to 
a lesser extent, gentamicin and chloramphenicol. 
The activity of nitrofurantoin has been shown to 
depend on an enzyme which expression is 
governed by the soxRS genes, hence it was an 
expected outcome to find slightly more 
resistance to the drug amongst the PQS isolates 
[16]. Perhaps the results from the environmental 
isolates can better summarize these findings: 
while amongst RD isolates there are more 
paraquat- and H2O2-resistant isolates, they have 
fewer antibiotic resistance phenotypes; on the 
contrary, there were more prooxidant-susceptible 
isolates from UD, but those have more 

resistance phenotypes. Whatever the conditions 
that are causing these environmental isolates to 
resist more or less to prooxidants or antibiotics, 
both features do not seem to be linked. 
 
The linkage between resistance towards 
superoxide-generating agents, such as PQ, and 
diminished susceptibility to several antibiotics, 
have been shown in laboratory conditions, in E. 
coli and other gram-negative bacteria (e.g., [17]). 
However, such a linkage was not found, and 
perhaps even just the opposite. While reduced 
accumulation –the main mechanism of antibiotic 
resistance mediated by soxRS, is a successful 
strategy in the short term, the “trade-offs” might 
end up reducing fitness [18]. On the other hand, 
the weak correlation between H2O2- and 
antibiotic-resistance might be indicative of a 
more direct association of anti-oxidant defenses 
in protecting against the effects of antibiotics. 
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Nevertheless, being the two antibiotic-resistance 
phenotypes with the strongest linkage to H2O2-
resistance anything but bactericidal (i.e., 
sulfadiazine and tetracycline), the role of ROS is 
not that clear. The exposure of E. coli to 
sulfamethoxazole was recently shown to induce 
a metabolic pathway that produces antioxidant 
pterin-phenylpyruvate conjugates [19] suggesting 
that sulfonamide antibiotics do exert oxidative 
stress. In any case, the likelihood of some 
antibiotics fostering or co-selecting for H2O2-
resistance could link the use of those antibiotics 
to an increased bacterial virulence, as oxidative-
stress responses have a known role as 
pathogenic determinants [20]. 
 
The method used here to assess antibiotic 
susceptibility is a coarse one, only capable of 
distinguishing between susceptibility and 
resistance by using clinical breakpoints. It is 
possible that oxidant-resistant isolates have 
diminished susceptibility but not up to the point of 
being fully-resistant. While the method lacks the 
resolution needed, the average size of inhibitory 
halos among susceptible isolates do not differ 
between prooxidant-susceptible and -resistant 
strains (not shown). The method for assessing 
susceptibility towards H2O2 and paraquat is 
equally coarse, unable to distinguish the 
underlying mechanism of purported susceptibility 
or resistance. While there was a correlation 
between the sizes of inhibitory halos, and the 
activities of enzymes inactivating respective 
ROS, very different genotypes could have been 
grouped under the same category, possibly 
confounding the associations. Further analyses, 
utilizing more precise and specific molecular 
methods to assess the existence and extent of 
the linkage between prooxidant- and antibiotic-
resistance. 
 

5. CONCLUSION 
 

The proposed oxidative stress proposed as 
secondary “mechanism of action” for some 
antibiotics, do not seem to have resulted in the 
co-selection of oxidative stress resistance, or 
vice versa, in clinical and environmental isolates 
of E. coli. Weak linkage between H2O2-resistance 
and antibiotic multi-resistance was found, and 
resistance to sulfonamides and tetracycline seem 
to contribute especially to this effect. Resistance 
to O2

·--generator paraquat seems only clearly 
related to resistance to aminopenicillins. In any 
case, a possible link between resistance to some 
antibiotics and to prooxidants could contribute to 
co-selection. 
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