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ABSTRACT
This work presents an indoor/outdoor classification system which 
uses light measurements coupled with machine learning algo-
rithms to predict whether the sensing system is indoors or out-
doors. The system measures ultraviolet light, color temperature, 
luminosity, and red, green, blue, and clear components of light at 
one-minute intervals using an Arduino-based measurement sys-
tem. Three machine learning algorithms – support vector 
machine, artificial neural network, and bagged tree – were trained 
and tested using experimentally collected sensor data from multi-
ple locations, dates, and times. A comparison of these classifiers 
revealed superior classification performance of the bagged tree 
classifier (>99%) compared to the other two algorithms. Each of 
the presented classifiers offered high estimation performance 
(>96.9%) in all the considered cases with cross-validation. These 
results demonstrate the feasibility of using light measurements 
alone to predict indoor or outdoor condition, which has practical 
applications in psychology research.
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Introduction

The amount of time a person spends outdoors has been linked to greater overall 
happiness (MacKerron and Mourato 2013), lower stress levels (Hartig et al. 2003; 
Thompson et al. 2012), lower mortality and disease rates (Maas et al. 2009), as well 
as lower anger, violence, and aggression (Kuo and Sullivan 2001). However, the 
benefits of exposure to natural environments are often confounded with those of 
physical activity that happens in these contexts. For instance, research on youth 
activity and well-being (Cleland et al. 2008; Schaefer et al. 2014), indicated that 
negative outcomes and decreased physical activity were often attributed to, e.g., 
increased screen time rather than decreased outdoor exposure (e.g., Hofferth and 
Sandberg 2001; Burdette and Whitaker 2005). Additionally, several lines of 
research have indicated that physical activity and exposure to natural environ-
ments can independently promote positive health effects (Frumkin 2001; St Leger 
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2003). Even if not wholly independent, outdoor activities can be used to promote 
physical activity (McCurdy et al. 2010), thus evincing a synergistic effect on health. 
Therefore, outdoor exposure measurements may be diagnostic and have practical 
application for several areas of psychological research.

Some research has attempted to objectively quantify the time spent outdoors 
using Global Positioning System (GPS) measurements for different populations, 
including preschool children (Tandon et al. 2013), school-aged children (Klinker 
et al. 2014) and older adults (Kerr et al. 2012). While GPS sensors can offer 
a reasonable estimate of when a user is outdoors due to location estimates, this 
approach requires the use of known location maps that entail significant computa-
tional complexity and requires pre-planning of a study region. Additionally, GPS 
use can suffer from issues related to location boundary definitions (e.g., locations 
near buildings) as well as potential outages, particularly in urban locations. Devices 
containing GPS sensors also tend to be more expensive than those without GPS 
capability, which could be cost prohibitive for studying large populations. 
Therefore, an alternative sensing system which is less costly and does not rely on 
external satellites or location maps would be beneficial to quantify outdoor time.

Several alternatives to GPS have been investigated for indoor/outdoor classifica-
tion. Unfortunately, these alternatives each suffer from unique limitations or 
constraints that restrict their applicability to research. For example, temperature 
measurements and probabilistic models of regional climate patterns have been 
used to predict whether a device is inside or outside (Krumm and Hariharan 2004). 
Unfortunately, this method requires a web service for determining outside tem-
peratures or an outside thermometer for reference. Additionally, this reflects an 
inferential measure upon which classification is determined, which may not be 
applicable in all situations.

Similar approaches have attempted to capitalize on smart phones and their 
existing onboard sensors, e.g., accelerometers, proximity sensors, light sensors, 
magnetometers, etc. For instance, machine learning algorithms (e.g., 
IODetector) have been shown to be successful at making indoor/outdoor 
classifications based on, e.g., cell signal strength (e.g., Ali, ElBatt, and Youssef 
2018; Li et al. 2014; Radu et al. 2014; Wang et al. 2016; Zhou et al. 2012), GPS 
(e.g., Zeng et al. 2018), ultrasonic sensors (Bisio, Delfino, and Lavagetto 2015), 
or Bluetooth (Zou et al. 2016). While these methods have the advantages of not 
requiring additional, expensive sensor equipment and conserving battery life 
(relative to relying on GPS), they are still quite limited. In particular, they still 
rely on outside signal information to infer whether the device in indoors or 
outdoors, i.e., communications with cell phone towers or Bluetooth beacons is 
required. This is compounded by the fact that signal information may be 
blocked or degraded due to being carried in a pocket or bag. Finally, some 
information may simply be inaccurate if users leave their phone in an indoor 
location while engaging in, e.g., high intensity outdoor activities or activities in 
environments that could damage their phone, such as swimming.
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Here, we introduce an indoor and outdoor classification system that relies solely 
on light measurements. Specifically, this work assesses Ultraviolet (UV) index, 
luminosity, color temperature, and red, green, blue, and clear components of light. 
These measurements are used within machine learning algorithms to determine 
a classification of location. Some work has measured the UV exposure of preschool 
children to analyze health benefits (Boldemann et al. 2006), but this information 
was not used for classification purposes. This work therefore presents a novel 
wearable sensor system that can be used to classify whether a person is indoors or 
outdoors based only on local light measurements. Importantly, it addresses two of 
the major limitations outlined above. First, it does not require any external 
communication signal information, e.g. GPS, cell signal strength, Bluetooth, Wi- 
Fi, etc. Rather it makes a classification based directly on ambient environmental 
information. Second, this system consists of relatively low-cost sensors and there-
fore can be used to study the amount of time spent indoors and outdoors in larger 
samples.

This work builds upon our previously published article which fully details the 
hardware development for this project as well as some classification results from 
the individual measurements using Receiver Operating Characteristic (ROC) 
curve analysis and preliminary Artificial Neural Network (ANN) results (Rhudy, 
Greenauer, and Mello 2020). ROC analysis was also presented for light intensity 
in a previous study for indoor versus outdoor location, but the classification 
accuracy was limited (Tandon et al. 2013). Some improvement of this method 
was shown in another study using only the light intensity measurement (Flynn 
et al. 2014). Another group of researchers expanded upon these ideas to inves-
tigate UV index and number of steps in addition to the light intensity through 
both ROC analysis as well as SVM (Ye et al. 2019). Our work continues to 
expand upon these ideas by incorporating additional light measurements as well 
as investigating alternative machine learning techniques for this application.

The remainder of this paper is organized as follows. Section 2 presents the 
materials and protocol used to collect data for this study as well as the machine 
learning techniques for developing classifiers for the data. The results are pre-
sented in Section 3. Section 4 offers some discussion of the results, followed by 
conclusions in Section 5.

Methods

Materials

The experimental setup for this project consists of a microcontroller which 
samples data from two different light sensors approximately once per minute 
and stores the data on a microSD card. The microcontroller is an Adafruit 
Feather 32u4 Adalogger (New York, NY), which has a built-in microSD card 
slot and can be used with a rechargeable 3.7 V lithium ion battery. A 350 mAh 
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battery (Adafruit Industries, New York, NY) was selected for this study based 
on a compromise of size and capacity. The first light sensor is an RGB sensor, 
TCS34725 (Adafruit Industries, New York, NY), which measures color tem-
perature, luminosity, and red, green, blue, and clear components of light. The 
RGB sensor uses I2C communication to send data to the microcontroller. 
A second sensor, the GUVA-S12SD (Adafruit Industries, New York, NY), is 
used to obtain a measurement of the UV index from an analog voltage 
measurement. This sensor captures the 240–370 nm range of light, which 
covers UVB and most of the UVA spectrum. Figure 1 presents a diagram 
detailing the overall data acquisition system. Additionally, a labeled diagram of 
the prototype data acquisition system is shown in Figure 2.

Protocol

Data were collected by placing the sensor package in a static location for 
a period of time ranging from 25 minutes to 43 hours and 43 minutes 
(Mean = 2 hours and 55 min, SD = 8 hours and 3 minutes). These locations 
fell into two categories: indoor and outdoor. A total of 29 data sets were 
collected which varied in location, time of day, time of year, and weather 
condition. The data sets were then split into minute-by-minute samples by 
category. This resulted in a total of 3640 indoor and 1368 outdoor samples. 
The larger number of indoor samples was primarily due to convenience 
sampling based on weather and time constraints of obtaining outdoor mea-
surements. Each sample consists of seven metrics: UV index, color tempera-
ture, luminosity, and red, green, blue, and clear components of light. Figure 3 
displays examples of indoor (left, under lamp on table), and outdoor (right, in 
middle of grass) testing locations. Table 1 contains the full description of all 

Figure 1. Diagram of the data acquisition system showing the various components and pin 
connections.
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collected data sets. Most of the data described in Table 1 were collected in the 
general area of Reading, Pa USA. However, the last three data files were 
collected in Egypt, Africa, to explore regional differences.

Data Analysis

There are many different types of machine learning algorithms, which can be 
divided into categories such as logic-based (e.g. decision trees), perceptron- 
based (e.g. neural networks), statistical (e.g. Bayesian classifiers), instance- 
based (e.g. nearest neighbor), and Support Vector Machine (SVM) 
(Kotsiantis, Zaharakis, and Pintelas 2007; Sen, Hajra, and Ghosh 2020). 
There are various advantages and disadvantages to these different categories. 
In particular, SVMs and neural networks can lead to better performance when 
considering multiple dimensions and continuous features (Kotsiantis, 

Figure 2. Picture of data acquisition system prototype with key components labeled.

Figure 3. Example indoor (left) and outdoor (right) testing locations with the prototype sensor 
marked with an orange circle for clarity of the sensor placement.
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Zaharakis, and Pintelas 2007). Additionally, decision trees, neural networks, 
and SVMs can be used to generate complex models to better fit variations in 
the data (Kotsiantis, Zaharakis, and Pintelas 2007).

Here, we select approaches from three different categories to explore the 
effectiveness of different techniques. Specifically, we consider a SVM, ANN, 
and Bagged Tree (BT) classification algorithms. A Gaussian Radial Basis 
Function (RBF) was implemented as the kernel for the SVM to allow for 
a nonlinear decision boundary. K-fold cross-validation was selected with 10 
folds to validate each trained classifier. The ANN was selected as a feedforward 
neural network with a single hidden layer. The decision tree used bootstrap 
aggregating, or bagging, as an ensemble method to improve the predictive 
performance of the decision tree classifier (Banfield et al. 2007; Hothorn and 
Lausen 2005). These classifiers were selected in order to present a variety of 
different machine learning techniques that have been shown to be useful for 
various classification problems. The same training and testing data sets were 
used for each classifier in order to ensure consistency and allow for fair compar-
ison of the classification results. All data analysis was performed using MATLAB 
(R2018a, Natick MA), including the Neural Network toolbox.

Table 1. Description of data sets.
Data Set # and Description Type Month Start Time (Local) Duration (HH:MM) Weather

1. Classroom, 2 m from window Indoor January 09:00 AM 00:53 Sunny
2. Classroom, blinds down Indoor January 11:10 AM 00:35 Sunny
3. Classroom, blinds down Indoor January 09:05 AM 00:55 Sunny
4. Classroom, blinds down Indoor January 11:10 AM 00:53 Sunny
5. Apartment back step, shaded Outdoor January 01:15 PM 00:40 Sunny
6. Apartment, far from window Indoor January 01:56 PM 01:10 Sunny
7. Classroom, dark outside Indoor January 06:11 PM 00:39 Clear night
8. Classroom, blinds down Indoor January 10:35 AM 00:44 Sunny
9. Classroom, blinds down Indoor January 11:06 AM 00:46 Overcast
10. Classroom, blinds down Indoor January 08:57 AM 00:58 Overcast
11. Car windshield, direct sun Outdoor February 11:07 AM 04:21 Sunny
12. Café, next to large windows Indoor May 09:16 AM 00:36 Cloudy
13. Office desk, lights off Indoor May 01:58 PM 43:43 Partly Cloudy
14. House, blinds down Indoor June 03:18 PM 01:07 Cloudy
15. House under lamp (on) Indoor June 04:28 PM 01:19 Cloudy
16. House front lawn, direct sun Outdoor June 02:00 PM 00:57 Sunny
17. Outdoor swing Outdoor July 07:19 AM 01:07 Clear sky
18. Outdoor chair under tree Outdoor July 08:27 AM 00:25 Sunny
19. House, bookshelf, lights off Indoor July 08:54 AM 01:10 Sunny
20. House, bench, lights off Indoor July 10:45 AM 01:19 Sunny
21. Kitchen under LED lights Indoor July 12:24 PM 00:50 N/A
22. By electric fireplace (on) Indoor July 01:16 PM 00:30 N/A
23. Outdoor chair, direct sun Outdoor July 01:48 PM 00:35 Sunny
24. Seesaw in shade Outdoor July 02:24 PM 00:35 Sunny
25. Chair under an outdoor roof Outdoor July 03:00 PM 00:38 Shaded area
26. Basement table, no windows Indoor July 07:44 PM 01:00 N/A
27. House roof (Egypt) Outdoor July 01:56 PM 05:38 Sunny
28. House roof (Egypt) Outdoor July 04:11 AM 08:50 Sunny
29. Bedroom floor (Egypt) Indoor July 09:20 PM 01:37 N/A
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Results

Analysis of Measurements

Figure 4 depicts the light metrics. In Figure 4, the red, green, and blue 
components of light were used to generate the RGB color values when 
determining the fill color of each marker. Note that black represents no light 
whereas lighter gray indicates more light content that is balanced between red, 
green, and blue. In addition, the size of the markers was scaled with the 
luminosity, where larger light intensity is represented by a larger marker. 
Indoor samples cluster closely around low UV index, low color temperature, 
and low luminosity. The outdoor samples vary more substantially across these 
values but tend to have higher value metrics than the indoor samples. The 
region around a UV index of 1 is interesting, as there are both indoor and 
outdoor samples which have a UV index around this value. However, the other 
metrics differ, specifically the color, color temperature, and luminosity. This 
indicates that UV index alone is not enough to properly distinguish the 
categories.

An additional visual representation of the collected data is offered in 
Figure 5 containing numbering which corresponds to Table 1. In Figure 5, 
a single representative sample was selected from the corresponding data set in 
Table 1. These representative samples were selected by identifying the sample 
which contained the median luminosity measurement within that data set. As 
noted in Figure 4, due to the clustering around small UV index values, this 
data was divided into two separate graphs: one containing samples with non- 
zero UV index (left), and one containing samples with UV index equal to zero 
(right). All samples with non-zero UV index happen to be outdoor measure-
ments (marked with circles), and all samples with zero UV index happen to be 

Figure 4. Visual representation of light metrics with fill color representing RGB components and 
size corresponding to luminosity. Larger markers indicate a higher luminosity, while smaller 
markers indicate a lower luminosity value. Indoor measurements are marked as orange triangles 
while outdoor measurements are light blue circles.
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indoor measurements (marked with triangles). On the left of Figure 5, the 
same axes are used as Figure 4 to show the variation in color temperature and 
UV index for outdoor data. On the right of Figure 5, since the UV index is 
equal to zero, the luminosity was instead used on the horizontal axis to better 
visualize the data. Note that Figure 5 is only showing a single sample of data 
from each data set.

Training, Validation, and Testing of Machine Learning Algorithms

The overall data set was divided into 70% training data and 30% testing data 
for each of the considered machine learning classifiers. The training was 
repeated for each classifier using 1000 unique permutations of the data sets. 
The selection of training and testing data was randomized into 1000 different 
combinations and then fixed for all cases in order to have consistent data 
selection between the classifiers. Thus, the same random seed was used for 
each classifier to ensure consistency in the comparison. After training for each 
of the 1000 cases, the overall accuracy was calculated using the known indoor 
or outdoor condition from the data set. Then, the accuracy statistics of the 
1000 cases were calculated, as shown in Table 2 and a corresponding box plot 
in Figure 6. Additionally, the confusion matrix for the different classifiers was 
calculated for each case, and the mean values are shown as percentages in 
Table 3.

In order to determine the number of nodes for the hidden layer in the ANN, 
the training and cross-validation of the ANN was repeated for hidden layer 
sizes ranging from 1 to 30 nodes. The results from this analysis are provided in 
Figure 7 as a box plot displaying the distribution of performance across the 
1000 cross-validation cases for each number of nodes in the hidden layer. No 

Figure 5. Distribution of data sets using numbering from Table 1 for outdoor non-zero UV 
index measurements (left) and indoor measurements with zero UV index (right). The 
sample containing the median luminosity measurement was selected as a representative 
example for each data set.
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clear pattern is noted in Figure 7, however, from this figure we select the best 
case of median ANN performance, which corresponds to 13 nodes in the 
hidden layer.

Table 2. Summary of statistics for classifier accuracy on testing data.
Classifier Mean Accuracy (%) Standard Deviation (%) Minimum Accuracy (%) Maximum Accuracy (%)

SVM 97.9 0.330 96.9 98.9
ANN 99.2 0.191 98.5 99.9
BT 99.7 0.139 99.0 100.

Figure 6. Box plot showing distribution of cross-validation for each classifier. The black lines 
indicate the maximum and minimum values, the blue rectangles indicate the lower and upper 
quartiles, the red line indicates the median, and the red ‘+’ symbols denote outliers.

Table 3. Mean confusion matrix for each classifier on testing data as percentages.
SVM Predicted ANN Predicted BT Predicted

Outdoor Indoor Outdoor Indoor Outdoor Indoor

Actual Outdoor 92.40% 7.60% 97.6% 2.38% 99.36% 0.64%
Indoor 0.003% 99.997% 0.19% 99.81% 0.12% 99.88%

Figure 7. Box plot showing distribution of cross-validation for different numbers of nodes in the 
hidden layer for the ANN classifier. The black lines indicate the maximum and minimum values, the 
blue rectangles indicate the lower and upper quartiles, the red line indicates the median, and the 
red ‘+’ symbols denote outliers.
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The overall classification accuracy, outdoor classification accuracy, and 
indoor classification accuracy were each evaluated using analysis of variance 
(ANOVA) with post-hoc testing to identify differences between the three 
considered classifiers. Analyses indicated significant differences for overall 
(F(2, 2997) = 16066.83, p < .001, ηp

2 = .915), outdoor (F(2, 
2997) = 20304.81, p < .001, ηp

2 = .931), and indoor (F(2, 2997) = 997.67, 
p < .001, ηp

2 = .400) accuracy. Post-hoc analyses indicated significant 
differences between all three classifiers for each accuracy measure (all ps < 
.001). For overall and outdoor, BT was significantly better than ANN which 
was significantly better than SVM. However, for indoor, the order reversed 
with SVM significantly outperforming ANN which significantly outper-
formed BT. It is worth noting, however, that although significant differences 
were observed, the actual differences in accuracy were quite small (e.g., see 
Table 2).

Special Cases of Test Data

Although the data set used for training of the machine learning classifiers as 
described in Table 1 is extensive, it is not inclusive of all possible situations for 
indoor and outdoor environments. The purpose of this section is to consider 
special cases of specific environmental conditions that are expected to chal-
lenge the machine learning algorithms. Each of these test cases is presented as 
new data to the classifiers, as in, no data from these special cases are included 
in the training data from the classifiers.

The first considered special case is cloudy outdoor data. During this data 
collection, 29 samples were collected in Reading, PA USA at approximately 
3:00 PM on November 2, 2021. The weather conditions were cloudy with light 
rain. All three classifiers successfully identified the outdoor conditions for all 
29 samples in all 1000 different cross-validated cases with 100% accuracy. 
Therefore, it is reasonable to conclude that clouds do not have a significant 
effect on the classification accuracy.

The second considered case was outdoor conditions at night, far from any 
outside lighting. For this data, all light measurements recorded values of 
exactly zero, which led to all classifiers misclassifying the outdoor conditions 
as indoor. That is, all three classifiers performed with 0% classification accu-
racy for this situation. This presents a major limitation of this classification 
technique in that it is only accurate during daylight hours. The use of light 
measurements alone is not likely to resolve this limitation, however the 
introduction of additional sensor measurements could mitigate the impact 
of this special case.

The final considered special case is directly inside of a window in direct 
sunlight. This condition is interesting in that it would typically be considered an 
indoor location, even though the lighting conditions are more similar to outdoor 
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conditions. Some work introduces an additional category to describe these types 
of situations, often called “semi-outdoor” conditions (Radu et al. 2014; Zhou 
et al. 2012). Similar to the night special case, in all samples from this test, all three 
classifiers misidentified the indoor settting as being outdoors. This indicates 
another limitation of the currently proposed classification model. Since the 
classifiers are based on light measurements alone, they are predicting indoor 
or outdoor condition based on typical indoor and outdoor lighting patterns. 
That is, the classifiers identify sunlight through a window as outdoor conditions, 
because the light sensed through the window is more similar to outdoor lighting. 
Future work could explore this special case further, possibly through the con-
sideration of an additional classification category or through additional sensors.

Discussion

Overall, each of the classifiers offered reasonable predictions of outdoor or 
indoor conditions from the light measurements. The lowest accuracy noted in 
any of the classifiers for each of the 1000 cross-validated cases was 96.9%. This 
level of accuracy is very high, and even at this performance level it is likely to 
achieve a more accurate prediction of time spent outdoors than a typical self- 
report measure. Researchers implementing GPS-based outdoor detection 
report approximately 80–90% sensitivity and specificity (Kerr et al. 2012; 
Tandon et al. 2013). The algorithm, IODetector, reported accuracy consis-
tently above 92% (Li et al. 2014). In this context, the presented results are 
encouraging for a light-only based algorithm.

While all classifiers were successful, our results indicate that BT significantly 
outperformed the others. This is attributable not only to the increased mean 
accuracy, but also to the decreased variability in its classification accuracy (see 
Table 2). As is evident in Table 3, all three classifiers were highly successful in 
classifying indoor environments. However, BT significantly outperformed the 
ANN, which significantly outperformed the SVM when classifying outdoor 
environments. This trend was also observed for the overall data set. The 
bagged tree classifier has been shown to outperform SVM and ANN in other 
comparison studies (Caruana and Niculescu-Mizil 2006), therefore this result 
is reasonable, though it may be possible to improve the ANN performance 
through further calibration and tuning.

For post-processing analysis, the BT is recommended for indoor/out-
door classification using light measurements. It is worth noting, however, 
that in circumstances where the highest possible accuracy is not para-
mount, ANN and SVM may be viable alternatives. Error rates for these 
classifiers were still relatively low. Additionally, they may be more practical 
for real-time implementation due to lower computational complexity for 
this model.
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Conclusions

This work presented three different machine learning classifiers for predicting 
whether a sensing system was outdoors or indoors based solely on measure-
ments of light. The results from the classifiers revealed high classification 
accuracy for each of the proposed classifiers, thus indicating that these mea-
surements can make the distinction of indoor or outdoor without the use of 
external signal information. A bagged tree classifier yielded the highest average 
performance accuracy among the considered classifiers at 99.7%. The pro-
posed sensing system could be implemented within human research studies to 
objectively quantify the amount of time a person spends outdoors, which 
would benefit the psychological research community.
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