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ABSTRACT 
 

this paper deals with convergent ≥ 2 of arbitrary order through an effective iterative method, it is 
formulated to solve difference Kepler equation. This formulation with a dynamical aspect, where go 
from one iterative model to another one using more instruction. Where, the more important hint that, 
it is not need any prior information of initial guesses and keep away from the critical situations 
between divergent to the very slow convergent solutios, which may exist in another numerical 
method that depends on the initial guesses. Finally, copmuted algorithm and numerical example for 
the method are gevin. 
 

 

Keywords:  Initial value problem; differenced Kepler's equation; homotopy continuation method; 
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1. INTRODUCTION 
 

Most of applied mathematics resulting equations 
with high transcendental and can solve using 
iterative methods through (a) initial gusses (b) 

iterative model. Really, the last two points not 
separated from each other, so, agreement even 
exact iterative schemes are very cretical to the 
initial guess. More of that, the first guess might 
lead to extreme situation between divergent and 
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very slow convergent solutions within much 
cases. “In a field of numerical analysis, the 
powerful techniques devoted to solve the 
transcendental equations without any prior 
information of the initial guess” [1], it is known as 
homotopy continuation method. It was applied 
firstly in space dynamics for the univeral initial 
value proplem [2] and also in stellar statistics [3] 
and also for the algebraic equation which 
nonlinear as more of researches as [4-7]. 
 
In the present work, we will establish an efficient 
iterative method of arbitrary integer order l of 
convergent l mor than or equal 2 to solve 
difference kepler equation. This hypothesis is of 
dynamical form, where, it goes from an iterative 
model to the next one, needed only more 
guidance. As further, the more significance of 
this hypothesis that, it is not need a prior 
information of initial guesses. A behavior which 
side step the critical cases between divergent 
solution to a very dawdling converge solutions, 
that may occure in another numerical methods 
which depend on initial estimate. Finally, we 
state a computaional algorithm of digital 
implementation for the hypothesis  
 

2. A ONE-POINT ITERATION FORMULAE 
TO SOLVING Y(x) = 0 

 

Put Y(x) = 0 where Y: R  R as a mapping with 

a solution )(sayx  . We will recall some basic 

definitions to construct an iterative model to solve 
this equation:  
 

The error in k
th

 iterate is defined as follows 
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Can state , an iterated mode in order p  at   and 

constant K is known as the converge error 
constant. If p =1 , then convergence is linear , at 

p = 2, then convergence is quadratic; and if p

=3,4,5 find that the convergence is cubic, quartic 
and quintic, respectively. 
 

Using information at only one point for one-point 
reputation formulae. So, considering only stable 
one-point improvement formulae as below:  
 

,1,0),(1  ixRx ii
                          (1) 

 

The order of one point iterative formulae can 
determine from: (a) The Taylor series of the 

iteration function R )( nx about   e.g [8]. or from , 

(b) The Taylor series of the function )( 1kxY  

about 
kx  [9]. 

 

From the concepts of the second supposes as 
shown above [point(b)] easy to form a class of 
repeated formulae consists members of all 
integrating orders [10] for solving equation (1) as 
follows: 
 

2,1   miii xx  ; i=0,1,2,…; m =0,1,2,   (2) 
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The convergence order is m 2 and given as 
follows: 
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where   between 1ix   and ix  also 1  between 

1ix   and  . 

 

3. SOLVING Y(x) = 0 BY A HOMOTOPIC 
CONTINUATION METHODS  

 

3.1 Constructions 
 

To find the solution of single non-linear equation 
in one variable as x (say). 
 

0)( xY ,                                                (6) 
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Since , RR  :  is a mapping , assuming our 

application will be smooth, so that a map 
requires many contiuous derivatives. Look to the 
status, where no prior information concerning 
available zero point of Y. Where, assuming that a 
prior information is un- available, so often some 

iterative methods are fail to calculate zero x  , 
because of pooring chosen the starting value as 
an available repair, homotopy or deformation 
define  
 

RRR  :  as follwos: 
 

        ,xΥx,0Η;xQx,1Η 
 

 

 Since RR :Q  is a (measly) smooth 

mapping have a known zero point and   
is also smooth. Usually, can choose a 
convex  

 

        .xΥλ1xQλλx,Η        (7) 

 
and endeavor to tracing implicitly defined curve 

   0ΗzΦ 1  from the starting point  1,x1  

to the solution point  0,x  . If it is succeed, the 

zero point x  of Y is obtained. 
 

3.2 Embedding Methods 
 

The embedding method which referred at the 
end of Subsection 3-1 is explained in the 
following algorithm for tracing the curve 

)0(H)z( 1  from, say 1  to .0  
 

3.2.1 Computational algorithm1 
 

● Purpose 
 

To solve Y(x) = 0 by embedding method. 
 

● Input 
 

(1) The function Q(x) with defined root 1x  

such that H ( 1x ,1) = 0, 

(2) Positive integer m. 
 

● Output 
 

Solution x of Y(x) = 0. 
 

3.2.2 Computational sequence 
 

Let ./1,/)1(,1 mmmxx  
 

 
For i = 1 to m do begin 

Solve H (y, 0)y()1()y(Q)   

iteratively for y using x as starting value. 
 

x = y. 
 

.  
 
end 

 
4. SOLVING DIFFERENCED KEPLER'S 

EQUATION USING HOMOTOPY 
METHOD'S APPLICATION 

 
4.1 Formulated of Differenced Kepler's 

Equation 
 

Since ),( , ),(  EEMM nn
 the mean and 

eccentric anomalies are associated with position 

vectors )( r,rn
 at the two epochs nt  , t  

where )( n  of an elliptic orbit.  

 
Then, differenced Kepler's equation given as: 
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The last equation has written as: 

 

0WSGcosSGsinCGY nnn  ,      (8) 

 
Where 
 

nMMW    , 
nEEG    ; 
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r
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a
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By checking the computed value G under the 
next condition: 
 

0WSGcosSGsinCGCheck nnn 
 

 

We recoded two: 
 

Obviously from equation (5), the iterative planner 
to solve equation (8) including the derivations of 
Y as higher as the order of model. In reality, the 
higher of accuracy and rate of convergence 
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resulting from the higher order of the iterative 
model. So that the wonderful simplifying of 
derivatives formula of Y as follows: 
 

 GSGCGY nn sincos1)()1(  , 

 

GcosSGsinC)G(Y nn

)2(  , 

 

,GsinSGcosC)G(Y nn

)3( 
 

 

4;)( )2()(   kYGY kk

 
 
So, can get all possible derivatives of Y ( G ). 
 
Without prior information of initial guesses, 
homotopic continuation method is a sufficient 
technique for solving Y ( G ) = 0 
 
By the last two hints, the solution of Kepler’s 
Equation (8) can be found also an iterative 
algorithm of any positive integer with order l ≥2. 
Where, the algorithm unneeded a prior 
information about the initial guesses. Belonging 
to Equation (5), we only need to additional 
instruction for the algorithm of dynamical nature 

sense such that iterative schemes up to the 
thl  

order which going from one scheme to the next 
one.  
 
The algorithm is illustrated in the following with 
algorithm 1 which augmented it together with the 
Q function of the homotopy H , Equation (7), as 
Q( x ) = x - 1, therefor  
 

 ,0)1,( 1 xH  where .11 x
 

 

4.2 Computational Algorithm  
 
Purpose: For solving kepler equation by using 

an iterative scheme of quadratic up to the 
thl  

convergence orders without any prior information 
of initial guesses using the homotopy 

continuation method with 1)( GGQ
 

 

Input: m is positive integer where 20m3  , 

W , )(),( nn SSnCCn  , n )(  ,   ( 

specific toleration 
610 ) , 

 

4.3 Computational Sequence 
 

Put 1G  ; m/1  ;  1  

For i: =1 to m do 
  
Start {i} 
 

  1Q
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 begin { k } 
 

 put ;)2()(  kk YY  ;1 kn  

1;)1(  BYH
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)1(*  jYBHH
 

 

 end { j } 
 

 
H

Y
G 

 
 

 end { k } 
 

 GGG 
 

 

     

 

 end { i } 
 

 End 
 

4.4 Numerical Example 
 
Consider the values 

41876.0S  ;  324852.0C  ;  30025.6W nn 
 

with 
-610.15, 10,m   .The result is:

.10-8.88178Check,6.29604G -16r   

 

5. CONCLUSION 
  
We will determined an effective iterative method 
of convergent arbitrary integer order l ≥ 2 for 
solving difference kepler equation. This effective 
method as the sense of dynamical problem 
which going from one iterative model to the next 
one, only needed an additional instruction. 
Additionally, the most important, that the 
procedure did not need a prior information of 
initial guesses. A property which keep away from 
the critical occurrences between divergent 
solutios to a very slow convergent, that may exist 
in another numerical method which depends on 
initial guesses. Lastly, we get a numerical 
package for digital execution of the hypothesis. 
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