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Abstract 
 

Recently, intense research has been on how to reduce the spread of virus on a network of computer 
systems, which involves the mathematical modelling of the spread of virus based on mathematical 
epidemiological approach. This is necessary because a threshold cannot be discerned from the data 
generated on the network, rather it requires a mathematical model to analyze and simulate the virus 
dynamics on the network. It also enables the calculation of the basic reproductive number (R0) which is 
an important threshold for determining whether the network is at risk or not. In this paper, we adopt the 
susceptible- infected-recovered-susceptible (SIRS) model to depict the spread of virus on the network. 
We qualitatively analyze the model and establish that the virus-free state is locally asymptotically stable 
provided the basic reproduction number is less than unity. We solved the model numerically and simulate 
the solution for different scenarios on the network. The findings from our simulations are discussed. 
 

 
Keywords: Mathematical model; basic reproductive number; vaccination; equilibrium solution; local 

asymptotic stability. 
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1 Introduction 
 
Computer viruses have evolved in time, adopting different strategies that take advantage of different weak 
points of computers and software. These viruses are independent of the independent of the platform’s 
hardware and infect data files such as documents produced with spreadsheets or word processors. The 
spreading of computer viruses has been studied for long years, in close analogy with the models developed 
for study of the transmission of biological disease [1]. In the biological framework, the key point is the 
description of the epidemic process in terms of individuals and their interactions. In this simplified 
formalism, individuals can only exist in a discrete set of states, such as susceptible (or healthy), infected (and 
ready to spread the disease), immune, dead (or removed). The interactions among individuals are 
schematized in structure of the contacts along which the epidemics can propagate. This type of system can 
be described as a network or graph [2] in which the nodes represent the individuals and the links are the 
connections along which the epidemics propagates. Epidemics model are heavily affected by the 
connectivity patterns characterizing the population in which the infective agent spreads,   so as to illustrate 
the features of epidemic spreading on the computer networks, we used the SIRS model. It is important to 
stress, however that, the analysis on the computer networks of different models such as that of SIRS model 
confirm the presented epidemiological model. 
 
Several authors have suggested many nonlinear incidence rates to model the disease transmission process 
[3,4,5].     
 
Moreover, in the SIRS model, the population of host is divided into three classes, susceptible computers, 
infected computers and recovered computers and several computer simulations are performed using different 
initial conditions.  The Susceptible – Infected - Recovered (SIR) model was introduced by Kermack and 
McKendrick, in 1927 [6]. In the model, they divided the population into three distinct groups of: the 
Susceptible S, the Infected I, and the Recovered R, where S, I and R represents the number of systems in 
each of the groups respectively and the total population N = S + I + R. The Susceptible are those who are not 
infected and not immune, the Infected are those who are infected and can transmit the disease, and the 
Recovered are those who are immune, either due to vaccination or recovery with immunity after infection. 
 

2 Vaccination 
 
Immunization in the computational realm is the ability to prevent a viral program from executing and 
replicating further to other hosts. There are many reasons a node might be immune to a virus. For example, a 
host running Unix is immune to Windows-based viruses, or a node can become immunized against a 
particular virus if the ways that the virus exploits the underlying host are disabled. 
 
It is our intent to know the ways in which immunization can be achieved. Rather, assuming that 
immunization techniques exist, our goal is to examine what the effectiveness of immunization on the 
computer network, because models for infectious diseases lead to a better understanding of how vaccination 
programs affect the control or eradication of the disease. Several popular articles by [7] used optimal control 
to study nonlinear SIR epidemic model with a vaccination program. Also, [8] investigated a disease 
transmission model by considering the impact of a protective vaccine and found the optimal vaccine 
coverage threshold required for disease control. In [9] considered an SIR epidemic model using vaccination 
as control. Clearly, it is often not feasible to immunize the entire network. A more realistic approach would 
be to immunize a subset of the population, and so choosing the appropriate size and membership of that 
subset becomes an important question. Thus, if disease eradication can be achieved by partially vaccinating 
some fraction p of the population, an advantage is gained. The fraction to be immunized must be such that 
the remaining population, (1 — p)N where N depicts the total population, will no longer exceed the 
threshold level necessary to perpetuate the disease. In the terminology, the reproductive factor Ro of the 
infection is to be reduced below 1. The percentage of the population to be vaccinated thus depends strongly 
on the infectiousness of the disease. 
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3 Mathematical Model Formulation 
 
One of the simplest epidemiological model one can consider is the susceptible-infected-recovered-
susceptible (SIRS) model [10]. In SIRS model, individuals can only exist in three discrete states, namely, 
susceptible, infected and recovered. 
 

At each time step, each susceptible node is infected with probability β if it is connected to one or more 
infected nodes. At the same time, infected nodes are recovered (cured) and become again susceptible. 
 

The SIRS model take into account the possibility of individuals removal due to purging or crash or acquired 
immunization which would lead to the so-called susceptible-infected-removed (SIR) model. Using the case 
of virus spread on the network, there is an arrival of new susceptible systems into the network. For this type 
of situation births and deaths rate must be included in the model. The following differential equations 
represent the model which indicates the rate of change of number of systems/individuals in each 
compartment with respect to time. 
 ��

�� =  Ʌ −  ��� −  	� − 
� +  �                                                                                                              (3.1) 

 ��
��  =  ��� −  �� −  	� − ��                                                                                                                         (3. 2) 

 �
�� =  �� −  � − 	 +  
�                                                                                                                        (3. 3) 

 

It is important to note that the total number of systems/individuals under consideration at any point in time 
can be obtained by N(t)= S(t)+I(t)+R(t), and its dynamics is given by:  
 

��
�� = ��

�� + ��
�� + ��

�� =   Ʌ − �� + ��                                                                                                           (3. 4)  
 

Several assumptions were made in the formulation of these equations:  First, a system on the network must 
be considered as having an equal probability as every other system of contracting the disease/virus at a rate �, which is considered the contact or infection rate of the disease/virus. Therefore, an infected individual 
makes contact and is able to transmit the disease with �� others per unit time and fraction of contacts by an 
infected with a susceptible is �/�. The number of new infections in unit time per infective then is ��(�/�), 

giving the rate of new infections (or those leaving the susceptible category) as �� ��
� � =  ��� [11].  

 
Table 1. The description of parameters used in the model 

 
Parameter Description Unit 
Ʌ Constant rate of replacement of new system on network Number / unit time 
Β Rate at which the infection is transmitted on the network Rate /unit time 
Μ Vaccination rate of susceptible system Rate / unit time 
Γ Troubleshooting success rate Rate / unit time 
� Antivirus effectiveness warning rate Rate / unit time 
� Purging rate i.e rate at which system’s get damaged or crashed due 

too virus infection 
Rate / unit time 

K The rate at which system becomes obsolete/crashed and are 
removed from the network 

Rate / unit time 

The unit time is (per day) 
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4 Model Analysis 
 
4.1 Model well – posedness 
 
Since the model monitors the number of computer system on the network, all the variables and parameters of 
the model are non-negative. Thus, we consider the mathematically-feasible region 
 

! = {#�, �, %  ∈  ℝ() ∶ � ≤ Ʌ	} 
 

The rate of change of the total number of system on the network per unit time is given by 
 

 
��
�� =  Ʌ − 	� −  �� ≤  Ʌ − 	�                                                                                                                (4.1) 

 
Theorem 1: Every solution of the model equations, (3.1) to (3.3) with initial conditions in Ω, is a member of 
Ω (i.e the region Ω is positive invariant and attracting). 
 
Proof: 
 
Based on eqn (4.1), we have 
 �� 

��  ≤  Ʌ − ��  
 

�ℎ./  ��
�� +  �� ≤  Ʌ                                                                                                                                   (4.2) 

 
This gives integrating factor (I.F) = .0 1�� = .1� multiplying the given equation (4.1) by .1� ,  we have  
 

.1� ��
�� +  .1��� ≤  Ʌ .1�                                                                                                                             (4.3) 

 
However, eqn (4.3) is equivalent to  
 

 �
��  (�.1�) ≤  Ʌ .1�                                                                                                                                       (4.4)  

 
Integrating the proceeding equation with respect to time gives: 

                                                   

2  �
��  (�.1�)�� ≤  2  .1����

3
�

3
 

 

so,     

t
ktkt e

k
NetN

0

)0()( 




∧≤−
 

 

∴     

t
ktkt e

k
NetN

0

)0()( 




∧≤− ≤  �Ʌ1 .1� −  Ʌ1  

 

⇒ �(�).1� ≤ �(0) +  Ʌ	 (.1� − 1) 
 

∴      �(�) ≤ �(0).71� +  Ʌ	 (1 − .71�)                                                                                                      (4.5) 
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In particular, �(�) ≤  Ʌ1  9: �(0) ≤ Ʌ

1.   
 
Therefore, every solution of the model with initial conditions in Ω remains there for all � ≥ 0. so the region 
Ω is positive invariant and attracting. Consequently, it is sufficient to consider the dynamics of the model in 
Ω. As a result, the model is mathematically and epidemiologically well posed. 
 
4.2 Model equilibrium solutions  
 
At equilibrium point 
 ��

�� = 0, ��
�� = 0, �

�� = 0 

 
Thus, we have 
 

Ʌ −  ��� − 	� −  
� +  � = 0                                                                                                                 (4.6) 
 ��� −  �� − 	� −  �� = 0                                                                                                                             (4.7) 
  �� −  � − 	 +  
� = 0                                                                                                                            (4.8) 
 

From eqns 4.6, 4.7 and 4.8 simultaneously for S(t), I(t) and R(t), we obtained the Virus – free equilibrium 
 

E1 = (S*, I*,R*) 
 
Where  
 

?@ = A�∗ = Ʌ(C(1)
�(D( C(1) , �∗ = 0, ∗ =  ɅD

1( D( C(1)E     
 
and the virus endemic equilibrium E2 is 
 

?F =  #     �∗∗ =  � + 	 +  �
� ,             �∗∗ =  	(� + 	 +  
	)(� + 	 + �)(3 −  1)

�(�	 +  �� +  �	 +  	F +  	�) ,         
 ∗∗ =  ��Ʌ+  
(	 + �)(� + 	 +  �) −  �	(� + 	 +  �)

�(�	 + �� + �	 + 	F + 	�)  % 
 
4.3 Local stability of the virus – free equilibrium 
 
We linearize the system of equations given, using the Jacobian matrix approach to obtain:  
   
Evaluating the Jacobian matrix at the virus – free equilibrium E1 gives 
 

(G?@) =
HI
II
IJ−	 − 
 −�# Ʌ(� + 	)

	(
 +  � + 	)% �
0 � K Ʌ(� + 	)

	(
 +  � + 	)L − � − 	 − � 0

 � −� − 	MN

NN
NO
 

 
We defined the characteristic polynomial equation for the J(E1) solve for the eigen valves, to get:   
 

P@ =  −	, PF = −
 − � − 	, P) =  Ʌ�(� + 	) − 	(
 + � + 	)(� + 	 + �)
	(
 + � + 	)  
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As we can see, P@ < 0,  PF < 0, So, for the virus – free – equilibrium to be locally asymptotically stable, P) 
must be less than zero.  
 
This is so if              Ʌ�(� + 	) − 	(
 + � + 	)(� + 	 + �) < 0 
 
which implies that  

 
Ʌ�(� + 	) < 	(
 + � + 	)(� + 	 + �)  

 
and this is equivalent to 
  

3 = Ʌ�(� + 	)
	(
 + � + 	)(� + 	 + �) < 1 

 
Where 3 is the basic reproduction number. 
 
It is imperative to note that the Basic Reproductive Number, denoted as 3, is an important threshold in 
modelling of infections diseases since it tells us if a population is at risk from a disease or not.  Thus, 
whenever 3 < 1 the new cases (i.e. incidence) of the disease will be on the decrease and the disease will 
eventually be eliminated. 
  
Based on foregoing, the Basic Reproduction number (3) for our model is less than unity i.e 
 

 3 =  ɅR(C(1)
1(D(C(1)(S(1(T) < 1 

 
Then, �(�) decreases monotonically to zero as � → ∞. Therefore, the virus – free equilibrium is locally 
stable. The implication of this result is that we can drive the virus epidemic situation on the network to a 
virus – free state provided we can put control measures in place on the network that would drive the 
situations on the network sufficiently close to the virus – free state. 

 

5 Numerical Solution and Simulation  
 
The SIRS model was solved numerically using Runge – Kutta method. We adopted Matlab ode45 program, 
which is based on an explicit Runge Kutta (4, 5) formula. It is a one-step solver used in solving a system of 
first – order ordinary differential equation (ODE). So, in computing V(�W),  it needs only the solution at the 
immediately preceding time point, V(�W7@). In general, ode45 is the best function to apply as a first try for 
most problems involving systems of first order ODES. Runge kutta of order four is also used in plotting the 
graphs; it’s a powerful and popular method because of its accuracy and stability. Also, its simplicity and 
stability make it one of the most widely used numerical algorithms for stiff and non-stiff equations, while it 
converges faster than that of order two or three.  
 

Table 2. Simulating the model using the following parameters values 
 
Parameters Ʌ Y Z   [ \ ] ^ 
Value for Fig. 1 5 0.50 0.25 3.3 ×  107F 2.3 × 107F 0.02 0.50 
Value for Fig. 2 5 0.25 0.25 3.3 ×  107F 2.3 × 107F 0.02 1.00 
Value for Fig. 3 5 0.125 0.25 3.3 ×  107F 2.3 × 107F 0.02 1.50 

 
These are the parameters used in plotting the graphs; although, some of it changes due to the fact that they 
are the major factors determining the situations of the network. This implies that some of these parameters 
determine whether virus would persist or be eradicated on the network. 
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In Fig. 1, there are 178 susceptible systems on the network, the infected systems increases on the first day, 
because the virus propagate fast without the knowledge of the user and it is able to subvert the systems 
before the introduction of vaccine, while the vaccine introduced is not strong enough to subvert the effects of 
the virus on the systems on the network. 
 

 
Fig. 1. Solutions of SIRS model with S(0) = 100, I(0) = 40, R(0) = 38 

 
First, an initial worm infects one machine (computer system) in the network. For the next few days (or 
hours), the worm propagates freely in the network without being noticed by most users. After some time, 
users realise that there is an outbreak, and take appropriate action, by introducing a virus signature to 
computers in the network which is in the form of an antivirus but in these case the antivirus used was not 
strong enough to subdue the effect of the virus that had already infected some of the systems on the 
networks. The challenge is that the virus spread so fast that recovering the systems is almost not possible. 
Thus, the infected systems need to be purged from the network instead of trying to manage it. This may be 
because the virus has interfered with the vaccine thereby preventing detection, and the virus effect can be 
severe such that which the virus could corrupt the virus database files thereby leading to a misleading effect 
on vaccine behaviour. Moreover, if care is not taking, the vaccine can damage the system it intends to 
protect (that is it can cause autoimmunity). 
 
These kinds of challenges can be overcome by having multiple simultaneous vaccinated systems with 
different signature files which is referred to as vaccine redundancy. This is based on Biodiversity concept 
which could be applied to information technology (IT) environment. However, the IT environment should 
avoid the danger of software monoculture by using different software not the same at all time. Also, multiple 
different operating systems should be on the key and clients servers to keep the data safe, if virus attack one 
operating system the others will still be safe.  
 
This scenario of an increasing numbers of infected systems is called an epidemic. This is often the case when 
the basic reproduction number  3, of virus on infected system is greater than unity ( 3 ` 1). Thus, leading 
to continuous increase in the number of infected system on the network until it reaches its maximum, after 
wish the number of infected systems start to decrease. This graph depicts a scenario which could lead into an 
endemic situation in the network where  3 ` 1.  
 
Since,    

 

3 ⇒  �Ʌ(� + 	)
	(� + 	 +  
)(� + 	 + �) ` 1 
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Using specified parameters values to simulate the endemic situation on the network, 
 � = 5,Ʌ = 0.5, � = 3.3 ∗ 107F, 	 = 0.25, 
 = 0.50, � = 0.02, � = 2.3 ∗ 107F 
 
The basic reproduction number is as computed below: 
 

3 =  0.5 ∗ 5(3.3 ∗ 107F + 0.25)
0.25(3.3 ∗ 107F + 0.25 + 0.50)(0.02 + 0.25 + 2.3 ∗ 107F) 

 

3 =  1.45
0.135 = 10.76 

 
We can infer that the situation of the systems on the network is endemic and it follows that an infection can 
invade the entire network of computer systems wrecking havoc in majority of the system on the network. 
 

 
 

Fig. 2. Solutions of SIRS model with S(0) = 100, I(0) = 40, R(0) = 38 
 
In Fig. 2 above, there 178 susceptible systems on the network, the number of infected systems rate increases 
sharply. The virus attacks on the network nearly subdue all the system before the introduction of vaccine at 
mid-day. Immediately a strong vaccine was introduced the infection rate dropped and the systems on the 
network recovered fully from the virus attack. Our suspicion in this situation is that, the worm propagates 
freely in the network without being noticed by most users. After some time, the worm is detected on some 
machines (by scanning the systems to know if there are viruses) and immediate action is taken to prevent 
further spread and to cure infected computers. A worm signature is extracted and included at a specified rate 
in the antivirus (AV) software of most machines in the network. Machines that were not infected then 
become automatically immune to the worm, and previously infected machines are being detected at a rate 
which is depending on how often the AV update is made. These machines are then isolated, cured and 
immunized against further infection. 
 
Similarly, with 

 

3 ⇒  �Ʌ(� + 	)
	(� + 	 +  
)(� + 	 + �) < 1 
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and the parameters values used are  
 � = 0.25,Ʌ = 5, � = 3.3 ∗ 107F, 	 = 0.25, 
 = 1.0, � = 0.75, � = 2.3 ∗ 107F 
 

We have 3 =  3.Fa∗ab).)∗@3cd( 3.Fae
3.Fa().)∗@3cd(3.Fa(@.3)(3.3F(3.Fa(F.)∗@3cd) = 0.52 

 
The situation of the systems on this network is that of virus – free equilibrium, it follows that there is an 
outbreak of infection, but with the introduction of strong vaccine (an anti-virus) all the systems were 
recovered, the systems on the network is total free of virus, the basic reproduction number is now  R0 < 1.  
 
In this scenario,  R0 < 1 when compared with Fig.1 where R0 > 1. The observed difference in the two graphs 
is due to the impact of the vaccination success rate (µ). In the latter case, the vaccination is strong enough to 
ensure that initially infected systems are recovered while blocking new infection. 
  

 
 

Fig. 3. Solutions of SIRS model with S(0) = 100, I(0) = 40, R(0) = 38 
  

The graph in Fig. 3 depicts a situation that would eventually result in virus – free network situation. This is 
so because the number of infected system on the network will continue to decrease, until the virus is 
eventually eliminated on the network, since 3 ≪ 1. 
 

3 ⇒  �Ʌ(� + 	)
	(� + 	 +  
)(� + 	 + �) < 1 

 
The parameters values used in this simulation are:  
 � = 0.125,Ʌ = 5, � = 3.3 ∗ 107F, 	 = 0.25, 
 = 2.0, � = 0.75, � = 2.3 ∗ 107F 
 
Therefore, 
 

3 =  0.125 ∗ 5(3.3 ∗ 107F + 0.25)
0.25(3.3 ∗ 107F + 0.25 +  2.0)(0.02 + 0.25 + 2.3 ∗ 107F) = 0.16 

 
The situation of the systems on this network is that of virus – free equilibrium. It follows that if there is an 
outbreak of infection, through the introduction of strong vaccine (an anti-virus), all the infected systems will 
be recovered. The systems on the network will eventually be free of virus, whenever the basic reproduction 
number is  3 ≪ 1. 

1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

120

140

(Time/day)

N
o 

of
 s

ys
te

m
s 

on
 t

he
 N

et
w

or
k

 

 

S

I
R



 
 
 

Bukola et al.; BJMCS, 17(5): 1-12, 2016; Article no.BJMCS.24816 
 
 
 

10 
 

Comparing the three graphs, Fig. 1 is totally of that of an endemic equilibrium because the virus spread 
freely at first before the introduction of vaccine, the vaccine has little or no effect on the virus (i.e. the 
antivirus is too weak to stop the spread of the virus) thereby subverting the systems on the network. 
However, Figs. 2 and 3 is of a virus – free equilibrium in which the vaccine was able to control the spread of 
the virus and it imputed the signature of the virus on the network (antivirus) in case the systems fall back 
into susceptible state. 
 

6 The Model Simulation with Varying Parameters 
 
Below are the graphs of SIRS model which monitor the dynamics of systems on the network based on 
changes on some of the model parameters. 
 

 
 

Fig. 4. Effects of changes in infection rate (Y) on the susceptible systems population 
 

 
 

Fig. 5. Effects of changes in vaccine rate (^) on the infected system population 
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The graph in Fig. 4 shows the sensitivity of the susceptible systems in the network to changes in the 
infection rate (�). As the rate of � increases, the virus was able to infects a larger population of systems on 
the network before the infected number of systems start decreasing. This decrease in the number of infected 
systems due to the introduction of strong vaccine 
 which helps in subverting the actions of the virus on the 
systems in the computer network.  
 
The graph in Fig. 5 shows the effects of 
 on the spread of the virus on the network. The graph shows the 
potency of the vaccine based on the changes in the parameter values, from 0.02% to 0.75%, this means that 
there is need to equip the systems on the network with strong antivirus against virus attack. 
 

 
 

Fig. 6. The troubleshooting success rate (g) on the infected systems population 
 

The graph in above Fig. 6 shows the troubleshooting success rate γ on the spread of virus on the systems on 
the network. The success rate γ shows that there are chances for the infected systems on the network to fully 
recover if they are properly managed.  
 

7 Conclusion 
 
In this paper, we formulated an SIRS model to depict the dynamics of virus spread on a network of computer 
systems. The model virus-free equilibrium and virus-endemic equilibrium were obtained. Thereafter, we 
derive the model basic reproductive number (R0) and showed that the virus-free equilibrium is locally 
asymptotically stable if R0 < 1. We solved the model equations numerically using Matlab ode45 solver 
which is based on Runge-Kunta forth-order scheme. The simulations of the model solutions confirm that the 
situation on the network tends to the virus-free state whenever R0 < 1. Also, the simulations show that with 
strong and effective vaccine on each of the computer system on the network coupled with high trouble 
shooting success rate for infected systems, a virus-free network is attainable and sustainable. 
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