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Abstract 
 

In this paper, the Archimedean t-conorm- and t-norm-based interval-valued hesitant fuzzy ordered 
weighted averaging (A-IVHFOWA) operator and the Archimedean t-conorm- and t-norm-based interval-
valued hesitant fuzzy ordered weighted geometric (A-IVHFOWG) operator are given by taking fully 
account of the different weights associated with the particular ordered positions. Several desirable 
properties of the developed operators, such as commutativity, idempotency, and boundedness, are studied 
in detail, and some special cases of these operators are analyzed as well. Furthermore, we apply the 
proposed operators to develop a method for solving a multi-criteria decision making (MCDM) problem 
within the context of interval-valued hesitant fuzzy elements (IVHFEs). Finally, a practical example is 
provided to illustrate the practicality and effectiveness of the developed operators and method. 

 
 
Keywords: Multi-criteria decision making; Hesitant fuzzy set; Interval-valued hesitant fuzzy set; t-conorm;   

t-norm; OWA; OWG. 
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1 Introduction 
 
In the multi-criteria decision making (MCDM) problems,  the decision makers (DMs) often cannot provide 
their preference with single exact value, a margin of error or some possibility distribution on the possible 
values, but several possible values [1,2]. The fuzzy set [3] and it existing extensions, such as the intuitionistic 
fuzzy set [4], the interval-valued fuzzy set [5], the interval-valued intuitionistuc fuzzy set [6], the type-2 
fuzzy set [7], and the fuzzy multiset [8,9], do not deal with the situation. To circumvent this issue, Torra [1] 
and Torra and Narukawa [2] proposed the concept of hesitant fuzzy sets (HFSs) to permits the membership 
degree of an element to a set to be presented as several possible values between 0 and 1. Since its first 
appearance, many scholars have paid great attentions to the HFSs [10-18]. For example, Xia and Xu [11] 
presented several operators for aggregating hesitant fuzzy information, and further investigated the 
correlations among these aggregation operators. Xia et al. [12] developed a series of quasi-arithmetic 
aggregation operators, ordered aggregation operator, induced aggregation operators for hesitant fuzzy 
information. Xu and Xia [13] proposed a variety of distance measures and ordered distance measures for 
hesitant fuzzy sets, and discussed their properties and relations as their parameters change. Xu and Xia [14] 
defined some distance measures and correlation coefficients for hesitant fuzzy elements, and investigated the 
differences and correlations among them in detail. 
 
However, it is noted that the membership function in a HFS can only take the form of crisp numbers, and it is 
sometimes difficult to express the uncertain information. Later, Chen et al. [19,20] generalized the notion of 
HFSs by allowing the membership function to assume interval values, and defined the interval-valued 
hesitant fuzzy sets (IVHFSs). The core of an IVHFS is the interval-valued hesitant fuzzy number (IVHFN) 
[20], which is composed of some possible membership degree ranges. Interval-valued hesitant fuzzy 
numbers (IVHFNs) are a very useful tool to express a decision maker’s preference information under 
uncertain or vague environments. With respect to MCDM problems in which criterion values take the form 
of IVHFEs, in order to get a decision result, an important step is the aggregation of IVHFNs. Until now, 
many different kinds of interval-valued hesitant fuzzy aggregation operators have been proposed to 
aggregate interval-valued hesitant fuzzy information. Chen et al. [20] developed a family of operators to fuse 
interval-valued hesitant fuzzy information, such as the IVHFWA operator, the IVHFWG operator, the 
GIVHFWA operator, the GIVHFWG operator, the IVHFOWA operator, the IVHFOWG operator, the 
GIVHFOWA operator, the GIVHFOWG operator, the IVHFHA operator, the IVHFHG operator, the 
GIVHFHA operator, and the GIVHFHG operator. Zhang et al. [21] developed several induced generalized 
interval-valued hesitant fuzzy operators, including the IGIVHFOWA operators and the IGIVHFOWG 
operator. It is clear that above aggregation operators are based on the algebraic operational laws of IVHFEs 
for carrying the combination process. The basic algebraic operations of IVHFEs are algebraic product and 
algebraic sum, which are not the only operations that can be chosen to model the intersection and union of 
IVHFEs. A generalized union and a generalized intersection on IVHFEs can be constructed from a general t-
norm and t-conorm, i.e., the instances of various t-norms and t-conorms families can be used to perform the 
corresponding intersections and unions of IVHFEs. For an intersection, a good alternative to the algebraic 
product is the Einstein product, which typically gives the same smooth approximations as the algebraic 
product. Equivalently, for an intersection, a good alternative to the algebraic sum is the Einstein sum. Wei 
and Zhao [22] developed several new interval-valued hesitant fuzzy aggregation operators, such as the 
HIVFEWA operator, the HIVFEWG operator, the HIVFEOWA operator, the HIVFEOWG operator, the I-
HIVFEOWA operator, and the I-HIVFEOWG operator. 
 
The Archimedean t-conorm and t-norm [23,24] are generalizations of many other t-conorms and t-norms, 
such as the Algebraic, Einstein, Hamacher and Frank t-conorms and t-norms. The Archimedean t-conorm and 

t-norm are generated by an additive function ( )g t  and its dual function ( ) ( )1f t g t= − . When the additive 

generator ( )g t  is assigned different forms, we can obtain some specific Archimedean t-conorms and t-

norms. Thus, the Archimedean t-conorm and t-norm are more general and more flexible. Recently, Zhang 
and Wu [25] treated the interval-valued hesitant fuzzy aggregation operators with the help of Archimedean 
operations and developed two new Archimedean t-conorm- and t-norm-based interval-valued hesitant fuzzy 
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aggregation operators, including the Archimedean t-conorm- and t-norm-based interval-valued hesitant fuzzy 
weighted averaging (A-IVHFWA) operator and the Archimedean t-conorm- and t-norm-based interval-
valued hesitant fuzzy weighted geometric (A-IVHFWG) operator. Then, they applied these two operators to 
develop an approach for MCDM within the interval-valued hesitant fuzzy context and provided a practical 
example to demonstrate the proposed approach. It is noticed that the A-IVHFWA and A-IVHFWG operator 
weight only the interval-valued hesitant fuzzy arguments and take little account of the different weights of 
the particular ordered positions of arguments. This paper aims at introducing some “ordered” weighted 
operators to aggregate interval-valued hesitant fuzzy arguments based on the ideas of the OWA operator [26] 
and Archimedean operations, such as the Archimedean t-conorm- and t-norm-based interval-valued hesitant 
fuzzy ordered weighted averaging (A-IVHFOWA) operator and the Archimedean t-conorm- and t-norm-
based interval-valued hesitant fuzzy ordered weighted geometric (A-IVHFOWG) operator. The prominent 
characteristic of the A-IVHFOWA and A-IVHFOWG operators is the reordering step in which the input 
arguments are rearranged in descending order, in particular, an interval-valued hesitant fuzzy argument is not 
associated with a particular weight but rather a weight is associated with a particular ordered position of the 
interval-valued hesitant fuzzy arguments, which are helpful for relieving the influence of unfair information 
on the decision result by assigning low weights to those ‘‘false” or ‘‘biased” arguments. 
 
To do this, the rest of the paper is arranged as below. In Section 2, we review some basic knowledge. Section 
3 develops two interval-valued hesitant fuzzy ordered weighted aggregation operators based on Archimedean 
t-conorm and t-norm. The properties and special cases of these newly developed aggregation operators are 
discussed as well. Section 4 gives a procedure to implement the proposed operators to MCDM within 
interval-valued hesitant fuzzy environments. Section 5 proposes a numerical example to verify the proposed 
method and compares it with the previous work. Concluding remarks and further research directions are 
included in Section 6. 
 

2 Preliminaries 
 
2.1 Hesitant fuzzy sets and interval-valued hesitant fuzzy sets 
 
Definition 2.1 [1,2]. Let X  be a reference set. A hesitant fuzzy set (HFS) A  on X  is in terms of a function 

( )Ah x  that when applied to X  returns a subset of [ ]0,1  and is denoted by the following mathematical 

symbol [18]: 
 

                                                                                                              (1) 

 

where ( )Ah x  is a set of some values in [ ]0,1 , which denote the possible membership degrees of the 

element x X∈  to the set A . For simiplity, Xia and Xu [11] called ( )Ah h x=  a hesitant fuzzy element 

(HFE). Let H  be the set of all HFEs. 
 

Example 2.1. Let { }1 2 3, ,X x x x= , { } { } { }{ }1 2 3, 0.8,0.6 , , 0.4,0.3,0.2 , , 0.5,0.3A x x x= , and 

{ }0.4,0.3,0.2h = . Then, A  is a HFS on X  and h  is a HFE. 

 

Definition 2.2 [20]. Let X  be a fixed set and [ ]( )0,1D  be the set of all closed subintervals of [ ]0,1 , i.e., 

[ ]( ) [ ]{ }0,1 , , , 0,1L U L U L UD a a a a a a a = = ≤ ∈  . An interval-valued hesitant fuzzy set (IVHFS) on 

X  is in terms of a function that when applied to X  returns a subset of [ ]( )0,1D . 

 

( ){ }, AA x h x x X= ∈
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Chen et al. [20] expressed the IVHFS as: 
 

( ){ },
A

A x h x x X= ∈%
%%                                                                                                                (2) 

 

where ( )A
h x%
%  denotes all possible interval membership degrees of the element x X∈  to the set A% . For 

simiplity, Chen et al. [20] called % ( )A
h h x= %

%  an interval-valued hesitant fuzzy element (IVHFE). Let H%  be 

the set of all interval-valued hesitant fuzzy elements (IVHFEs). If %hγ ∈% , then γ%  is an interval number [27] 

and can be denoted by ,L Uγ γ γ =  % % % , where infLγ γ=% %  and supUγ γ=% %  express the lower and upper 

limits of γ% , respectively. Obviously, if 
L Uγ γ=% %  for any %hγ ∈% , then the IVHFEs are reduced to the HFEs. 

 

Example 2.2. Let { }1 2 3, ,X x x x= , 

 [ ] [ ]{ } [ ] [ ] [ ]{ } [ ] [ ]{ }{ }1 2 3, 0.8,0.9 , 0.5,0.6 , , 0.3,0.5 , 0.3,0.4 , 0.2,0.3 , , 0.6,0.8 ,0.4,0.5A x x x=% , 

and [ ] [ ] [ ]{ }0.3,0.5 , 0.3,0.4 , 0.2,0.3h =% . Then, A%  is an IVHFS on X  and h%  is an IVHFE. 

 
Zhang and Wu [25] put forward the following comparison laws for comparing the IVHFEs: 
 

Definition 2.3 [25]. For an IVHFE , %( ) ( )%

2

L U

h

h

s h
l

γ
γ γ

∈
+

=
∑ %

%

% %
 is 

called the score function of h% , where 
h

l %  is the number of intervals in h% . 

 

Definition 2.4 [25]. For an IVHFE { } { },L Uh h hγ γ γ γ γ = ∈ = ∈ 
% % %% % % % % , 

 is referred to as the variance function of h% , where ( )s h%  is the 

score function of h% . 
 

Definition 2.5 [25]. Let 1h%  and 2h%  be any two IVHFEs, and let ( )is h%  and ( )iv h%  ( 1, 2i = ) be the score 

functions and the variance functions of ih%  ( 1, 2i = ), respectively. Then, the following conditions hold: 

 

(1)  If ( ) ( )1 2s h s h>% % , then 1 2h h>% % . 

(2)  If ( ) ( )1 2s h s h=% % , then 

 

① if ( ) ( )1 2v h v h<% % , then 1 2h h>% % . 

② if ( ) ( )1 2v h v h=% % , then 1 2h h=% % . 

{ } { },L Uh h hγ γ γ γ γ = ∈ = ∈ 
% % %% % % % %

( )
( ) ( )( )

2

L U

h

h

s h s h

v h
l

γ
γ γ

∈

− + −
=
∑

%%

%

% %% %

%
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For three IVHFEs h% , 1h% , and 2h% , Chen et al. [20] developed several operational laws for them as: 
 

(1)  % %{ }1 ,1
c U Lh hγ γ γ = − − ∈ % % %  

(2)  { }1 2 1 2 1 2 1 1 2 2, ,L L U Uh h h hγ γ γ γ γ γ = ∨ ∨ ∈ ∈ 
% % % %% % % % % %U  

(3)  { }1 2 1 2 1 2 1 1 2 2, ,L L U Uh h h hγ γ γ γ γ γ = ∧ ∧ ∈ ∈ 
% % % %% % % % % %I  

 

2.2 Archimedean t-norm and Archimedean t-conorm 
 
Definition 2.6 [23,24]. A function [ ] [ ] [ ]: 0,1 0,1 0,1T × →  is called a t-norm if it satisfies the following 

four conditions: 
 

(1)  ( )1,T a a=  for all [ ]0,1a∈ . 

(2)  ( ) ( ), ,T a b T b a=  for all [ ], 0,1a b∈ . 

(3)  ( )( ) ( )( ), , , ,T a T b c T T a b c=  for all [ ], , 0,1a b c∈ . 

(4)  If a a′≤  and b b′≤  for all [ ], , , 0,1a a b b′ ′∈ , then ( ) ( ), ,T a b T a b′ ′≤ . 

 

Definition 2.7 [23,24]. A function [ ] [ ] [ ]: 0,1 0,1 0,1S × →  is called a t-conorm if it satisfies the following 

four conditions: 
 

(1)  ( )0,S a a=  for all [ ]0,1a∈ . 

(2)  ( ) ( ), ,S a b S b a=  for all [ ], 0,1a b∈ . 

(3)   for all [ ], , 0,1a b c∈ . 

(4)  If a a′≤  and b b′≤  for all [ ], , , 0,1a a b b′ ′∈ , then ( ) ( ), ,S a b S a b′ ′≤ . 

 

Definition 2.8 [23,24]. A t-norm function ( ),T a b  is called an Archimedean t-norm if it is continuous and 

( ),T a a a<  for all ( )0,1a∈ . An Archimedean t-norm is called a strictly Archimedean t-norm if it is 

strictly increasing in each variable for ( ), 0,1a b∈ . 
 

Definition 2.9 [23,24]. A t-conorm function ( ),S a b  is called an Archimedean t-conorm if it is continuous 

and ( ),S a a a>  for all ( )0,1a∈ . An Archimedean t-conorm is called a strictly Archimedean t-conorm if it 

is strictly increasing in each variable for ( ), 0,1a b∈ . 
 

It is well known [28] that a strict Archimedean t-norm ( ),T a b  is characterized by its additive generator g  

as ( ) ( ) ( )( )1,T a b g g a g b−= + , where [ ] [ ]: 0,1 0,g → +∞  is a strictly decreasing function such that 

( )1 0g = . A dual Archimedean t-conorm ( ),S a b  is expressed as ( ) ( ) ( )( )1,S a b f f a f b−= +  with 

( ) ( )1f t g t= − . Clearly, we have ( ) ( )1 11f t g t− −= − . 

 

( )( ) ( )( ), , , ,S a S b c S S a b c=
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2.3 Archimedean t-norm- and Archimedean t-conorm-based operational laws for 
IVHFEs 

 
To aggregate the interval-valued hesitant fuzzy information, Zhang and Wu [25] used the Archimedean t-
norm and Archimedean t-conorm to proposed several new operational laws for IVHFEs. 
 

Definition 2.10. Given three IVHFEs h% , 1h%  and 2h% , we define the following operational laws: 

 

(1)   ( ) ( ){ }1 2 1 2 1 2 1 1 2 2, , , ,L L U Uh h S S h hγ γ γ γ γ γ ⊕ = ∈ ∈ 
% % % %% % % % % %  

                   ( ) ( )( ) ( ) ( )( ){ }1 1
1 2 1 2 1 1 2 2, ,L L U Uf f f f f f h hγ γ γ γ γ γ− − = + + ∈ ∈

 
% %% % % % % %  

(2)  ( ) ( ){ }1 2 1 2 1 2 1 1 2 2, , , ,L L U Uh h T T h hγ γ γ γ γ γ ⊗ = ∈ ∈ 
% % % %% % % % % %  

                 ( ) ( )( ) ( ) ( )( ){ }1 1
1 2 1 2 1 1 2 2, ,L L U Ug g g g g g h hγ γ γ γ γ γ− − = + + ∈ ∈

 
% %% % % % % %  

(3)  ( )( ) ( )( ){ }1 1,L Uh f f f f hλ λ γ λ γ γ− − = ∈
 

% %% % % , 0λ >  

(4)  ( )( ) ( )( ){ }1 1,L Uh g g g g hλ λ γ λ γ γ− − = ∈
 

% %% % %  0λ >  

 

3 Interval-valued Hesitant Fuzzy Ordered Aggregation Operators 
 
It is well known that the ordered weighted averaging (OWA) operator first introduced by Yager [26] has 
achieved successful applications in many domains [29-35]. In this section, by combining the ordered 
weighted averaging (OWA) operator [26] with the operational laws given in Definition 2.10, some new 
operators to aggregate IVHFEs are developed, whose fundamental characteristics are also the reordering 
steps, and then their desirable properties are discussed. 
 

Definition 3.1. Let ih%  ( 1,2, ,i n= L ) be a collection of IVHFEs, ( )ihσ
%  be the ith largest of them, and let 

( )1 2, , ,
T

nw w w w= L  be the aggregation-associated vector satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ . An 

Archimedean t-conorm- and t-norm-based interval-valued hesitant fuzzy ordered weighted averaging (A-

IVHFOWA) operator is a mapping nH H→% %  such that 
 

( ) ( )( )1 2
1

A-IVHFOWA , , ,
n

n i ii
h h h whσ=

= ⊕% % % %L                                                                              (3) 

 

Theorem 3.1. Let ih%  ( 1,2, ,i n= L ) be a collection of IVHFEs, ( )ihσ
%  be the ith largest of them, and let 

( )1 2, , ,
T

nw w w w= L  be the aggregation-associated vector satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ ; then, the 

aggregated value by using the A-IVHFOWA operator is also an IVHFE, and 
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         (4) 

 
Proof. For 2n = , because 
 

( ) ( )( )( ) ( )( )( ) ( ) ( ){ }1 1
1 1 11 1 1 1 1,L Uw h f w f f w f hσ σ σ σ σγ γ γ− − = ∈  
% %% % %  

 

 
we have 
 

 

 
That is, the Eq. (4) holds for 2n = . Suppose that the Eq. (4) holds for n k= , i.e., 

 

 

 
then, when 1n k= + , we have 

 

 

i.e., Eq. (4) holds for 1n k= + . Thus, Eq. (4) holds for all n. 

( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2

1 1
1 1 2 2

1 1

A-IVHFOWA , , ,

, , , ,

n

n n
L U

i ii i n n
i i

h h h

f w f f w f h h hσ σ σ σ σ σ σ σγ γ γ γ γ− −

= =

      = ∈ ∈ ∈     
      
∑ ∑

% % %L

% % %% % % % %L

( ) ( )( )( ) ( )( )( ) ( ) ( ){ }1 1
2 2 22 2 2 2 2,L Uw h f w f f w f hσ σ σ σ σγ γ γ− − = ∈  
% %% % %

( )( )( ) ( )( )( ) ( ) ( ){ } ( )( )( ) ( )( )( ) ( ) ( ){ }
( )( )( )( ) ( )( )( )( )( )
( )( )( )( ) ( )( )( )( )( ) ( ) ( ) ( ) ( )

1 1 2 2

1 1 1 1
1 1 2 21 1 1 1 2 2 2 2

1 1 1
1 21 2

1 1 2 2
1 1 1

1 21 2

1
1

, ,

,
,

L U L U

L L

U U

w h w h

f w f f w f h f w f f w f h

f f f w f f f w f
h h

f f f w f f f w f

f w f

σ σ σ σ σ σ σ σ

σ σ

σ σ σ σ

σ σ

γ γ γ γ γ γ

γ γ
γ γ

γ γ

− − − −

− − −

− − −

−

⊕

   = ∈ ⊕ ∈      

  +   = ∈ ∈  
  +
    

=

% %

% %% % % % % %

% %
% %% %

% %

% ( )( ) ( )( )( ) ( )( ) ( )( )( ) ( ) ( ) ( ) ( ){ }1
2 1 21 2 1 2 1 1 2 2, ,L L U Uw f f w f w f h hσ σ σ σ σ σ σ σγ γ γ γ γ γ− + + ∈ ∈  

% %% % % % %

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1 2 21
1 1

, , , ,
k kk

L U
i i i ii i k ki

i i

w h f w f f w f h h hσ σ σ σ σ σ σ σγ γ γ γ γ− −

= = =

      ⊕ = ∈ ∈ ∈     
      
∑ ∑% % % %% % % % %L

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( )( ) ( )( )( ) ( ) ( ){ }

1

1 11 1

1 1
1 1 2 2

1 1

1 1
1 11 1 1 1

1 1

, , , ,

,

k k

i i ki i ki i

k k
L U

i ii i k k
i i

L U
k kk k k k

i

w h w h w h

f w f f w f h h h

f w f f w f h

f f f w f

σ σ σ

σ σ σ σ σ σ σ σ

σ σ σ σ

σ

γ γ γ γ γ

γ γ γ

γ

+

+ += =

− −

= =

− −
+ ++ + + +

− −

 ⊕ = ⊕ ⊕ 
 

      = ∈ ∈ ∈ ⊕     
      

  ∈  

=

∑ ∑

% % %

% % %% % % % %L

%% % %

% ( )( ) ( )( )( )( )
( )( ) ( )( )( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( )

1
1 1

1

1 1 2 2 1 1

1 1 1
1 1

1

1
1

1

,

, , , ,

k
L L

ki k
i

k k k k
k

U U
i ki k

i

k
L

i i
i

f f w f

h h h h

f f f w f f f w f

f w f

σ

σ σ σ σ σ σ σ σ

σ σ

σ

γ
γ γ γ γ

γ γ

γ

−
+ +

=

+ +
− − −

+ +
=

+
−

=

     
 +            ∈ ∈ ∈ ∈  

     +            

=


∑

∑

∑

%

% % % %% % % %L

% %

% ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
1

1 1 2 2 1 1
1

, , , , ,
k

U
i i k k k k

i

f w f h h h hσ σ σ σ σ σ σ σ σγ γ γ γ γ
+

−
+ +

=

     ∈ ∈ ∈ ∈     
     

∑ % % % %% % % % %L
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In addition, since [ ] [ ]: 0,1 0,f → +∞  is a strictly increasing function, [ ] [ ]1 : 0, 0,1f − +∞ →  exists and is 

also a strictly increasing function. Thus, by Eq. (4), for any ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2, , , n nh h hσ σ σ σ σ σγ γ γ∈ ∈ ∈% % %% % %L , we 

have 
 

( ) ( )( ) ( )( ) ( )1 1 1 1

1 1 1 1

0 0 1 1
n n n n

L U
i i i ii i

i i i i

f w f f w f f w f f w fσ σγ γ− − − −

= = = =

       = ≤ ≤ ≤ =       
       
∑ ∑ ∑ ∑% %  

 

which implies that ( )1 2A-IVHFOWA , , , nh h h% % %L  is an IVHFE. The proof of Theorem 3.1 is completed. � 

Especially, when 
1 1 1

, , ,
T

w
n n n

 =  
 

L , the A-IVHFOWA operator is reduced to the A-IVHFA operator [25]: 

 

                       (5) 

 
The A-IVHFWA operator [25] weights only the interval-valued hesitant fuzzy arguments. However, by 
Definition 3.1, the A-IVHFOWA operator weights the ordered positions of the interval-valued hesitant fuzzy 
arguments instead of weighting the interval-valued hesitant fuzzy arguments themselves. The prominent 
characteristic of the A-IVHFOWA operator is the reordering step in which the input arguments are 

rearranged in descending order, in particular, an interval-valued hesitant fuzzy argument ih%  is not associated 

with a particular weight iw  but rather a weight iw  is associated with a particular ordered position i  of the 

interval-valued hesitant fuzzy arguments. 
 

Example 3.1. Assume that [ ] [ ] [ ]{ }1 0.7,0.8 , 0.5,0.6 , 0.3,0.4h =% , [ ] [ ]{ }2 0.7,0.9 , 0.3,0.5h =%  , and 

[ ] [ ]{ }3 0.6,0.8 , 0.2,0.3h =%  are three IVHFEs, and the aggregation-associated vector is 

( )0.2,0.5,0.3
T

w = . From Definition 2.3, we can calculate the score values of 1h% , 2h% , and 3h%  as follows: 

 

, , 

( ) ( ) ( )
3

0.6 0.8 0.2 0.3
0.475

2 2
s h

+ + +
= =

×
% . 

 

Since ( ) ( ) ( )2 1 3s h s h s h> >% % % , then ( ) [ ] [ ]{ }21 0.7,0.9 , 0.3,0.5h hσ = =% % , 

( ) [ ] [ ] [ ]{ }12 0.7,0.8 , 0.5,0.6 , 0.3,0.4h hσ = =% % , and ( ) [ ] [ ]{ }33 0.6,0.8 , 0.2,0.3h hσ = =% % . 

 
 
 

( )

( ) ( )

1 2
1

1 1
1 1 2 2

1 1

1
A-IVHFA , , ,

1 1
, , , ,

n

n i
i

n n
L U
i i n n

i i

h h h h
n

f f f f h h h
n n

γ γ γ γ γ

=

− −

= =

 = ⊕ 
 

      = ∈ ∈ ∈     
      
∑ ∑

% % % %L

% % %% % % % %L

( ) ( ) ( ) ( )
1

0.7 0.8 0.5 0.6 0.3 0.4
0.55

2 3
s h

+ + + + +
= =

×
% ( ) ( ) ( )

2

0.7 0.9 0.3 0.5
0.6

2 2
s h

+ + +
= =

×
%
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Suppose that , then ( ) exp 1
1

t
f t

t
 = − − 

, ( ) ( )
1 1

1 log 1
g t

t
− =

+ +
, 

( ) ( )
( )

1 log 1

1 log 1

t
f t

t
− +

=
+ +

, and the t-conorm and t-norm generated by ( )g t  and ( )f t  are  as follows: 

 

( )
1 1

1 1

log 1

,

1 log 1

a b

a b

a b

a b

e e

S a b

e e

− −

− −

 
+ − 

 =
 

+ + − 
 

,       ( ) 1 1

1
,

1 log 1
a b

a b

T a b

e e
− −

=
 

+ + − 
 

 

 
Then, according to Eq. (4), we can obtain 

 

 
Several properties of the A-IVHFOWA operator are presented as follows: 
 

Theorem 3.2. Let ih%  ( 1, 2, ,i n= L ) be a collection of IVHFEs. If 1 2, , , nh h h′ ′ ′% % %L  is any permutation of 

1 2, , , nh h h% % %L , then we have 

 

( ) ( )1 2 1 2A-IVHFOWA , , , A-IVHFOWA , , ,n nh h h h h h′ ′ ′ =% % % % % %L L                                                (6) 

 
which is called the commutativity. 
 

Proof. If ( )ihσ
%  is the ith largest of ih%  ( 1, 2, ,i n= L ) and ( )ihσ′%  is the ith largest of ih′%  ( 1, 2, ,i n= L ), 

respectively, then . Hence, ( ) ( )1 2 1 2A-IVHFOWA , , , A-IVHFOWA , , ,n nh h h h h h′ ′ ′ =% % % % % %L L . 

This completes the proof. � 
 
Theorem 3.2 shows that the A-IVHFOWA operator is robust to permutations of the input IVHFEs and is 
independent of the input IVHFE labels. 
 

Theorem 3.3. Let ih%  ( 1, 2, ,i n= L ) be a collection of IVHFEs. If all ih%  ( 1, 2, ,i n= L ) are equal, i.e., 

{ } { },L U
ih h h hγ γ γ γ γ = = ∈ = ∈ 
% % % %% % % % % , for all i , then 

 

( ) ( )1 2A-IVHFOWA , , , A-IVHFOWA , , ,nh h h h h h h= =% % % % % % %L L                                             (7) 

 
which is called the idempotency. 
 
 
 

( ) 1
exp 1

t
g t

t

− = − 
 

( )
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]

1 2 3A-IVHFOWA , ,

0.6823,0.8812 , 0.6698,0.8811 , 0.6096,0.8810 , 0.5721,0.8808 , 0.5883,0.8810 , 0.5387,0.8808 ,

0.6573,0.7912 , 0.6385,0.7697 , 0.5243,0.7470 , 0.4181,0.5407 , 0.4690,0.7426 , 0.2745,0.4055

h h h

  =  
  

% % %

( ) ( )i ih hσ σ′=% %
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Proof. According to Definition 3.1, we have 
 

( ) ( )( ) ( )1 2
1 1

1

A-IVHFOWA , , ,
nn n

n i i iii i
i

h h h w h w h w h hσ= = =

 = ⊕ = ⊕ = = 
 
∑% % % % % % %L  

Thus, ( )1 2A-IVHFOWA , , , nh h h h=% % % %L . � 

 

Theorem 3.4. For a collection of IVHFEs { } { },L U
i i i i i i i ih h hγ γ γ γ γ = ∈ = ∈ 
% % %% % % % %  ( 1, 2, ,i n= L ), let 

1 1
min min ,min min

i i i i

n n
L U
i i

i ih h
h

γ γ
γ γ−

= =∈ ∈

  =     
% %% %

% % % , 
1 1

max max ,max max
i i i i

n n
L U
i i

i ih h
h

γ γ
γ γ+

= =∈ ∈

  =     
% %% %

% % % ; then, 

 

( )1 2A-IVHFOWA , , , nh h h h h− +≤ ≤% % % % %L                                                                                    (8) 

 
which is called the boundedness. 
 

Proof. For the simplicity of presentation, let 
1

min min
i i

n
L L

ii hγ
γ γ− = ∈

=
%%

% % , 
1

min min
i i

n
U U

ii hγ
γ γ− = ∈

=
%%

% % , 
1

max max
i i

n
L L

i
i hγ

γ γ+ = ∈
=

%%

% % ,  

1
max max

i i

n
U U

i
i hγ

γ γ+ = ∈
=

%%

% % , ( )1 2A-IVHFOWA , , , nh h h h=% % % %L , ( )( )1

1

n
L L

i i
i

f w f σγ γ−

=

 =  
 
∑% % , and 

. Then, { },L Uh γ γ−
− − =  

% % % , { },L Uh γ γ+
+ + =  

% % % , and 

( ) { }1 2A-IVHFOWA , , , ,L U
nh h h h hγ γ γ = = ∈ 

% % % % %% % %L . 

 

For any 1, 2, ,i n= L , we have ( )1 1
min min max max

i i i i

n n
L L L L L

i iii ih h
σγ γ

γ γ γ γ γ− += =∈ ∈
= ≤ ≤ =

% %% %

% % % % % . Since ( )f t , 

( [ ]0,1t ∈ ) is a monotonic increasing function, we get 

 

( ) ( )( ) ( )1 1 1

1 1 1

n n n
L L L

i i ii
i i i

f w f f w f f w fσγ γ γ− − −
− +

= = =

     ≤ ≤     
     
∑ ∑ ∑% % %  

 
which is equivalent to 
 

L L Lγ γ γ− +≤ ≤% % %                                                                                                                                  (9) 

 
Similarly, we have 
 

U U Uγ γ γ− +≤ ≤% % %                                                                                                                              (10) 

 

According to Definition 2.3, %( ) ( )%

2

L U

h

h

s h
l

γ
γ γ

∈
+

=
∑ %

%

% %
, ( )

2

L U

s h
γ γ− − −+=
% %% , and ( )

2

L U

s h
γ γ+ + ++=
% %% . From Eqs. 

(9) and (10), we have 

( )( )1

1

n
U U

i i
i

f w f σγ γ−

=

 =  
 
∑% %
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( )% ( )% ( )%

2 2 2 2 2

L U L U L UL U L U
h h h

h h h
l l l

γ γ γ
γ γ γ γ γ γγ γ γ γ− − + +∈ ∈ ∈− − + +

+ + ++ += ≤ ≤ =
∑ ∑ ∑% % %

% % %

% % % % % %% % % %
 

 
It follows that 
 

( ) ( ) ( )s h s h s h− +≤ ≤% % %  

 

which implies ( )1 2A-IVHFOWA , , , nh h h h h− +≤ ≤% % % % %L . This completes the proof. � 

 
Theorem 3.4 implies that the aggregated value by using the A-IVHFOWA operator ranges between the 
biggest IVHFE and the smallest IVHFE. 
 

Theorem 3.5. Let ih%  ( 1, 2, ,i n= L ) be a collection of IVHFEs and let ( )1 2, , ,
T

nw w w w= L  be the 

aggregation-associated vector satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ , if h%  is an IVHFN, then 

 

                        (11) 

 
Proof. For any  1, 2, ,i n= L , it follows from Definition 2.10 that 

 

( ) ( )( ) ( ) ( )( ){ }1 1, ,L L U U
i i i i ih h f f f f f f h hγ γ γ γ γ γ− − ⊕ = + + ∈ ∈

 
% % % %% % % % % %  

 
Based on Theorem 3.1, we have 
 

 

 

where ( )ihσ
%  is the ith largest of ih%  ( 1, 2, ,i n= L ), on the other hand, according to Definition 2.10, we can 

obtain 

( ) ( )1 2 1 2A-IVHFOWA , , , A-IVHFOWA , , ,n nh h h h h h h h h h⊕ ⊕ ⊕ = ⊕% % % % % % % % % %L L

( )

( )( ) ( )( )( )
( )( ) ( )( )( )

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( )

1 2

1 1

1

1 1 2 2
1 1

1

1 1

1

A-IVHFOWA , , ,

,

, , , ,

,

n

n
L L

i i
i

n nn
U U

i i
i

n
L L U

i ii i
i

h h h h h h

f w f f f f

h h h h

f w f f f f

f w f f f w f

σ

σ σ σ σ σ σ

σ

σ σ

γ γ
γ γ γ γ

γ γ

γ γ γ

− −

=

− −

=

− −

=

⊕ ⊕ ⊕

   +   
    = ∈ ∈ ∈ ∈    +       

 = + 
 

∑

∑

∑

% % % % % %L

% %

% % % %% % % %L

% %

% % % ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2
1

, , , ,
n

U
n n

i

f h h h hσ σ σ σ σ σγ γ γ γ γ
=

    + ∈ ∈ ∈ ∈   
    
∑ % % % %% % % % %L
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which indicates that Eq. (11) holds. This completes the proof. � 
 

Theorem 3.6. Let ih%  ( 1, 2, ,i n= L ) be a collection of IVHFEs and let ( )1 2, , ,
T

nw w w w= L  be the 

aggregation-associated vector satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ , and 0r > . Then, we have 

( ) ( )1 2 1 2A-IVHFOWA , , , A-IVHFOWA , , ,n nrh rh rh r h h h=% % % % % %L L                                      (12) 

 
Proof. For any 1, 2, ,i n= L , it follows from Definition 2.10 that 

 

 

 
Based on Theorem 3.1 and Definition 2.10, we have 
 

 

 

and 
 

 

( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) { }

( )( ) ( )

( )( )

1 2

1 1
1 1 2 2

1 1

1 1

1

1 1

1

A-IVHFOWA , , ,

, , , , ,

,

n

n n
L U L U

i ii i n n
i i

n
L L

i i
i

U
i i

i

h h h h

f w f f w f h h h h

f f f w f f

f f f w f

σ σ σ σ σ σ σ σ

σ

σ

γ γ γ γ γ γ γ γ

γ γ

γ

− −

= =

− −

=

− −

=

⊕

      
 = ∈ ∈ ∈ ⊕ ∈       

      

    +       =

∑ ∑

∑

% % % %L

% % % %% % % % % % % %L

% %

% ( )
( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

1 1 2 2

1 1
1 1 2 2

1 1

, , , ,

, , , , ,

n n
n

U

n n
L L U U

i i n ni i
i i

h h h h

f

f w f f f w f f h h h h

σ σ σ σ σ σ

σ σ

γ γ γ γ
γ

γ γ γ γ γ γ γ γ− −

= =

  
  
   ∈ ∈ ∈ ∈  

     +            

      = + + ∈ ∈ ∈ ∈     
      

∑

∑ ∑

% % % %% % % %L

%

% % % %% % % % % % % %L

( )( ) ( )( ){ }1 1,L U
i i i i irh f rf f rf hγ γ γ− − = ∈

 
% %% % %

( )

( )( )( )( ) ( )( )( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( ) ( )

1 2

1 1 1 1
1 1 2 2

1 1

1 1
1 1 2

1 1

A-IVHFOWA , , ,

, , , ,

, ,

n

n n
L U

i ii i n n
i i

n n
L U

i ii i
i i

rh rh rh

f w f f rf f w f f rf h h h

f w rf f w rf h h

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ

γ γ γ γ γ

γ γ γ γ

− − − −

= =

− −

= =

      = ∈ ∈ ∈     
      

    = ∈ ∈    
    

∑ ∑

∑ ∑

% % %L

% % %% % % % %L

% %% % % % ( ) ( ) ( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

2

1 1
1 1 2 2

1 1

, ,

, , , ,

n n

n n
L U

i ii i n n
i i

h

f r w f f r w f h h h

σ σ

σ σ σ σ σ σ σ σ

γ

γ γ γ γ γ− −

= =

  ∈ 
  

      = ∈ ∈ ∈     
      
∑ ∑

%%L

% % %% % % % %L

( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

1 2

1 1
1 1 2 2

1 1

1 1 1 1

1 1

A-IVHFOWA , , ,

, , , ,

,

n

n n
L U

i ii i n n
i i

n n
L U

i ii i
i i

r h h h

r f w f f w f h h h

f rf f w f f rf f w f

σ σ σ σ σ σ σ σ

σ σ

γ γ γ γ γ

γ γ

− −

= =

− − − −

= =

      = ∈ ∈ ∈     
      

         =                     

∑ ∑

∑ ∑

% % %L

% % %% % % % %L

% % ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2

1 1
1 1 2 2

1 1

, , ,

, , , ,

n n

n n
L U

i ii i n n
i i

h h h

f r w f f r w f h h h

σ σ σ σ σ σ

σ σ σ σ σ σ σ σ

γ γ γ

γ γ γ γ γ− −

= =

   ∈ ∈ ∈  
    

      = ∈ ∈ ∈     
      
∑ ∑

% % %% % %L

% % %% % % % %L



 
 
 

Zhang; BJMCS, 17(5): 1-34, 2016; Article no.BJMCS.27172 
 
 
 

13 
 

where ( )ihσ
%  is the ith largest of ih%  ( 1,2, ,i n= L ), which indicates that Eq. (12) holds. This completes the 

proof of Theorem 3.6. � 
 
According to Theorems 3.5 and 3.6, we can easily obtain the following Theorem 3.7. 
 

Theorem 3.7. Let ih%  ( 1, 2, ,i n= L ) be a collection of IVHFEs and let ( )1 2, , ,
T

nw w w w= L  be the 

aggregation-associated vector satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ , if 0r > , h%  is an IVHFE, then 

( ) ( )1 2 1 2A-IVHFOWA , , , A-IVHFOWA , , ,n nrh h rh h rh h r h h h h⊕ ⊕ ⊕ = ⊕% % % % % % % % % %L L   (13) 

 
In the following, we investigate some specific cases of the A-IVHFOWA operator under the assumption that 
the additive generator g  is assigned different forms. 

Case 1. If ( ) ( )logg t t= − , then the A-IVHFOWA operator is reduced to the IVHFOWA operator defined 

by Chen et al. [20]: 
 

  (14) 

 

Proof. If ( ) ( )logg t t= − , then ( ) ( ) ( )1 log 1f t g t t= − = − −  and . Thus, 

 

 

 

Furthermore, if L U
i iγ γ=% %  for any i ihγ ∈ %%  ( 1, 2, ,i n= L ), i.e., ih%  reduces to the HFEs { }

i i
i ih

h
γ

γ
∈

=U  

( 1, 2, ,i n= L ), then the Eq. (14) reduces to the HFOWA operator proposed by Xia and Xu [11]: 

 

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )1 1 2 2

1 2 , , ,
1

HFOWA , , , 1 1
i

n n

n w

n ih h h
i

h h h
σ σ σ σ σ σ

σγ γ γ
γ

∈ ∈ ∈
=

 = − − 
 

∏L
L U                  (15) 

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )1 2 1 1
1 1

IVHFOWA , , , 1 1 ,1 1 , ,
i i

n nw w
L U

n i i n n
i i

h h h h hσ σ σ σ σ σγ γ γ γ
= =

   = − − − − ∈ ∈  
   

∏ ∏% % % % %% % % %L L

( )1 1 tf t e− −= −

( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

1 1

1 2

1 1
1 1 2 2

1 1

log 1 log 1

1 1 2 2

IVHFOWA , , ,

, , , ,

1 ,1 , , ,

n n
L U

i ii i
i i

n

n n
L U

i ii i n n
i i

w w

n n

h h h

f w f f w f h h h

e e h h h
σ σ

σ σ σ σ σ σ σ σ

γ γ

σ σ σ σ σ σ

γ γ γ γ γ

γ γ γ= =

− −

= =

− −

      = ∈ ∈ ∈     
      

  ∑ ∑ = − − ∈ ∈ ∈
  

∑ ∑

% %

% % %L

% % %% % % % %L

% % %% % %L
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( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1

log 1 log 1

1 1 2 2

1 1 2 2
1 1

1 ,1 , , ,

1 1 ,1 1 , , ,

n nw wi iL U
i i

i i

i i

n n

n nw w
L U

i i n n
i i

e e h h h

h h h

σ σγ γ

σ σ σ σ σ σ

σ σ σ σ σ σ σ σ

γ γ γ

γ γ γ γ γ

= =

   
   − −
   
   

= =






  ∏ ∏  = − − ∈ ∈ ∈     

   = − − − − ∈ ∈ ∈  
   

∏ ∏

% %

% % %% % %L

% % %% % % % %L



 
 
 

Zhang; BJMCS, 17(5): 1-34, 2016; Article no.BJMCS.27172 
 
 
 

14 
 

Case 2. If ( ) 2
log

t
g t

t

− =  
 

, then the A-IVHFOWA operator reduces to the IVHFEOWA operator 

developed by Wei and Zhao [22]: 
 

     (16) 

 

Proof. If , then ( ) ( ) 1
1 log

1

t
f t g t

t

+ = − =  − 
 and ( )1 1

1

t

t

e
f t

e
− −=

+
. Thus, 

 

 

 

Furthermore, if L U
i iγ γ=% %  for any i ihγ ∈ %%  ( 1, 2, ,i n= L ), i.e., ih%  reduces to the HFEs { }

i i
i ih

h
γ

γ
∈

=U  

( 1, 2, ,i n= L ), then the Eq. (16) is transformed into the hesitant fuzzy Einstein ordered weighted average 
(HFEOWA) operator proposed by Yu [15]: 
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( )( ) ( )( )
( )( ) ( )( )
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∏
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σ

σ

σ
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=
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  +  
  −   

=

=
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=

=
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    −
       ∈ ∈ 
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+ + − +
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∏ ∏
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   
  ∈ ∈ 
  + −
    
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      (17) 

 

Case 3. If ( ) ( )1
log

t
g t

t

θ θ+ − 
=  

 
, 0θ > , then the A-IVHFOWA operator is reduced to the 

IVHFHOWA operator: 
 

(18) 

 

Proof. If ( ) ( )1
log

t
g t

t

θ θ+ − 
=  

 
, then ( ) ( ) ( )1 1

1 log
1

t
f t g t

t

θ+ − 
= − =  − 

 and 

( )1 1

1

t

t

e
f t

eθ
− −=

− −
. Thus, 

 

 

 

In particular, when 1θ = , the IVHFHOWA operator is degraded to the IVHFOWA operator (Eq. (14)); 
when 2θ = , the IVHFHOWA operator is degraded to the IVHFEOWA operator (Eq. (16)). 
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Furthermore, if L U
i iγ γ=% %  for any i ihγ ∈ %%  ( 1, 2, ,i n= L ), i.e., ih%  reduces to the HFEs { }

i i
i ih

h
γ

γ
∈

=U  

( 1, 2, ,i n= L ), then the Eq. (18) is transformed into the hesitant fuzzy Hammer ordered weighted average 
(HFHOWA) operator given by Zhou et al. [16]: 
 

    (19) 

 
 In particular, when 1θ = , the HFHOWA operator is degraded to the HFOWA operator (Eq. (15)); when 

2θ = , then the HFHOWA operator is degraded to the HFEOWA operator (Eq. (17)). 
 

Case 4. If ( ) 1
log

1t
g t

θ
θ

− =  − 
, 1θ > , then the A-IVHFOWA operator is reduced to the interval-valued 

hesitant fuzzy Frank ordered weighted averaging (IVHFFOWA) operator: 
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      

∏ ∏% %

% % %L

% %% %L

( ) 1
log

1t
g t

θ
θ

− =  − 

( )

( )( ) ( )( ) ( ) ( ) ( ) ( )

( )

( )

1
1

1
1

1 2

1 1
1 1

1 1

1
log

1

1
log

1

IVHFFOWA , , ,

, , ,

1
1 log

wi
n

L
i i

wi
n

L
i i

n

n n
L U

i ii i n n
i i

h h h

f w f f w f h h

e

e

γσ

γ σ

σ σ σ σ σ σ

θ

θ

θ
θ

θ

γ γ γ γ

θ
−=

−=

− −

= =

   − 
  
   −  

   − 
  
  − 

      = ∈ ∈     
      

∏
− += −

∏

∑ ∑

%

%

% % %L

% %% % % %L
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1
1

1
1

1
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1

1 1
1
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1

1
,1 log , ,

1
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n

U
i i
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n

U
i i
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e
h h

e

γ σ

γσ

θ

θ

θ σ σ σ σ
θ

θ

θ γ γ

−=

−=

   − 
  
   −  

     − 
   
      −   

     
  ∏   
     − +     − ∈ ∈ 
     ∏     

          

= −

%

%

% %% %L
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1 1

1 1

1 1
1 1

1 1
1 1

1 1log ,1 log , ,
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L U
i i

i i

L U
i i

w w
n n

i i

n nw w
n n

i i

h h
σ σ

σ σ

γ γ

θ θ σ σ σ σ

γ γ

θ θθ θ
θ θ γ γ

θ θ
θ θ

− −
= =

− −
= =

        − −     − + − +         − −   − ∈ ∈     
    − −    
       

− −       

∏ ∏

∏ ∏
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% %% %L
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1 1
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i i

h hσ σγ γ
θ θ σ σ σ σθ θ γ γ− −
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



      = − + − − + − ∈ ∈     
      

∏ ∏% % % %% %L
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In particular, if 1θ → , then the IVHFFOWA operator is reduced to the IVHFOWA operator (Eq. (14)). 
 

Furthermore, if L U
i iγ γ=% %  for any i ihγ ∈ %%  ( 1,2, ,i n= L ), i.e., ih%  reduces to the HFEs { }

i i
i ih

h
γ

γ
∈

=U  

( 1, 2, ,i n= L ), then the Eq. (20) is transformed into the hesitant fuzzy Frank ordered weighted average 
(HFFOWA) operator: 
 

     (21) 

 
In particular, if 1θ → , then the HFFOWA operator is reduced to the HFOWA operator (Eq. (15)). 
 
By combing the A-IVHFOWA operator with the geometric mean, we next define an Archimedean t-conorm- 
and t-norm-based interval-valued hesitant fuzzy ordered weighted geometric (A-IVHFOWG) operator: 
 

Definition 3.2. Let ih%  ( 1, 2, ,i n= L ) be a collection of IVHFEs, ( )ihσ
%  be the ith largest of them, 

( )1 2, , ,
T

nw w w w= L  be the aggregation-associated vector such that [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ , then an 

Archimedean t-conorm- and t-norm-based interval-valued hesitant fuzzy ordered weighted geometric                       

(A-IVHFOWG) operator is a mapping nH H→% % , such that 
 

( ) ( )( )1 2
1

A-IVHFOWG , , , i

n
w

n ii
h h h hσ=

= ⊗% % % %L                                                                                             (22) 

 

Theorem 3.8. Let ih%  ( 1, 2, ,i n= L ) be a collection of IVHFEs, ( )ihσ
%  be the ith largest of them, and let 

( )1 2, , ,
T

nw w w w= L  be the aggregation-associated vector satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ ; then, 

the aggregated value by using the A-IVHFOWG operator is also an IVHFE, and 
 

     (23) 

 

Example 3.2. Suppose that 1h% , 2h% , 3h% , w , and ( )g t  are shown as Example 3.1. Then, by Eq. (23), we 

can obtain 
 

 

 
The A-IVHFOWG operator has some desirable characteristics similar to the A-IVHFOWA operator as 
follows. In should be noted that the proof of these characteristics are also similar to A-IVHFOWA. Therefore, 
we just list out these properties. 

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )1 1 2 2

1

1 2 , , ,
1

HFFOWA , , , 1 log 1 1
i

i

n n

n w

n h h h
i

h h h σ

σ σ σ σ σ σ

γ
θγ γ γ

θ −

∈ ∈ ∈
=

  = − + −  
  

∏L
L U

( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2

1 1
1 1 2 2

1 1

A-IVHFOWG , , ,

, , , ,

n

n n
L U

i ii i n n
i i

h h h

g w g g w g h h hσ σ σ σ σ σ σ σγ γ γ γ γ− −

= =

      = ∈ ∈ ∈     
      
∑ ∑

% % %L

% % %% % % % %L

( )
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]

1 2 3A-IVHFOWG , ,

0.6640,0.8172 , 0.2591,0.4209 , 0.5521,0.6854 , 0.2569,0.4071 , 0.3572,0.4885 , 0.2449,0.3683 ,

0.4488,0.6889 , 0.2528,0.4075 , 0.4188,0.6085 , 0.2509,0.3955 , 0.3274,0.4643 , 0.2403,0.3608

h h h

  =  
  

% % %
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Theorem 3.9 (Commutativity). Let 1 2, , , nh h h% % %L  be a collection of IVHFEs. If 1 2, , , nh h h′ ′ ′% % %L  is any 

permutation of 1 2, , , nh h h% % %L , then we have 

 

( ) ( )1 2 1 2A-IVHFOWG , , , A-IVHFOWG , , ,n nh h h h h h′ ′ ′ =% % % % % %L L                                         (24) 

 

Theorem 3.10 (Idempotency). Let ih%  ( 1, 2, ,i n= L ) be a collection of IVHFEs. If all ih%  ( 1, 2, ,i n= L ) 

are equal, i.e., { } { },L U
ih h h hγ γ γ γ γ = = ∈ = ∈ 
% % % %% % % % % , for all i , then 

 

( ) ( )1 2A-IVHFOWG , , , A-IVHFOWG , , ,nh h h h h h h= =% % % % % % %L L                                      (25) 

 

Theorem 3.11 (Boundedness). For a collection of IVHFEs { } { },L U
i i i i i i i ih h hγ γ γ γ γ = ∈ = ∈ 
% % %% % % % %  

( 1, 2, ,i n= L ), let 
1 1

min min ,min min
i i i i

n n
L U
i ii ih h

h
γ γ

γ γ−

= =∈ ∈

  =     
% %% %

% % % , 
1 1

max max ,max max
i i i i

n n
L U
i i

i ih h
h

γ γ
γ γ+

= =∈ ∈

  =     
% %% %

% % % , 

then, 
 

                                                                                (26) 

 

Theorem 3.12. Let ih%  ( 1, 2, ,i n= L ) be a collection of IVHFEs and let ( )1 2, , ,
T

nw w w w= L  be the 

aggregation-associated vector that satisfies [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ . If h%  is an IVHFN, then 

 

( ) ( )1 2 1 2A-IVHFOWG , , , A-IVHFOWG , , ,n nh h h h h h h h h h⊗ ⊗ ⊗ = ⊗% % % % % % % % % %L L          (27) 

 

Theorem 3.13. Let ih%  ( 1, 2, ,i n= L ) be a collection of IVHFEs and let ( )1 2, , ,
T

nw w w w= L  be the 

aggregation-associated vector such that [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ , and 0r > . Then, we have 

 

                                  (28) 

 

Theorem 3.14. Let ih%  ( 1, 2, ,i n= L ) be a collections of IVHFEs and let ( )1 2, , ,
T

nw w w w= L  be the 

aggregation-associated vector such that [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ . If 0r >  and h%  is an IVHFE, then 

( ) ( )( )1 2 1 2A-IVHFOWG , , , A-IVHFOWG , , ,
r

r r r
n nh h h h h h h h h h⊗ ⊗ ⊗ = ⊗% % % % % % % % % %L L  (29) 

 
In the following, we will investigate the relationship between the A-IVHFOWA and A-IVHFOWG operators. 

( )1 2A-IVHFOWG , , , nh h h h h− +≤ ≤% % % % %L

( ) ( )( )1 2 1 2A-IVHFOWG , , , A-IVHFOWG , , ,
r

r r r
n nh h h h h h=% % % % % %L L
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Theorem 3.15. Let ih%  ( 1, 2, ,i n= L ) be a collections of IVHFEs and let ( )1 2, , ,
T

nw w w w= L  be the 

aggregation-associated vector such that [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ . We then have the following: 

 

(1)   

(2)   

 

Proof. (1) According to Eqs. (4) and (23), we can obtain 
 

 

 
(2)  According to Eqs. (4) and (23), we have 
 

 

 
The proof of Theorem 3.15 is completed. � 

( ) ( )( )1 2 1 2A-IVHFOWA , , , A-IVHFOWG , , ,
c

c c c
n nh h h h h h=% % % % % %L L

( ) ( )( )1 2 1 2A-IVHFOWG , , , A-IVHFOWA , , ,
c

c c c
n nh h h h h h=% % % % % %L L

( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1 2

1 1
1 1 2 2

1 1
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1 1 2 2
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1 , 1 , , ,

, , , ,

c c c
n

n n
U L

i ii i n n
i i

n n
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i ii i n
i i
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f w f f w f h h h

f w g f w g h h

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

γ γ γ γ γ

γ γ γ γ γ

− −

= =

− −

= =

      = − − ∈ ∈ ∈     
      

    = ∈ ∈    
    

∑ ∑

∑ ∑

% % %L

% % %% % % % %L

% %% % % % %L ( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
1 1 2 2

1 1

1 1
1 1 2 2

1 1

1 ,1 , , ,

, , , ,

n

n n
U L

i ii i n n
i i

n n
L U

i ii i n n
i i

h

g w g g w g h h h

g w g g w g h h h

σ

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ

γ γ γ γ γ

γ γ γ γ γ

− −

= =

− −

= =

  ∈ 
  

      = − − ∈ ∈ ∈     
      

    = ∈ ∈ ∈    
    

∑ ∑

∑ ∑

%

% % %% % % % %L

% % %% % % % %L

( )( )1 2A-IVHFOWG , , ,

c

c

nh h h

 
   

= % % %L

( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1 2

1 1
1 1 2 2

1 1

1 1
1 1 2 2

1 1

A-IVHFOWG , , ,

1 , 1 , , ,

, , , ,

c c c
n

n n
U L

i ii i n n
i i

n n
U L

i ii i n
i i

h h h

g w g g w g h h h

g w f g w f h h

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

γ γ γ γ γ

γ γ γ γ γ

− −

= =

− −

= =

      = − − ∈ ∈ ∈     
      

    = ∈ ∈    
    

∑ ∑

∑ ∑

% % %L

% % %% % % % %L

% %% % % % %L ( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
1 1 2 2

1 1

1 1
1 1 2 2

1 1

1 ,1 , , ,

, , , ,

n

n n
U L

i ii i n n
i i

n n
L U

i ii i n n
i i

h

f w f f w f h h h

f w f f w f h h h

σ

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ

γ γ γ γ γ

γ γ γ γ γ

− −

= =

− −

= =

  ∈ 
  

      = − − ∈ ∈ ∈     
      

    = ∈ ∈ ∈    
    

∑ ∑

∑ ∑

%

% % %% % % % %L

% % %% % % % %L

( )( )1 2A-IVHFOWA , , ,

c

c

nh h h

 
   

= % % %L
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In what follows, we investigate some specific cases of the A-IVHFOWG operator under the assumption that 
the additive generator g  is assigned different forms. 
 

Case 1. If ( ) ( )logg t t= − , then the A-IVHFOWG operator is reduced to the IVHFOWG operator defined 

by Chen et al. [20]: 
 

(30) 

 

Furthermore, if L U
i iγ γ=% %  for any i ihγ ∈ %%  ( 1, 2, ,i n= L ), i.e., ih%  reduces to the HFEs { }

i i
i ih

h
γ

γ
∈

=U  

( 1, 2, ,i n= L ), then the Eq. (30) reduces to the HFOWG operator proposed by Xia and Xu [11]: 
 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 1 2 2
1 2 , , ,

1

HFOWG , , , i

n n

n
w

n ih h h
i

h h h
σ σ σ σ σ σ

σγ γ γ
γ

∈ ∈ ∈
=

 =  
 
∏L

L U                                    (31) 

 

Case 2. If ( ) 2
log

t
g t

t

− =  
 

, then the A-IVHFOWG operator is reduced to the IVHFEOWG operator 

proposed by Wei and Zhao [22]: 
 

    (32) 

 

Furthermore, if L U
i iγ γ=% %  for any i ihγ ∈ %%  ( 1, 2, ,i n= L ), i.e., ih%  reduces to the HFEs { }

i i
i ih

h
γ

γ
∈

=U  

( 1, 2, ,i n= L ), then the Eq. (32) is transformed into the HFEOWG operator proposed by Yu [15]: 
 

(33) 

 

Case 3. If ( ) ( )1
log

t
g t

t

θ θ+ − 
=  

 
, 0θ > , then the A-IVHFOWG operator is reduced to the interval-

valued hesitant fuzzy Hammer ordered weighted geometric (IVHFHOWG) operator: 
 

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )1 2 1 1
1 1

IVHFOWG , , , , , ,
i i

n nw w
L U

n i i n n
i i

h h h h hσ σ σ σ σ σγ γ γ γ
= =

   = ∈ ∈  
   
∏ ∏% % % % %% % % %L L

( )

( )( )
( )( ) ( )( )

( )( )
( )( ) ( )( )

( ) ( ) ( ) ( )

1 2

1 1
1 1

1 1 1 1

IVHFEOWG , , ,

2 2
, , ,

2 2

i i

i i i i

n

n nw w
L U

i i
i i

n nn n n nw w w w
L L U U

i i i i
i i i i

h h h

h h
σ σ

σ σ σ σ

σ σ σ σ

γ γ
γ γ

γ γ γ γ

= =

= = = =

  
   
 = ∈ ∈ 
  − + − +
    

∏ ∏

∏ ∏ ∏ ∏

% % %L

% %

% %% %L

% % % %

( )
( )

( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1 1 2 2

1
1 2 , , ,

1 1

2
HFEOWG , , ,

2

i

n n i
i

n
w

i
i

n n nh h h w
w

i i
i i

h h h
σ σ σ σ σ σ

σ

γ γ γ

σ σ

γ

γ γ

=
∈ ∈ ∈

= =

 
  =  
 − +
  

∏

∏ ∏
L

L U
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(34) 

 
In particular, if 1θ = , then the IVHFHOWG operator is degraded to the IVHFOWG operator (Eq. (30)); if 

2θ = , then the IVHFHOWG operator is degraded to the IVHFEOWG operator (Eq. (32)). 
 

Furthermore, if L U
i iγ γ=% %  for any i ihγ ∈ %%  ( 1, 2, ,i n= L ), i.e., ih%  reduces to the HFEs { }

i i
i ih

h
γ

γ
∈

=U  

( 1, 2, ,i n= L ), then the Eq. (34) is transformed into the HFHOWG operator given by Zhou et al. [16]: 
 

 (35) 

 
In particular, when 1θ = , the HFHOWG operator is degraded to the HFOWG operator (Eq. (31)); when 

2θ = , then the HFHOWG operator is degraded to the HFEOWG operator (Eq. (33)). 
 

Case 4. If ( ) 1
log

1t
g t

θ
θ

− =  − 
, 1θ > , then the A-IVHFOWG operator is reduced to the interval-valued 

hesitant fuzzy Frank ordered weighted geometric (IVHFFOWG) operator: 
        

      (36) 

 
In particular, if 1θ → , then the IVHFFOWG operator is reduced to the IVHFOWG operator (Eq. (30)). 
 

Furthermore, if L U
i iγ γ=% %  for any i ihγ ∈ %%  ( 1, 2, ,i n= L ), i.e., ih%  reduces to the HFEs { }

i i
i ih

h
γ

γ
∈

=U  

( 1, 2, ,i n= L ), then the Eq. (36) is transformed into the hesitant fuzzy Frank ordered weighted geometric 
(HFFOWG) operator: 
 

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )1 1 2 2

1 2 , , ,
1

HFFOWG , , , log 1 1
i

i

n n

n w

n h h h
i

h h h σ

σ σ σ σ σ σ

γ
θγ γ γ

θ
∈ ∈ ∈

=

  = + −  
  

∏L

% % %L U                 (37) 

 
In particular, if 1θ → , then the HFFOWG operator reduces to the HFOWG operator  (Eq. (31)). 
 
 

( )

( )( )
( ) ( )( )( ) ( ) ( )( )

( )( )
( ) ( )( )( ) ( ) ( )( )

( ) ( ) ( ) ( )

1

1 1
1 2 1 1

1

1 1

,
1 1 1 1

IVHFHOWG , , , , ,

1 1 1 1

i

i i

i

i i

n w
L

i
i

n nw w
L L

i i
i i

n n nn w
U

i
i

n nw w
U U

i i
i i

h h h h h

σ

σ σ

σ σ σ σ

σ

σ σ

θ γ

θ γ θ γ
γ γ

θ γ

θ γ θ γ

=

= =

=

= =

  
  
  
  + − − + −    = ∈ ∈ 
  
  
  
  + − − + −    

∏

∏ ∏

∏

∏ ∏

%

% %

% % % % %% %L L

%

% %

( )
( )

( ) ( )( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1 1 2 2

1
1 2 , , ,

1 1

HFHOWG , , ,
1 1 1 1

i

in n
i

n
w

i
i

n n nh h h w
w

i i
i i

h h h
σ σ σ σ σ σ

σ

γ γ γ

σ σ

θ γ

θ γ θ γ

=
∈ ∈ ∈

= =

 
  =  
 + − − + −
  

∏

∏ ∏
L

L U

( )
( )( ) ( )( ) ( ) ( ) ( ) ( )

1 2

1 1
1 1

IVHFFOWG , , ,

log 1 1 , log 1 1 , ,
L Ui i

i i

n

n w n w

n n
i i

h h h

h hσ σγ γ
θ θ σ σ σ σθ θ γ γ

= =

      = + − + − ∈ ∈     
      

∏ ∏% %

% % %L

% %% %L
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4 A Method for Multi-criteria Decision Making with Interval-valued 
Hesitant Fuzzy Information 

 
In the following, we will use the proposed operators to propose a method for multi-criteria decision making 

(MCDM) within the context of IVHFSs. Let { }1 2, , , mY Y Y Y= L  be a set of m  alternatives, and let 

 be a collection of n  criteria whose weight vector is ( )1 2, , ,
T

nω ω ω ω= L , with 

[ ]0,1jω ∈ , 1,2, ,j n= L , and 
1

1
n

j
j

ω
=

=∑ , where jω  denotes the importance degree of the criterion jG . 

The decision makers provide all the possible interval values for the alternative iY  with respect to the 

criterion jG , denoted by an IVHFE { } { },L U
ij ij ij ij ij ij ij ijr r rγ γ γ γ γ = ∈ = ∈ % % % % %% % % . All ijr%  ( 1,2, ,i m= L ; 

1, 2, ,j n= L ) constitute an interval-valued hesitant fuzzy decision matrix ( )ij m n
R r

×
=% %  , which is shown 

in Table 1. 
 

Table 1. Interval-valued hesitant fuzzy decision matrix R%  
 

 
1G  L  

jG  L  
nG  

1Y  11r%  L  
1 jr%  L  

1nr%  

L  L  L  L  L  L  

iY  1ir%  L  
ijr%  L  

inr%  

L  L  L  L  L  L  

mY  1mr%  L  
mjr%  L  

mnr%  

 
In general, there are benefit criteria (i.e., the bigger the criterion values, the better) and cost criteria (i.e., the 
smaller the criterion values, the better) in a MCDM problem. In such cases, we need transform the cost 
criteria into benefit criteria, i.e., use the method in [36] to transform the interval-valued hesitant fuzzy 

decision matrix ( )ij m n
R r

×
=% %  into a normalized interval-valued hesitant fuzzy decision matrix ( )ij m n

A a
×

=% % , 

where 
 

, for benefit criterion

, for cost criterion

ij j

ij c
ij j

r G
a

r G

= 


%
%

%
,    1, 2, ,i m= L , 1,2, ,j n= L                               (38) 

 

where c
ijr%  is the complement of ijr%  such that { }1 ,1c U L

ij ij ij ij ijr rγ γ γ = − − ∈ % % %% % . 

 

Step 1. Transform the interval-valued hesitant fuzzy decision matrix ( )ij m n
R r

×
=% %  into the normalized 

interval-valued hesitant fuzzy decision matrix ( )ij m n
A a

×
=% %  on the basis of Eq. (38). 

 
 
 

{ }1 2, , , nG G G G= K
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Step 2. Utilize the A-IVHFOWA operator 
 

 

                                                                                                                                         (39) 
 
or the A-IVHFOWG operator 

  

 

                                                                                                                                      (40) 
 

to fuse all of the performance values ija%  ( 1,2, ,j n= L ) in the ith line of A%  and then derive the overall 

performance value ia%  ( 1, 2, ,i m= L ) of the alternative iY  ( 1, 2, ,i m= L ), where 

( ) ( ) ( )( )1 2, , ,i i i na a aσ σ σ% % %L  is a permutation of ( )1 2, , ,i i ina a a% % %L , such that ( ) ( ) ( )1 2i i i na a aσ σ σ≥ ≥ ≥% % %L , 

and ( )1 2, , ,
T

nw w w w= L  is the weight vector of the ordered positions of ( ) ( ) ( )( )1 2, , ,i i i na a aσ σ σ% % %L , with 

[ ]0,1jw ∈ , 1,2, ,j n= L , and 
1

1
n

j
j

w
=

=∑ . 

 

Step 3. According to Definitions 2.3 and 2.4, calculate the score functions ( )is a%  and variance functions 

( )iv a%  of ia%  ( ), and then rank all of the alternatives iY  ( 1, 2, ,i m= L ) in descending 

order as per Definition 2.5. 
 

5 Illustrative Example 
 
5.1 An illustrative example 
 
In this subsection, a practical example (adapted from Herrera and Herrera-Viedma [37] is used to implement 
the developed method. 
 
Example 5.1. An investment company wants to invest a sum of money in the best option. There is a panel 

with five possible alternatives to invest the money: (1) 1Y  is a car company; (2) 2Y  is a food company; (3) 

3Y  is a computer company; (4) 4Y  is an arms company; (5) 5Y  is a TV company. The investment company 

must take a decision according to the following four attributes: (1) 1G  is the risk analysis; (2) 2G  is the 

growth analysis; (3) 3G   is the social-political impact analysis; (4) 4G  is the environmental impact analysis. 

( ) ( )( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2
1

1 1
1 1 2 2

1 1

A-IVHFOWA , , ,

, , , ,

n

i i i in j i jj

n n
L U

j ji j i j i i i i i n i n
j j

a a a a w a

f w f f w f a a a

σ

σ σ σ σ σ σ σ σγ γ γ γ γ

=

− −

= =

= = ⊕

      = ∈ ∈ ∈     
       

∑ ∑

% % % % %L

% % % % %% % %L

1, 2 , ,i m= L

( ) ( )( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2
1

1 1
1 1 2 2

1 1

A-IVHFOWG , , ,

, , , ,

n

i i i in j i jj

n n
L U

j ji j i j i i i i i n i n
j j

a a a a w a

g w g g w g a a a

σ

σ σ σ σ σ σ σ σγ γ γ γ γ

=

− −

= =

= = ⊕

      = ∈ ∈ ∈     
       

∑ ∑

% % % % %L

% % % % %% % %L

1, 2 , ,i m= L

1, 2 , ,i m= L
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The weight vector of the four criteria 
jG  ( 1,2,3,4j = ) is ( )0.1,0.3,0.5,0.1

Tω = . Assume that the 

performance of the alternatives iY  ( 1, 2,3, 4,5i = ) with respect to the criteria jG  ( 1,2,3, 4j = ) is 

denoted by an IVHFE { } { },L U
ij ij ij ij ij ij ij ijr r rγ γ γ γ γ = ∈ = ∈ % % % % %% % % , where ,L U

ij ij ijγ γ γ =  % % %  indicates the 

possible interval values to which the alternative iY  satisfies the criterion jG . All of ijr%  ( 1, 2,3, 4,5i = ; 

1, 2,3,4j = ) are contained in the interval-valued hesitant fuzzy decision matrix ( )
5 4ijR r
×

=% %  (see Table 2). 

 

Table 2. The interval-valued hesitant fuzzy decision matrix R%  
 

 
1G  2G  3G  4G  

1Y  {[0.3, 0.5], [0.3, 0.4], 
[0.2, 0.3]} 

{[0.7, 0.9], [0.7, 0.8], 
[0.6, 0.7], [0.5, 0.6]} 

{[0.8, 0.9], [0.5, 0.6]} {[0.3, 0.4], [0.6, 0.7]} 

2Y  {[0.5, 0.7], [0.5, 
0.6]} 

{[0.7, 0.9], [0.5, 0.6], 
[0.4, 0.5]} 

{[0.5, 0.8]} {[0.3, 0.5], [0.6, 0.7], 
[0.8, 0.9]} 

3Y  { [0.5, 0.7], [0.4, 0.6], 
[0.3, 0.4]} 

{[ 0.8, 0.9], [0.6, 0.7]}  { [0.6, 0.7], [0.5, 0.7], 
[0.4, 0.5], [0.3, 0.4]} 

{[0.3, 0.4], [0.7, 0.8]} 

4Y  {[0.2, 0.3], [0.4, 
0.5]} 

{[0.5, 0.7]} {[0.1, 0.2], [0.3, 0.4], 
[0.5, 0.7]} 

{[0.6, 0.8], [0.4, 0.5]} 

5Y  {[0.7, 0.8]} {[0.5, 0.6], [0.7, 0.9]} {[0.3, 0.5]} {[0.3, 0.4], [0.5, 0.7], 
[0.8, 0.9]} 

 

Table 3. The normalized interval-valued hesitant fuzzy decision matrix A%  
 

 
1G  2G  3G  4G  

1Y  {[0.5, 0.7], [0.6, 
0.7], [0.7, 0.8]} 

{[0.7, 0.9], [0.7, 0.8], 
[0.6, 0.7], [0.5, 0.6]} 

{[0.1, 0.2], [0.4, 0.5]} {[0.6, 0.7], [0.3, 0.4]} 

2Y  {[0.3, 0.5], [0.4, 
0.5]} 

{[0.7, 0.9], [0.5, 0.6], 
[0.4, 0.5]} 

{[0.2, 0.5]} {[0.5, 0.7], [0.3, 0.4], 
[0.1, 0.2]} 

3Y  {[0.3, 0.5], [0.4, 
0.6], [0.6, 0.7]} 

{[0.8, 0.9], [0.6, 0.7]} {[0.3, 0.4], [0.3, 0.5], 
[0.5, 0.6], [0.6, 0.7]} 

{[0.6, 0.7], [0.2, 0.3]} 

4Y  {[0.7, 0.8], [0.5, 
0.6]} 

{[0.5, 0.7]} {[0.8, 0.9], [0.6, 0.7], 
[0.3, 0.5]} 

{[0.2, 0.4], [0.5, 0.6]} 

5Y  {[0.2, 0.3]} {[0.5, 0.6], [0.7, 0.9]} {[0.5, 0.7]} {[0.6, 0.7], [0.3, 0.5], 
[0.1, 0.2]} 

 

Step 1. Among the considered criteria, jG  ( 1,3,4j = ) are of the cost type and 2G  is of the benefit type; 

thus, ( )
5 4ijR r
×

=% %  needs to be transformed into a normalized interval-valued hesitant fuzzy decision matrix 

( )
5 4ijA a
×

=% %  (see Table 3) according to Eq. (38). 

 
Step 2. Utilize the IVHFHOWA operator (Eq. (18)) (whose associated weight vector is 

( )0.1,0.5,0.3,0.1
T

w=  and 3θ = ) to fuse all of the performance values ija%  ( 1, 2,3,4j = ) in the ith 

line of A%  and then derive the overall performance value ia%  ( 1, 2,3, 4,5i = ) of the alternative iY  

( 1, 2,3, 4,5i = ): 
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Step 3. According to Definition 2.3, we calculate the scores ( )is a%  ( 1, 2,3, 4,5i = ) of ia%  

( 1,2,3,4,5i = ) as follows: 
 

( )1 0.5968s a =% , ( )2 0.4250s a =% , ( )3 0.5369s a =% , ( )4 0.6182s a =% , ( )5 0.5270s a =%  
 

Step 4. Because ( ) ( ) ( ) ( ) ( )4 1 3 5 2s a s a s a s a s a> > > >% % % % % , then we determine the ranking order of 

alternatives iY  ( 1, 2,3, 4,5i = ) as 
4 1 3 5 2Y Y Y Y Yf f f f . Thus, the best alternative is 4Y . 

 

It is noted that we let 3θ =  in the above analysis. In fact, the parameter θ  can be assigned different values 
based on the decision maker’s preferences. To investigate the variation of the ranking of five alternatives 
regarding the value of the parameter θ , we assign θ  the values between 0 and 10, and calculate the scores of 
these five alternatives. The variations of the scores can be found clearly with respect to the values of the 
parameter θ  in Fig. 1. 
 

[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ]

1

0.4283,0.6935 , 0.4567,0.7132 , 0.5182,0.6156 , 0.5443,0.6387 , 0.4835,0.6935 , 0.5106,0.7132 ,

0.5687,0.6156 , 0.5932,0.6387 , 0.5449,0.7485 , 0.5702,0.7654 , 0.6239,0.6808 , 0.6463,0.7011 ,

0.4283,0.6744 , 0.4567,0.6950 ,

a =%

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

0.5182,0.5932 , 0.5443,0.6173 , 0.4835,0.6744 , 0.5106,0.6950 ,

0.5687,0.5932 , 0.5932,0.6173 , 0.5449,0.7320 , 0.5702,0.7498 , 0.6239,0.6611 , 0.6463,0.6823 ,

0.4150,0.6619 , 0.4436,0.6830 , 0.5058,0.5787 , 0.5323,0.6033 , 0.47[ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]

07,0.6619 , 0.4981,0.6830 ,

0.5571,0.5787 , 0.5820,0.6033 , 0.5330,0.7212 , 0.5587,0.7395 , 0.6132,0.6482 , 0.6361,0.6700 ,

0.4036,0.6519 , 0.4325,0.6735 , 0.4952,0.5672 , 0.5220,0.5922 , 0.4597,0.6519 , 0.4874,0.6735 ,

0.5471,0[ ] [ ] [ ] [ ] [ ] [ ].5672 , 0.5723,0.5922 , 0.5227,0.7126 , 0.5487,0.7313 , 0.6040,0.6380 , 0.6272,0.6602

 
 
 
 
 
 
 
 
 
 
 
 
 
  

[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ]

2

0.3980,0.6242 , 0.3366,0.5354 , 0.2764,0.4820 , 0.4463,0.6242 , 0.3865,0.5354 , 0.3271,0.4820 ,

0.3729,0.5765 , 0.3109,0.4817 , 0.2504,0.4256 , 0.4219,0.5765 , 0.3612,0.4817 , 0.3013,0.4256 ,

0.3624,0.5668 , 0.3002,0.4708 ,

a =%

[ ] [ ] [ ] [ ]0.2396,0.4142 , 0.4116,0.5668 , 0.3506,0.4708 , 0.2906,0.4142

 
 
 
 
 

[ ] [ ] [ ] [ ] [ ] [ ]
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[ ] [ ]

3

0.3963,0.5574 , 0.3546,0.5173 , 0.3963,0.5838 , 0.3546,0.5451 , 0.4557,0.6119 , 0.4154,0.5748 ,

0.4884,0.6434 , 0.4491,0.6082 , 0.4446,0.6054 , 0.4040,0.5679 , 0.4446,0.6299 , 0.4040,0.5939 ,
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a =%
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[ ] [ ] [ ] [ ] [ ] [ ]
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0.5332,0.6848 , 0.4956,0.6525 , 0.5459,0.6574 , 0.5088,0.6232 ,

0.5459,0.6797 , 0.5088,0.6470 , 0.5972,0.7031 , 0.5626,0.6721 , 0.6247,0.7289 , 0.5916,0.7000 ,
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56,0.5748 , 0.3845,0.5356 ,

0.4590,0.6082 , 0.4188,0.5709 , 0.4142,0.5679 , 0.3729,0.5283 , 0.4142,0.5939 , 0.3729,0.5558 ,

0.4729,0.6216 , 0.4332,0.5851 , 0.5051,0.6525 , 0.4664,0.6179 , 0.5182,0.6232 , 0.4800,0.5867 ,

0.5182,0[ ] [ ] [ ] [ ] [ ] [ ].6470 , 0.4800,0.6120 , 0.5714,0.6721 , 0.5355,0.6389 , 0.6000,0.7000 , 0.5655,0.6688
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0.6709,0.8153 , 0.6916,0.8249 , 0.5474,0.6879 , 0.5731,0.7027 , 0.3980,0.5937 , 0.4276,0.6114 ,

0.6527,0.8009 , 0.6743,0.8112 , 0.5252,0.6661 , 0.5516,0.6816 , 0.3729,0.5677 , 0.4028,0.5861
a
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%

[ ] [ ] [ ] [ ] [ ] [ ]{ }5 0.5043,0.6590 , 0.4133,0.6012 , 0.3546,0.5245 , 0.5270,0.7000 , 0.4379,0.6470 , 0.3800,0.5757a =%
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Fig. 1. Scores of alternatives derived by the IVHFHOWA operator 
 

Fig. 1 demonstrates that all of the score functions obtained with the IVHFHOWA operator decrease as θ  

increases from 0 to 10. Based on this information, we can find that when ( ]0,10θ ∈ , the ranking of the 

four alternatives is 
4 1 3 5 2Y Y Y Y Yf f f f , and the best choice is 4Y . 

 
If the IVHFHOWA operator in the above example is replaced by the IVHFHOWG operator, then the score 
functions of five alternatives are shown in Fig. 2. From Fig. 2, we can see that all of the score functions 
obtained by the IVHFHOWG operator increase as the parameter θ  increases from 0 to 10. From Fig. 2, we 

can also see that when ( ]0,10θ ∈ , the ranking of the four alternatives is 
4 1 3 5 2Y Y Y Y Yf f f f , and the 

best choice is 4Y . 
 

 
 

Fig. 2. Scores of alternatives derived by the IVHFHOWG operator 
 

Fig. 3 illustrates the deviation degrees between the scores derived by the IVHFHOWA operator and those 
derived by the IVHFHOWG operator. From this result, we can find that the values obtained with the 
IVHFHOWA operator are greater than those obtained with the IVHFHOWG operator, and the deviation 
values decrease as the value of the parameter θ  increases. 
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Fig. 3. Deviations of scores derived by the IVHFHOWA and IVHFHOWG operators 
 

Fig. 3 indicates that the IVHFHOWA operator can obtain more favorable (or optimistic) expectations, and 
can therefore be considered an optimistic operator, while the IVHFHOWG operator has more unfavorable (or 
pessimistic) expectations, and can therefore be considered a pessimistic operator. The values of the parameter 
θ  can be treated as the optimistic or pessimistic levels. According to Figs. 1, 2, and 3, we can conclude that 
the decision makers who have a negative perception of the prospects could use the IVHFHOWG operator 
and choose a smaller value for the parameter θ , while the decision makers who are optimistic could use the 
IVHFHOWA operator and choose a smaller value for the parameter θ . 
 
If the IVHFFOWA (or IVHFFOWG) operator is replaced by the IVHFHOWA (or IVHFHOWG) operator, 
then the score functions of alternatives are given in Figs. 4 and 5, respectively. Fig. 4 shows that all of the 
score functions obtained with the IVHFFOWA operator decrease as the parameter θ  increases from 0 to 10, 

from which we can obtain that when ( ]0,10θ ∈ , the ranking of the five alternatives is 

4 1 3 5 2Y Y Y Y Yf f f f , and the best choice is 4Y . 
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Fig. 5. Scores of alternatives derived by the IVHFFOWG operator 
 
Fig. 5 illustrates that all of the score functions obtained with the IVHFFOWG operator increase as the 

parameter θ  increases from 0 to 10. From this result, we can see that when ( ]0,10θ ∈ , the ranking of the 

four alternatives is 
4 1 3 5 2Y Y Y Y Yf f f f , and the best choice is 4Y . 

 

 
 

Fig. 6. Deviations of scores obtained by the IVHFFOWA and IVHFFOWG operators 
 
Fig. 6 illustrates the deviation degrees between the score functions derived by the IVHFFOWA operator and 
those derived by the IVHFFOWG operator. From these results, we can determine that the values obtained 
with the IVHFFOWA operator are greater than those obtained with the IVHFFOWG operator, and the 
deviation values decrease as the value of the parameter θ  increases. 
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pessimistic) expectations, and can therefore be considered a pessimistic operator. The values of the parameter 
θ  can be treated as the optimistic or pessimistic levels. According to Figs. 4, 5, and 6, we can conclude that 
the decision makers who have a negative perception of the prospects could use the IVHFFOWG operator and 
choose a smaller value for the parameter θ , while the decision makers who are optimistic could use the 
IVHFFOWA operator and choose a smaller value for the parameter θ . 

1 2 3 4 5 6 7 8 9 10

0.35

0.4

0.45

0.5

0.55

0.6

thet

S
co

re
s

s(Y1)
s(Y2)
s(Y3)
s(Y4)
s(Y5)

1 2 3 4 5 6 7 8 9 10
0.02

0.03

0.04

0.05

0.06

0.07

thet

D
ev

ia
tio

n
s

Y1
Y2
Y3
Y4
Y5



 
 
 

Zhang; BJMCS, 17(5): 1-34, 2016; Article no.BJMCS.27172 
 
 
 

29 
 

5.2 Comparative analysis with other methods in the literature 
 
Firstly, Chen et al.’s method [20] is utilized to deal with this issue in order to make a comparison with our 
method. In Ref. [20], Chen et al. proposed the IVHFOWA operator (see Eq. (14)) based on the algebraic 
operational laws. 
 

Step 1. Use the IVHFOWA operator to fuse all of the preference values ija%  ( 1, 2,3, 4j = ) in the ith line of 

A%  and then derive the overall performance value ia%  ( 1, 2,3, 4,5i = ) of the alternative iY  

( 1,2,3,4,5i = ): 
 

 

 

The values of ia%  ( 1, 2,3, 4,5i = ) are not listed here due to the big data set. 
 

Step 2. According to Definition 2.3, we calculate the scores ( )is a%  ( 1, 2,3, 4,5i = ) of ia%  

( 1,2,3,4,5i = ) as follows: 
 

, ( )2 0.4342s a =% , ( )3 0.5462s a =% , ( )4 0.6246s a =% , 

 

 

Step 3. Because ( ) ( ) ( ) ( ) ( )4 1 3 5 2s a s a s a s a s a> > > >% % % % % , then we determine the ranking order of 

alternatives iY  ( 1, 2,3, 4,5i = ) as 
4 1 3 5 2Y Y Y Y Yf f f f , which is the same as that obtained by our 

method which explains the validity of our method. 
 
Secondly, Wei and Zhao’s method [22] is utilized to deal with this issue in order to make a comparison with 
our method. In Ref. [22], Wei and Zhao proposed the IVHFEOWA operator (see Eq. (16)) based on the 
Einstein operational laws. 
 

Step 1. Use the IVHFEOWA operator to fuse all of the preference values ija%  ( 1,2,3,4j = ) in the ith line 

of A%  and then derive the overall performance value ia%  ( 1,2,3,4,5i = ) of the alternative iY  

( 1,2,3,4,5i = ). 
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The values of ia%  ( 1, 2,3, 4,5i = ) are not listed here due to the big data set. 
 

Step 2. According to Definition 2.3, we calculate the scores ( )is a%  ( 1, 2,3, 4,5i = ) of ia%  

( 1,2,3,4,5i = ) as follows: 
 

, ( )2 0.4282s a =% , ( )3 0.5399s a =% , ( )4 0.6203s a =% , ( )5 0.5320s a =%  

 

Step 3. Because ( ) ( ) ( ) ( ) ( )4 1 3 5 2s a s a s a s a s a> > > >% % % % % , then we determine the ranking order of 

alternatives iY  ( 1, 2,3, 4,5i = ) as 
4 1 3 5 2Y Y Y Y Yf f f f , which is the same as that obtained by our 

method which also explains the validity of our method. 
 
Thirdly, for further comparison, the method proposed by Zhang and Wu in [25] is adopted to deal with this 
issue. In Ref. [25], an A-IVHFWA operator (“non-ordered” operator) was proposed as follows:  
 

 

When , 0θ > , the A-IVHFWA operator is reduced to the IVHFHWA operator 

[33]: 
 

  (41) 

 

Step 1. Use the IVHFHWA operator (suppose that 3θ = ) to fuse all of the preferences ija%  ( 1,2,3,4j = ) 

in the ith line of A%  and then derive the overall performance ia%  ( 1,2,3,4,5i = ) of alternative iY  

( 1,2,3,4,5i = ): 
 

Step 2. According to Definition 2.3, we calculate the score values ( )is a%  ( 1, 2,3, 4,5i = ) of ia%  

( 1,2,3,4,5i = ) as follows: 
 

( )1 0.4961s a =% , , ( )3 0.6182s a =% , ( )4 0.5881s a =% , ( )5 0.5852s a =%  

 

Step 3. Because ( ) ( ) ( ) ( ) ( )3 4 5 1 2s a s a s a s a s a> > > >% % % % % , then we determine the ranking order of 

alternatives iY  ( 1, 2,3, 4,5i = ) as 
3 4 5 1 2Y Y Y Y Yf f f f , which is slightly different from the results 

derived by our approach and also Chen et al.’s method and Wei and Zhao’s method. 
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For better comparison, the ranking orders derived by four different methods are summarized in Table 4: 
 

Table 4. The ranking orders derived by four different methods 
 

Methods Aggregation operators Ranking orders 
Our method A-IVHFOWA 

4 1 3 5 2Y Y Y Y Yf f f f  

Chen et al.’s method [20] IVHFOWA 
4 1 3 5 2Y Y Y Y Yf f f f  

Wei and Zhao’s method [22] IVHFEOWA 
4 1 3 5 2Y Y Y Y Yf f f f  

Zhang and Wu’s method [25] A-IVHFWA 
3 4 5 1 2Y Y Y Y Yf f f f  

  
Table 4 shows that both Approach I, Chen et al.’s method, and Wei and Zhao’s method produce the same 

ranking, where the optimal alternative is 4Y , while Zhang and Wu’s method produces the different ranking, 

where the optimal alternative is 3Y . That is because the former three methods adopt “ordered” weighted 

operators (the IVHFHOWA, IVHFOWA and IVHFEOWA operators), while the latter method adopts “non-
ordered” weighted operator (the IVHFHWA operator).  
 
1) Comparison among our method, Chen et al.’s method [20], and Wei and Zhao’s method [22] 
 
Chen et al.’s method [20] adopts the IVHFOWA operator, Wei and Zhao’s method [22] adopts the 
IVHFEOWA operator, and our method adopts the A-IVHFOWA operator. It is well known that the 
IVHFOWA and IVHFEOWA operators are two special cases of the A-IVHFOWA operator when the 

additive generator ( ) ( )logg t t= −  and ( ) 2
log

t
g t

t

− =  
 

, respectively. When we assign different forms 

to the additive generator g , we can obtain several special interval-valued hesitant fuzzy aggregation 

operators. Therefore, the proposed operators and method in this paper can provide us more choices and 
flexibility than Chen et al.’s and Wei and Zhao’s operators and methods. 
 
2) Comparison between our method and Zhang and Wu’s method [25] 
 
Compared with Zhang and Wu’s method [25], our method assigns the largest and smallest arguments smaller 
weights, which can relieve the influence of “unfair” arguments on the decision results. For example, in 

Zhang and Wu’s method, the smallest IVHFE [ ] [ ]{ }13= 0.1,0.2 , 0.4,0.5a%  in the first line of ( )ij m n
A a

×
=% %  is 

assigned a largest weight (( )13 0.5aω =% ), while in our method, 13a%  is assigned a smallest weight 

( ( )13 0.1w a =% ) in order to relieve its influence on the decision result; therefore, a different optimal 

alternative 4Y  is obtained. Therefore, our method makes the decision making more reasonable and reliable 

than Zhang and Wu’s method. 
 
From the above analysis, we can conclude that our method is more flexible, reasonable, and reliable than 
Chen et al.’s method [20], Wei and Zhao’s method [22], and Zhang and Wu’s method [25]. 
 

6 Conclusions 
 
In this paper, some new ordered weighted aggregation operators for IVHFEs based on Archimedean t-norm 
and t-conorm, such as the A-IVHFOWA operator and A-IVHFOWG operators, are proposed, and various 
properties of these operators are investigated. Then, they are applied to establish a method for solving the 
MCDM problems in which the criterion values are given in the form of IVHFEs. We have proved that the 
proposed operators are a generalization of the existing operators based on algebraic t-norm and t-conorm, 
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Einstein t-norm and t-conorm, and Hamacher t-norm and t-conorm, and thus they are more general and more 
flexible. In addition, this paper has made some comparisons of the proposed method and the previous work 
and analyzed their differences in details through a numerical example. In further research, it is necessary and 
meaningful to give the applications of the developed operators to the other domains such as pattern 
recognition, fuzzy cluster analysis, and uncertain programming. 
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