

SCIENCEDOMAIN international www.sciencedomain.org



# On Jordan $(\theta,\phi)^*\text{-biderivations}$ in Rings with Involution

# Shakir $\mathrm{Ali}^{1^*},\,\mathrm{Husain}\,\,\mathrm{Alhazmi}^2$ and Abdul Nadim $\mathrm{Khan}^3$

<sup>1</sup> Department of Mathematics, Faculty of Science & Arts-Rabigh, King Abdulaziz University, Jeddah-21589, Saudi Arabia.
<sup>2</sup> Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah-21589, Saudi Arabia.
<sup>3</sup> Applied Sciences and Humanity Section, University Polytechnic-Aligarh Muslim University, Aligarh-202002, India.

Authors' contributions

This work was carried out in collaboration between all authors. All authors read and approved the final manuscript.

#### Article Information

DOI: 10.9734/BJMCS/2016/27293 <u>Editor(s)</u>: (1) H. M. Srivastava, Department of Mathematics and Statistics, University of Victoria, Canada. <u>Reviewers</u>: (1) I. Kosi-Ulbl, University of Maribor, Slovenia. (2) Wagner de Oliveira Cortes, Federal University of Rio Grande do Sul, Brazil. Complete Peer review History: http://sciencedomain.org/review-history/15269

**Original Research Article** 

Received: 27<sup>th</sup> May 2016 Accepted: 24<sup>th</sup> June 2016 Published: 2<sup>nd</sup> July 2016

## Abstract

Let R be a ring with involution. In the present paper, we characterize biadditive mappings which satisfies some functional identities related to symmetric Jordan  $(\theta, \phi)^*$ -biderivation of prime rings with involution. In particular, we prove that on a 2-torsion free prime ring with involution, every symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation is a symmetric Jordan  $(\theta, \phi)^*$ -biderivation.

Keywords: Prime \*-ring; involution; symmetric Jordan  $(\theta, \phi)^*$ -biderivation; symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation.

2010 Mathematics Subject Classification: 16W10, 16W25, 16N60.

<sup>\*</sup>Corresponding author: E-mail: sashah@kau.edu.sa;

#### 1 Introduction

Throughout the discussion, unless otherwise mentioned, R will denote an associative ring having at least two elements. However, R may not have unity. For any  $x, y \in R$ , the symbol [x, y] (resp.  $(x \circ y)$ ) will denote the commutator xy - yx (resp. the anti-commutator xy + yx). Recall that Ris prime if aRb = 0 implies that a = 0 or b = 0, and is semiprime in case aRa = (0) implies a = 0. An additive mapping  $x \mapsto x^*$  satisfying  $(xy)^* = y^*x^*$  and  $(x^*)^* = x$  for all  $x, y \in R$ , is called an involution on R. A ring R equipped with an involution is called \*-ring or ring with involution.

An additive mapping  $d: R \to R$  is called a derivation (resp. Jordan derivation) if d(xy) =d(x)y + xd(y) (resp.  $d(x^2) = d(x)x + xd(x)$ ) holds for all  $x, y \in R$ . An additive mapping  $d: R \to R$ is a called Jordan triple derivation if d(xyx) = d(x)yx + xd(y)x + xyd(x) holds for all  $x, y \in R$ . Of course every derivation is a Jordan triple derivation but the converse is not true in general. A classical result due to Brešar [[1], Theorem 4.3] asserts that any Jordan triple derivation on 2-torsion free semiprime ring is a derivation. Let R be a \*-ring. An additive mapping  $d: R \to R$  is said to be a \*-derivation (resp. Jordan \*-derivation) if  $d(xy) = d(x)y^* + xd(y)$  (resp.  $d(x^2) = d(x)x^* + xd(x)$ ) for all  $x, y \in R$ . These mappings appear naturally in the theory of representability of quadratic forms by bilinear forms. For results concerning this theory we refer the reader to [2] [3], [4], [5] and [6], where further references can be found. An additive mapping  $d: R \longrightarrow R$  is said to be a Jordan triple \*-derivation of R if  $d(xyx) = d(x)y^*x^* + xd(y)x^* + xyd(x)$  holds for all  $x, y \in R$ . One can easily prove that every Jordan \*-derivation on a 2-torsion free semiprime ring is a Jordan triple  $\ast$ -derivation of R. However, the converse of this statement need not be true in general. In [7], Vukman showed that the converse holds if R is 6-torsion free semiprime \*-ring. Further, Fošner and Iliševic [8] generalized above mentioned result for 2-torsion free semiprime ring. et  $\theta$ and  $\phi$  be endomorphisms of R. An additive mapping  $d: R \longrightarrow R$  is said to be a  $(\theta, \phi)$ -derivation (resp. Jordan  $(\theta, \phi)$ -derivation) if  $d(xy) = d(x)\theta(y) + \phi(x)d(y)$  (resp.  $d(x^2) = d(x)\theta(x) + \phi(x)d(x)$ ) holds for all  $x, y \in R$ . An additive mapping  $d: R \to R$  is called  $(\theta, \phi)^*$ -derivation (resp. Jordan  $(\theta, \phi)^*$ -derivation) if  $d(xy) = d(x)\theta(y^*) + \phi(x)d(y)$  (resp.  $d(x^2) = d(x)\theta(x^*) + \phi(x)d(x)$ ) for all  $x, y \in R$ , where R is a ring with involution. Following [9], an additive mapping  $d: R \to R$  is called Jordan triple  $(\theta, \phi)^*$ -derivation if  $d(xyx) = d(x)\theta(y^*x^*) + \phi(x)d(y)\theta(x^*) + \phi(xy)d(x)$  for all  $x, y \in R$ . Obviously, every  $(\theta, \phi)^*$ -derivation on \*-ring is a Jordan triple  $(\theta, \phi)^*$ -derivation but the converse is in general not true. Recently, first author together with Fošner [9] proved that on a 6-torsion free semiprime \*-ring R, every Jordan triple  $(\theta, \phi)^*$ -derivation is a Jordan  $(\theta, \phi)^*$ -derivation. Further in [10], the first author improved this result by removing 3-torsion free restriction. More related results has also been obtained in [11], [12], [13], [14], [15], [16] and [17] where further references can be found.

A biaddive map  $B: R \times R \to R$  is said to be symmetric if B(x,y) = B(y,x) for all  $x, y \in R$ . A symmetric biadditive map  $B: R \times R \to R$  is called a symmetric biderivation if B(xy,z) = B(x,z)y + xB(y,z) is fulfilled for all  $x, y, z \in R$ . The concept of a symmetric biderivation was introduced by Maksa in [18] (see also [19], where an example can be found). A symmetric biadditive map  $B: R \times R \to R$  is said to be a symmetric Jordan biderivation if  $B(x^2, z) = B(x, z)x + xB(x, z)$  holds for all  $x, z \in R$ . Following [20], a symmetric biadditive map  $B: R \times R \to R$  is called a symmetric \*-biderivation if  $B(xy, z) = B(x, z)y^* + xB(y, z)$  holds for all  $x, y, z \in R$ , where R is a ring with involution. In [12], Ali and Dar introduced the concept of symmetric biadditive map  $d: R \times R \to R$  is said to be a symmetric Jordan \*-biderivation if  $d(x^2, z) = d(x, z)x^* + xd(x, z)$  holds for all  $x, z \in R$ . A symmetric biadditive map  $d: R \times R \to R$  is called a symmetric Jordan triple \*-biderivation if  $d(xyx, z) = d(x, z)y^*x^* + xd(y, z)x^* + xyd(x, z)$  holds for all  $x, y, z \in R$ . Motivated by the definition of Jordan  $(\theta, \phi)^*$ -derivation and Jordan triple  $(\theta, \phi)^*$ - derivation, we introduce the concept of symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation as follows: A symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation and symmetric Jordan  $(\theta, \phi)^*$ -biderivation and symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation as follows: A symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation as follows: A symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation as follows: A symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation as follows: A symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation as follows: A symmetric Jordan  $(\theta, \phi)^*$ -biderivation and symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation as follows: A symmetric Jordan  $(\theta, \phi)^*$ -biderivation and symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation as follows: A symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation as follows: A symmetric Jordan  $(\theta, \phi)^*$ -biderivation and symmetric Jordan triple  $(\theta, \phi)^*$ -  $(\theta, \phi)^*$ -biderivation if  $d(x^2, z) = d(x, z)\theta(x^*) + \phi(x)d(x, z)$  holds for all  $x, z \in R$ . A symmetric biadditive map  $d: R \times R \to R$  is called a symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation if  $d(xyx, z) = d(x, z)\theta(y^*x^*) + \phi(x)d(y, z)\theta(x^*) + \phi(xy)d(x, z)$  holds for all  $x, y, z \in R$ . Note that a symmetric Jordan triple  $(I_R, I_R)^*$ -biderivation is just a symmetry Jordan triple \*-biderivation, where  $I_R$  is the identity map on R. Clearly, this notion includes the notion of Jordan triple \*-biderivation when  $\theta = \phi = I_R$ , where  $I_R$  is the identity map on R[see Lemma 1.2(ii)]. It can be easily seen that any symmetric Jordan  $(\theta, \phi)^*$ -biderivation on a 2-torsion free ring with involution is a symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation. But the converse need not be true in general.

In the present paper, our aim is to establish a set of conditions under which every symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation on a ring with involution is a symmetric Jordan  $(\theta, \phi)^*$ -biderivation. More precisely, we prove that on a 2-torsion free prime ring with involution, every symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation is a symmetric Jordan  $(\theta, \phi)^*$ -biderivation.

In order to prove our main result we need to prove the following key lemma:

**Lemma 1.1.** Let R be a prime ring with involution and  $\theta, \phi$  be automorphisms of R. For  $a \in R$ , if  $\theta(x)a\phi(x^*) = 0$  for all  $x \in R$ , then a = 0.

Proof. We have

$$\theta(x)a\phi(x^*) = 0 \text{ for all } x \in R.$$
(1.1)

Replacing x by  $x^* + y$  in (1.1), we get

$$\theta(y)a\phi(x) + \theta(x^*)a\phi(y^*) = 0 \text{ for all } x, y \in R.$$
(1.2)

This can be further written as

$$\theta(y)a\phi(x) = -\theta(x^*)a\phi(y^*) \text{ for all } x, y \in R.$$
(1.3)

Applications of (1.1) and (1.3) yields that

$$a\theta(x)a\theta(z)a\phi(x)a = a(\theta(x)a\theta(z))a\phi(x)a$$
  
=  $-a\theta(z^*)a\theta(x^*)a\phi(x)a$   
=  $-a\theta(z^*)a(\theta(x^*)a\phi(x))a$   
=  $0$  for all  $x, z \in R$ 

This implies that

$$a\theta(x)aRa\phi(x)a = (0)$$
 for all  $x \in R$ .

The primeness of R forces that either  $a\theta(x)a = 0$  or  $a\phi(x)a = 0$  for all  $x \in R$ . Since  $\theta$  and  $\phi$  are automorphisms of R, so we are force to conclude that aRa = (0). Hence, a = 0. This proves the lemma.

**Lemma 1.2.** Let R be a 2-torsion free ring with involution and  $\theta, \phi$  be endomorphisms of R. If  $d: R \times R \to R$  is a symmetric Jordan  $(\theta, \phi)^*$ -biderivation of R, then the following hold:

- (i)  $d(xy + yx, z) = d(x, z)\theta(y^*) + d(y, z)\theta(x^*) + \phi(x)d(y, z) + \phi(y)d(x, z)$  for all  $x, y, z \in R$ ;
- (ii)  $d(xyx,z) = d(x,z)\theta(y^*x^*) + \phi(x)d(y,z)\theta(x^*) + \phi(xy)d(x,z)$  for all  $x, y, z \in R$ ;
- $\begin{array}{ll} (iii) & d(xyt + tyx, z) = d(x, z)\theta(y^{*}t^{*}) + \phi(x)d(y, z)\theta(t^{*}) + \phi(xy)d(t, z) \\ & + d(t, z)\theta(y^{*}x^{*}) + \phi(t)d(y, z)\theta(x^{*}) + \phi(ty)d(x, z) \ for \ all \ t, x, y, z \in R. \end{array}$

*Proof.* (i) We are given that  $d: R \times R \to R$  is a symmetric Jordan  $(\theta, \phi)^*$ -biderivation of R i.e.,

$$d(x^2, z) = d(x, z)\theta(x^*) + \phi(x)d(x, z)$$

for all  $x, z \in R$ . Replacing x by x + y in above expression, we obtain

~

$$d((x+y)^{2}, z) = d(x, z)\theta(x^{*}) + d(x, z)\theta(y^{*}) + d(y, z)\theta(x^{*})$$

$$+ d(y, z)\theta(y^{*}) + \phi(x)d(x, z) + \phi(y)d(x, z)$$

$$+ \phi(x)d(y, z) + \phi(y)d(y, z)$$
(1.4)

for all  $x, y, z \in R$ . Also, we have

$$d((x+y)^{2}, z) = d(xy+yx, z) + d(x, z)\theta(x^{*}) + \phi(x)d(x, z)$$

$$+ d(y, z)\theta(y^{*}) + \phi(y)d(y, z)$$
(1.5)

for all  $x,y,z\in R.$  On comparing last two relations we get the required result.

(ii) Replacing y by xy + yx in (i), we get

$$d(x(xy + yx) + (xy + yx)x, z)$$

$$= d(xy + yx, z)\theta(x^{*}) + d(x, z)\theta(x^{*}y^{*} + y^{*}x^{*})$$

$$+ \phi(x)d(xy + yx, z) + \phi(xy + yx)d(x, z)$$

$$= d(xy, z)\theta(x^{*}) + d(yx, z)\theta(x^{*}) + d(x, z)\theta(x^{*}y^{*})$$

$$+ d(x, z)\theta(y^{*}x^{*}) + \phi(x)d(xy, z) + \phi(x)d(yx, z)$$

$$+ \phi(xy)d(x, z) + \phi(yx)d(x, z)$$

$$= d(x, z)\theta(y^{*}x^{*}) + d(x, z)\theta(x^{*}y^{*}) + d(x, z)\theta(y^{*}x^{*})$$

$$+ d(y, z)\theta((x^{*})^{2}) + \phi(x)d(y, z)\theta(x^{*}) + \phi(y)d(x, z)\theta(x^{*})$$

$$+ \phi(xy)d(x, z) + \phi(xy)d(x, z) + \phi(yx)d(x, z)$$

$$(1.6)$$

for all  $x, y, z \in R$ . On the other hand, we have

$$d(x(xy + yx) + (xy + yx)x, z)$$

$$= d(x^{2}y + yx^{2}, z) + 2d(xyx, z)$$

$$= d(x, z)\theta(x^{*}y^{*}) + \phi(x)d(x, z)\theta(y^{*}) + d(y, z)\theta((x^{*})^{2})$$

$$+ \phi(x^{2})d(y, z) + \phi(y)d(x, z)\theta(x^{*}) + \phi(yx)d(x, z)$$

$$+ 2d(xyx, z)$$

$$(1.7)$$

for all  $x, y, z \in R$ . Comparing (1.6) and (1.7), we obtain

$$2d(xyx, z) = 2\{d(x, z)\theta(y^*x^*) + \phi(x)d(y, z)\theta(x^*) + \phi(xy)d(x, z)\} \text{ for all } x, y, z \in R.$$

Since R is 2-torsion free ring, the last expression yields the required result.

(*iii*) Putting x + t instead of x in (*ii*), we get

$$\begin{aligned} d((x+t)y(x+t),z) \\ &= d(x+t,z)\theta(y^*)\theta(x^*+t^*) + \phi(x+t)d(y,z)\theta(x^*+t^*) \\ &+ \phi(x+t)\phi(y)d(x+t,z) \\ &= d(x,z)\theta(y^*x^*) + d(x,z)\theta(y^*t^*) + d(t,z)\theta(y^*x^*) + d(t,z)\theta(y^*t^*) \\ &+ \phi(x)d(y,z)\theta(x^*) + \phi(x)d(y,z)\theta(t^*) + \phi(t)d(y,z)\theta(x^*) + \phi(t)d(y,z)\theta(t^*) \\ &+ \phi(xy)d(x,z) + \phi(xy)d(t,z) + \phi(ty)d(x,z) + \phi(ty)d(t,z) \end{aligned}$$
for all  $t, x, y, z \in R$ . On the other hand, we have

d((x+t)y(x+t),z)

$$= d(xyx, z) + d(tyt, z) + d(xyt + tyx, z)$$
  
=  $d(x, z)\theta(y^*x^*) + \phi(x)d(y, z)\theta(x^*) + \phi(xy)d(x, z)$   
+  $d(t, z)\theta(y^*t^*) + \phi(t)d(y, z)\theta(t^*) + \phi(ty)d(t, z) + d(xyt + tyx, z)$ 

for all  $t, x, y, z \in R$ . From the last two relations, we conclude the desired result. This completes the proof.

We are now have enough informations to prove our main theorem:

**Theorem 1.3.** Let R be a prime ring with involution such that  $char(R) \neq 2$  and  $\theta, \phi$  be automorphisms of R. Then any symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation  $d: R \times R \to R$  is a symmetric Jordan  $(\theta, \phi)^*$ -biderivation.

*Proof.* Assume that  $d: R \times R \to R$  is a symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation of R i.e.,

$$d(xyx, z) = d(x, z)\theta(y^*x^*) + \phi(x)d(y, z)\theta(x^*) + \phi(xy)d(x, z)$$
(1.8)

for all  $x, y, z \in R$ . In view of Lemma 1.2 (*iii*), we have

$$\begin{array}{lcl} d(xyt + tyx, z) &=& d(x, z)\theta(y^*t^*) + \phi(x)d(y, z)\theta(t^*) + \phi(xy)d(t, z) \\ &+& d(t, z)\theta(y^*x^*) + \phi(t)d(y, z)\theta(x^*) + \phi(ty)d(x, z) \end{array}$$

for all  $t, x, y, z \in R$ . Thus, we obtain

$$\begin{aligned} d((xy)^2, z) &= d(xyxy, z) = d(xy(xy) + (xy)yx - xy^2x, z) \\ &= d(xy(xy) + (xy)yx, z) - d(xy^2x, z) \\ &= d(x, z)\theta((y^*)^2)\theta(x^*) + \phi(x)d(y, z)\theta(y^*x^*) + \phi(xy)d(xy, z) \\ &+ d(xy, z)\theta(y^*x^*) + \phi(xy)d(y, z)\theta(x^*) + \phi(xy^2)d(x, z) \\ &- d(x, z)\theta((y^*)^2)\theta(x^*) - \phi(x)d(y^2, z)\theta(x^*) - \phi(xy^2)d(x, z) \end{aligned}$$

for all  $x, y, z \in R$ . This implies that

$$0 = d((xy)^{2}, z) - d(xy, z)\theta(y^{*}x^{*}) - \phi(xy)d(xy, z)$$
  
+  $\phi(x)(d(y^{2}, z) - d(y, z)\theta(y^{*}) - \phi(y)d(y, z))\theta(x^{*})$  (1.9)

for all  $x, y, z \in R$ . Thus, the relation (1.9) can be rewritten in the following form

$$\Delta(xy) + \phi(x)\Delta(y)\theta(x^*) = 0 \tag{1.10}$$

0

for all  $x, y \in R$ , where

$$\Delta(x) = d(x^2, z) - d(x, z)\theta(x^*) - \phi(x)d(x, z)$$

for all  $x, z \in R$ . Application of relation (1.10) yields that

$$2\phi(ty)\Delta(x)\theta(y^*t^*) = \phi(ty)\Delta(x)\theta(y^*t^*) + \phi(ty)\Delta(x)\theta(y^*t^*)$$
  
$$= -\phi(t)\Delta(yx)\theta(t^*) - \Delta((ty)x)$$
  
$$= -\phi(t)\Delta(yx)\theta(t^*) - \Delta(tyx)$$
  
$$= \Delta(tyx) - \Delta(tyx)$$
  
$$= 0$$

for all  $x, y, t \in R$ . Thus  $2\phi(ty)\Delta(x)\theta(y^*t^*) = 0$  for all  $x, y, t \in R$ . Since  $char(R) \neq 2$ , the above relation yields that  $\phi(ty)\Delta(x)\theta(y^*t^*) = 0$  for all  $x, y, t \in R$ . Hence, application of Lemma 1.1 twice yields that  $\Delta(x) = 0$  for all  $x \in R$ . That is,  $d(x^2, z) - d(x, z)\theta(x^*) - \phi(x)d(x, z) = 0$  for all  $x, z \in R$ . Hence, d is a symmetric Jordan  $(\theta, \phi)^*$ -biderivation on R. This completes the proof of the theorem.

From the above theorem, we now deduce immediate the following corollary.

**Corollary 1.4.** Let R be a prime ring with involution such that  $char(R) \neq 2$ . Then every symmetric Jordan triple \*-biderivation  $d : R \times R \to R$  is a symmetric Jordan \*-biderivation.

### 2 Conclusion

In conclusion, we characterize biadditive mappings which satisfies some functional identities related to symmetric Jordan  $(\theta, \phi)^*$ -biderivation of prime rings. In particular, we prove that on a 2-torsion free prime ring with involution, every symmetric Jordan triple  $(\theta, \phi)^*$ -biderivation is a symmetric Jordan  $(\theta, \phi)^*$ -biderivation.

#### Acknowledgement

The authors are grateful to the referee/s for his/her carefully reading the manuscript.

#### **Competing Interests**

Authors have declared that no competing interests exist.

### References

- [1] Brešar M. Jordan mappings on semiprime rings. J. Algebra. 1989;127:218-228.
- [2] Kurepa S. Quadratic and sesquilinear functional. Glasnik Mat-Fiz Astronom Ser. II Drutvo Mat-Fiz Hrvatske. 1965;20:75-78.
- [3] Šemrl P. Quadratic functionals and Jordan \*-derivations. Studia Math. 1991;97(3):157-165.
- [4] Šemrl, P. On Jordan \*-derivations and an application. Colloq. Math. 1990;59(2):241-251.
- [5] Šemrl P. On quadratic functional. Bull. Austral. Math. Soc. 1988;37(1):27-28.
- [6] Vukman J. Some functional equations in Banach algebras and an application. Proc. Amer. Math. Soc. 1987;100(1):133-136.
- [7] Vukman J. A note on Jordan \*-derivations in semiprime rings with involution. Int. Math. Forum. 2006;13:617-622.
- [8] Fošner M, Ilišević D. On Jordan triple derivations and related mappings. Mediterr. J. Math. 2008;5(4):415-427.

- [9] Ali Shakir, Fošner A. On Jordan  $(\alpha, \beta)^*$ -derivation in semiprime \*-ring. Int. J. Algebra. 2010;2:99-108.
- [10] Ali Shakir. A note on Jordan triple  $(\alpha, \beta)^*$ -derivation on  $H^*$ -algebras. East-West J Math. 2011;13(2):139-146.
- [11] Ali Shakir, Dar NA. A characterization of additive mappings in rings with involution. Ukrainian Math. Journal; 2016. (To appear).
- [12] Ali Shakir, Dar NA, Pagon D. On Jordan \*-mappings in rings with involution. J. Egyptian Math. Soc. 2016;24:15-19.
   Available: http://dx.doi.org/10.1016/j.joems.2014.12.006
- [13] Ali Shakir, Fošner M, Fošner A, Khan MS. On generalized Jordan triple  $(\alpha, \beta)^*$ -derivations and related mappings. Medtirr. J. Math. 2013;10:1657-1668.
- [14] Ashraf M, Ali Shakir.On  $(\alpha, \beta)^*$ -derivation in  $H^*$ -algebras. Adv. Algebra. 2009;2(1):23-31.
- [15] Ashraf M, Ali Shakir, Khan A. Generalized  $(\alpha, \beta)^*$ -derivations and related mappings in semiprime \*-rings. Asian-Eur. J. Math. 2012;5(2):1250015 (10 pages).
- [16] Ashraf M, Rehman N, Ali Shakir, Rahman M. On generalized  $(\theta, \phi)$ -derivations in semiprime rings with involution. Math. Slov. 2012;62(3):451-460.
- [17] Daif MN, El-Sayiad MS. On generalized derivations of semiprime rings with involution. Int. J. Algebra. 2007;1(9):551-555.
- [18] Maska G. Remark on symmetric bi-additive functions having non-negative diagonalization. Glas. Mat. Ser. III. 1980;15:279-280.
- [19] Maksa G. On the trace of symmetric biderivations. C. R. Math. Rep. Acad. Sci. Canada. 1987;9(6):303-307.
- [20] Ali Shakir, Khan MS. On \*-bimultipliers, Generalized \*-biderivations and related mappings. Kyungpook Math. J. 2011;51(3):301-309.

© 2016 Ali et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

http://sciencedomain.org/review-history/15269