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ABSTRACT 
 
A new selective oxidation reaction for the oxidation of alcohols to aldehydes and ketones is 
described. N-Chloramines are used as the oxidant together with dialkylsulfide. This Swern-type 
reaction can be performed at room temperature without an additional base and the dialkylsulfide 
may be used catalytically. 
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1. INTRODUCTION 
 
The development of new oxidation methods 
remains an important target in organic synthesis 
[1]. One of the problems encountered when 

searching for such a new reaction is, that many 
common oxidants are either hard to activate, 
react unselectively or contain acidic protons, 
which are not tolerated by many catalysts. 
Bearing this is mind, it is surprising that             

Short Research Article 



 
 
 
 

Kühn and Göttlich; IRJPAC, 10(1): 1-6, 2016; Article no.IRJPAC.20573 
 
 

 
2 
 

N-chloroamines, a class of compounds with a 
high oxidation potential, cheap and easily 
prepared, while containing no acidic protons, [2] 
have been virtually unnoticed as oxidants during 
the last 20 years. We therefore turned our 
attention towards using N-chloroamines as 
oxidants in various reactions [3]. Here we report 
our results in using these reagents for the 
oxidation of alcohols. 
 
Methods most commonly employed for the 
selective oxidation of alcohols to aldehydes and 
ketones use either equimolar amounts of highly 
toxic chromium, [4] are tedious to prepare, like 
the Dess-Martin reagent, [5] or require an 
expensive catalyst e.g. the Ley oxidation           
[6]. More recently oxoammonium-catalyzed 
oxidations of alcohols have been developed [7]. 
However, on a laboratory scale the Swern and 
Pfitzner-Moffat oxidation is still the most 
commonly employed and very reliable [8]. 
However this reaction also suffers from some 
disadvantages, namely the need for low 
temperature (-78°C) and large amounts of 
amine. This still holds true for a procedure 
reported by Corey and Kim, [9] who used          
N-chlorosuccinimide and dialkylsulfide to 
generate sulfoniumions, the intermediates of the 
Swern oxidation. 
 
2. EXPERIMENTAL 
 
2.1 N-Chlorodiethylamine 
 
 N-Chlorodiethylamine is a known compound and 
was prepared according to literature-procedures 
using aqueous sodium hypochlorite [11]. 
 

1H-NMR (300MHz, CDCl3): δ = 1.23 (t, 6H, 3J = 
6.9Hz); 3.00 (q, 4H, 3J = 6.9Hz) ppm. 13C-NMR 
(75MHz, CDCl3): δ = 13.1; 58.1 ppm. The data 
are in accordance with the published data for this 
compound [11]. 
 
2.2 General Procedure for the Oxidation 

of Alcohols: Oxidation of Isomenthol 
 
To a solution of 469 mg (3.0 mmol) isomenthol in 
10 mL dry chloroform 702 mg (4.8 mmol) 
dibutylsulfide and 1.61 g (15 mmol)                   
N-chlorodiethylamine were added under an 
argon atmosphere. The solution was stirred for 
16 h and then poured onto 50 mL water. The 
layers were separated and the aquous layer 
washed three times with dichloromethane (30 mL 
each). The combined organic layers were dried 
over sodiumsulphate, filtered and the solvent 

removed in vacuo. From the residue the pure 
ketone (386 mg, 2.5 mmol, 84%) was isolated by 
flash-chromatography. 
 
1H-NMR (300MHz, CDCl3): δ = 0.86 (d, 3H,       
3J = 6.5Hz); 0.94 (d, 3H, 3J = 6.45Hz); 1.00       
(d, 3H, 3J = 6.7Hz); 1.4-1.55 (m, 1H); 1.65-1.8 
(m, 2H); 1.90-2.15 (m, 5H); 2.25-2.35 (m, 1H) 
ppm. 13C-NMR (75MHz, CDCl3): δ = 19.9; 20.9; 
21.4; 26.9; 27.0; 29.5; 34.4; 48.1; 57.2; 214.4 
ppm. The data are in accordance with the 
published data for this compound [12]. 
 
2.3 Decanal   
 
1H-NMR (300MHz, CDCl3): δ = 0.85-1.67         
(m, 17H); 2.24-2.30 (m, 2H); 9.24 (s, 1H) ppm. 
13C-NMR (75MHz, CDCl3): δ = 14.1; 22.7; 24.5; 
29.1; 29.3; 29.4; 31.8; 31.9; 40.7; 184.9 ppm. 
The data are in accordance with the published 
data for this compound [13]. 
 
2.4 Benzaldehyde  
 
1H-NMR (300 MHz, CDCl3): δ = 7.50-7.90         
(m, 5H); 10.0 (s, 1H) ppm. 13C-NMR (75 MHz, 
CDCl3): δ = 129.0; 129.7; 134.4; 136.5; 192.3 
ppm. The data are in accordance with the 
published data for this compound [14]. 
 
2.5 Cyclohexylaldehyde   
 
1H-NMR (300 MHz, CDCl3): δ = 0.85-1.9          
(m, 10 H); 2.99 (m, 1 H); 9.40 (s, 1 H) ppm.     
13C-NMR (75 MHz, CDCl3): δ = 25.1; 26.0; 26.1; 
50.0; 204.8 ppm. The data are in accordance 
with the published data for this compound [13]. 
 
2.6 2-Methylpentanal   
 
1H-NMR (300 MHz, CDCl3): δ = 0.87-0.92 (t, 3 H, 
3J = 7.14 Hz); 1.03-1.08 (m, 3 H); 1.18-1.28 (m, 2 
H); 1.51-1.59 (m, 2 H); 2.41-2.53 (m, 1 H); 9.42 
(s, 1 H) ppm. The data are in accordance with 
the published data for this compound [13]. 
 
2.7 2,2-Dimethylpent-4-enal  
 
1H-NMR (300 MHz, CDCl3): δ = 1.06 (s, 6 H); 
2.22 (dt, 2 H, 3J = 7.6 Hz, 4J = 1.2 Hz); 5.07      
(m, 2 H); 5.70 (m, 1 H); 9.49 (s, 1 H) ppm.       
13C-NMR (75 MHz, CDCl3): δ = = 21.2; 41.5; 
45.7; 118.4; 133.1; 205.8 ppm. The data are in 
accordance with the published data for this 
compound [15]. 
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3. RESULTS 
 
In our mind, the use of the less reactive             
N-chloroamines as oxidants together with 
dialkylsulfides could allow the oxidation of 
alcohols at room temperature and without any 
additional base, as this is generated in situ from 
the chloroamine. This proved to be correct, as 
can be seen from the good yield obtained in the 
oxidation of isomenthol (Fig. 1). 
 
Varying the reaction conditions like the 
temperature and the solvent did not lead to a 
higher yield. As in the mechanism reported by 
Corey and Kim [9] the dialkylsulfide is 
regenerated, thus catalytic amounts of 
dialkylsulfide should be sufficient for performing 

the oxidation. Indeed upon using only 10% of 
dibutylsulfide menthon was obtained after 3 days 
in 68% yield, clearly indicating a slow catalytic 
turnover of the sulfide. We therefore propose - in 
analogy to the Corey-Kim oxidation [9] - the 
reaction mechanism depicted in Fig. 2. 
 
In a first step the chloroamine oxidizes the sulfide 
to the sulfoniumion A, [10] in which diethylamine 
is substituted for the alcohol and sulfoniumion B 
is generated. In analogy to the Swern oxidation 
this sulfoniumion reacts with the formed 
diethylamine to the ketone, regenerating the 
sulfide. The fact that catalytical amounts of 
sulfide are sufficient for the oxidation supports 
this mechanism, however to date we were not 
able to isolate intermediates of the oxidation.  

 

 
Fig. 1. Oxidati on of isomenthol  

 

 
Fig. 2. Proposed reaction mechanism  
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To check the generality of these simple reaction 
conditions we oxidized different alcohols using a 
slight excess of dialkylsulfide. The results are 
given in Table 1. 
 
As with the Swern oxidation, primary alcohols are 
oxidized to aldehydes selectively and in 
moderate to good yields. Products of further 
oxidation could not be detected. The only 

byproducts were the corresponding 
alkylchlorides, arising from a nucleophilic 
substitution at the carbon of sulfoniumion B. 
Even though in the Corey-Kim reaction this side 
reaction is a major problem when benzylic 
alcohols are oxidized. Using our condition a good 
yield of benzaldehyde is obtained from benzylic 
alcohol. 

 
Table 1. Oxidation of different alcohols  
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Another possible application of our reaction is the 
formation of enamines from the secondary amine 
and the aldehydes/ketones. As these might be 
destroyed during aqueous work-up, we added a 
large excess of allylic bromide to the reaction 
mixture after completion of the oxidation for 
allylation of these enamines. In this reaction we 
were able to detect only traces of the α-allylated 
aldehyde. This proves that enamine formation is 
not, or is only in small amounts, occuring during 
the reaction using our moderate conditions.  
 
However our reaction conditions could allow the 
generation of enamines after complete oxidation 
by azeotropic removal of water. Further studies 
towards such an interesting cascade reaction are 
currently beeing performed in our laboratory. 
 
4. CONCLUSION 
 
In summary we have shown for the first time that 
simple N-chloroamines can be used as oxidants 
in a variation of the Corey-Kim [9] oxidation. In 
analogy to this reaction we have proposed a 
mechanism via sulfoniumions. The newly 
developed reaction conditions allow, under 
laboratory scale, the facile oxidation of primary 
and secondary alcohols to aldehydes and 
ketones respectively, in moderate to good yields. 
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