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Abstract 
For commercial soybean production, the presence of phosphorus in the soil is essential, not only to increase 
productivity but also because it affects basic functions in plant metabolism. Phosphate fertilizers have low 
efficiency in Cerrado soils. For this reason, the use of technologies associated with phosphate fertilizers is 
important to increase their efficiency in the soil. The experiment was conducted at Fazenda Rio Brilhante in 
Coromandel, MG. The experiment was laid out in a randomized block design in a 4 × 4 + 1 factorial 
arrangement. Treatments consisted of four phosphate fertilizer sources (MAPCONVENCIONAL, MAPpol 1, MAPpol 2, 
and FOM), four P2O5 doses (40, 80, 120, and 160 kg ha-1), and the control treatment (no phosphorus application). 
The soybean cultivar RK8115 IPRO with a plant population of 340 thousand plants per hectare was used. The 
experimental plots consisted of five planting lines with a spacing of 0.5 meters and a length of 7 meters. In the 
experiment, phosphorus leaf, morphological evaluation of plant height, stem diameter, number of stems, and 
pods were measured. For plant biomass, the dry matter of leaves, stems, and pods were determined. For yield 
evaluation, the calculation of productivity and RAE was compared with MAPCONVENCIONAL. For sources, data 
were subjected to analysis of variance, and means were separated by Tukey’s rate test (p < 0.05). For P2O5 doses, 
regression model fitting was performed using the ExpDes.pt package of R Studio software. Morphological 
assessments responded linearly to P doses, except for DPM. Leaves and pods P content and yield were affected 
by P dosage and P sources, with a quadratic response to P dosage. Maximum yield efficiency was achieved at 
P2O5 doses of 122.73; 145.07; 112.03; and 94.71 kg ha-1, with yields of 3818.30; 4064.67; 4089.03; and 3952.63 
kg ha-1 for MAPCONVENCIONAL, MAPpol 2, MAPpol 1, and FOM, respectively. However, MAPpol 1 and FOM 
provided a dose reduction of 26 and 15 compared to the maximum yield of MAPCONVENCIONAL, respectively.  

Keywords: organomineral, polymers, yield 

1. Introduction 
In a bulletin published in February 2020, soybean production in Brazil will reach a historical record of 123.25 
million tons, with average productivity of 3,349 kg ha-1, representing increases of 7.1 and 4.4%, respectively, 
over the previous harvest, both in production and productivity. The area planted also increased by 2.6% in this 
crop compared to the previous crop, reaching a total of 36.8 million hectares (CONAB, 2020). For the 
commercial cultivation of soybeans, the presence of phosphorus in the soil is essential, since it performs basic 
functions in the metabolism of plants, which can lead to a significant increase in productivity (Araujo, 2005). 

In Cerrado soils, where highly weathered soils predominate, phosphorus (P) is considered one of the limiting 
nutrients for biomass production (Novais & Smyth, 1999). This is because P performs functions such as plant 
development, component of nucleic acids, proteins, ATP, genetic material, energy storage and transfer, 
photosynthesis, regulation of enzymatic processes, root development and seed formation (Malavolta, 2006; 
Zambolim, 2001; Dechen & Nachtigall, 2007).  

Oxisols are the soil class that represents about 45.7% of Cerrado soils. They are described as highly weathered, 
deep, with clay contents ranging from 15 to 80% and low availability of nutrients, especially P. These soils 
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contain predominantly clay minerals of the 1:1 type, as well as iron oxides (hematite and goethite) and aluminum 
(gibsite). These factors increase and control the availability and adsorption of P in the soil (Stauffer, 2016), 
which contributes to low concentration of the nutrient in the soil (Fink et al., 2014) and negatively affects the 
diffusive P flux (FDP) in the soil (Raghothama & Karthikeyan, 2005). Additionally, Hopkins (2015) says that the 
recovery capacity of phosphorus applied by fertilizers in tropical soils ranges from 0.1 to 30%, depending on the 
pH and type of clay in the soil. 

Hence, alternatives to increase the efficiency of phosphate fertilization in Cerrado soils include the use of coating 
polymers or related technologies and the use of organomineral fertilizers. The accompanying technologies may 
be gradual or controlled release (Machado & Souza, 2012), the use of polymers with high density of negative 
charges that bind interfering divalent or trivalent cations (Dunn & Stevens, 2008), or the use of organic acids 
(Sas et al., 2001), which are components of organophosphate fertilizers. These technologies aim to mitigate the 
impairment of soil P availability by cations and clays in order to increase the available P in the soil solution for 
subsequent uptake by plants. 

Therefore, the objective of the present work is to evaluate the response of soybean cultivation and the agronomic 
efficiency of phosphate fertilizers with appropriate technology in the Cerrado, crop 2019/2020, in the Alto 
Paranaíba region, MG. 

2. Methodology 
The experiment was conducted at Fazenda Rio Brilhante in the municipality of Coromandel, MG, at geographic 
coordinates 18°35′48.5″S 46°53′55.6″W. The climate of the region is classified as Aw with two well-defined 
seasons, rainy summers and dry winters (Köppen, 1931).   
 

 
Figure 1. Rainfall data during the conduct of the experiment. Coromandel, MG. 2020 

 

The experiment was laid out in a randomized block design (DBC) and in a 4 × 4 + 1 factorial scheme with four 
replications. Four phosphate fertilizer sources (MAPCONVENCIONAL, MAPpol 1, MAPpol 2 and organomineral source 
(FOM-06-26-00)), four P2O5 doses (40, 80, 120 and 160 kg ha-1) and one control treatment (no phosphorus 
application) were used. Soybean cultivar RK8115 IPRO with indeterminate cycle, maturity group 8.1 and plant 
population of 340 thousand plants ha-1 was used. The experimental plots consisted of five plots, 0.5 m apart and 
7 m long, with a total area of 17.5 m2.  

For the chemical characterization of the soil, a soil sample was collected from the experimental area and then 
analyzed according to the methods proposed by EMBRAPA (2017).  
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Table 1. Chemical characterization of the experimental area before the installation of the experiment. Patos de 
Minas, 2020 

pH M.O. P-rem P-meh K+ Ca2+ Mg2+ Al3+ H+Al SB t T V m 

water dag Kg-1 mg L-1 ----- mg dm-3 ----- ------------------------ cmolc dm-3 ------------------------ ------ % ------

6.50 4.39 11.96 1.87 126.00 2.70 1.50 0.01 4.20 4.52 4.53 8.72 51.85 0.22

Note. OBS.: pH in water; Ca2+, Mg2+ and Al3+ extractor KCl 1 mol L-1; P-rem solution CaCl 0.01 mol L-1 
containing 60 mg L-1 of P; P-meh and K+ mehlich1 extractor; H+Al extractor Calcium acetate 1 mol L-1 at pH 7.0; 
M.O. determined by the Walkley-Black method. 

 

To apply the treatments, the planting lines were first marked with a seeder, which served as a reference for 
opening the furrows. The furrows were opened manually and then the treatments were applied. The furrows were 
covered, and the sowing was done mechanically with the same machines used for marking the lines. Leaf 
phosphorus content (P-leaf) was measured and morphological values such as plant height, stem diameter, 
number of stems and pods, plant biomass (leaves, stems, and pods dry matter- LDM, SDM, and PDM 
respectively) were determined. In addition, an analysis of productivity and relative agronomic efficiency (RAE) 
of the treatments was carried out in comparison with MAPCONVENCIONAL. 

The P-leaf analysis was conducted when the plants were at the R2 stage (full flowering). Ten clovers per plot 
were collected for this assessment, with the third fully developed clover leaf counted from the apex of the plant. 
These were placed in paper bags, properly labeled, and sent to the Laboratory and Central of Soil Fertility 
Analysis (CeFert), where they were stored in a convection oven at 65 °C until they reached a constant mass. 
Then the samples were ground in a Willey mill, weighed 0.5 g, and placed in an electric muffle furnace at 
500 °C until complete digestion of the organic part of the plant tissue. Then, the extraction method (HNO3 1 mol 
L-1) and quantification of P content in leaf tissue were carried out according to the vanadate yellow method 
proposed by EMBRAPA (2009). 

Morphological assessments were made when plants were at phenological stage R5, which corresponds to the 
phenological stage of filling initiation. Two plants per plot were removed and taken to CeFert to evaluate the 
morphological parameters. Plant height was measured from the crown to the top of the plant using a tape 
measure labeled in centimeters. The diameter was measured in millimeters between the first and second nodes at 
the plant neck using a digital caliper. The number of stems and pods was determined by manually counting each 
plant structure. 

LDM, SDM, and PDM assessments were made on the plants used for the morphological assessments. For this 
purpose, plants were dissected into leaves, stems, and pods, placed in paper bags, and placed in a convection 
oven at 65 ºC until they reached a constant mass. The samples were then weighed on an analytical balance. For 
yield evaluation, only the usable area of each plot was recorded, i.e., excluding the end lines and one meter at the 
beginning and end of each plot, corresponding to a usable area of 7.5 m2. After collection, the pods were 
threshed manually and weighed on an analytical balance and the result was extrapolated to kilo ha-1. 

The relative agronomic efficiency index was calculated according to Prochnow et al. (2003): 

RAE	(%) =	 Y
Source i

 – Y
Untreated

Y
Standat-source

 – Y
Untreated

×100                                (1) 

where, RAE: Relative agronomic efficiency (%); YSource i: grain productivity with phosphate fertilizer; YUntreated: 
grain yield without phosphate fertilizer; YStandat-source: productivity obtained with the fertilizer MAPCONVENCIONAL. 

Data were subjected to the residual normality test (Shapiro-Wilk) followed by analysis of variance. Means were 
compared using Tukey’s test (p < 0.05) for sources, and the regression model was fitted for P2O5 doses using the 
ExpDes.pt package (Ferreira et al., 2018) in R Studio software (Rstudio Team, 2016). 

3. Results and Discussion 
The ratings of LDM, SDM, stem diameter, and plant height (Figure 2) were affected only by the P2O5 doses, and 
these responded linearly up to a P2O5 dose of 160 kg ha-1. The ratings of PDM, P-leaf, number of pods, and 
productivity were affected by the interaction between the source and dose factors. 
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Table 2. Average pods dry matter of soybean exposed to the different phosphate fertilizer doses and sources. 
Coromandel, 2020 

Sources 
Doses of P2O5 in kg ha-1 

Average 
0 40 80 120 160 

MAPCONVENCIONAL 6.42a 6.46ab 6.03a 7.57a 7.11ab 6.72 

FOM 6.42a 7.49a 6.22a 6.46a 5.58b 6.43 

MAPpol 1 6.42a 5.55b 5.6a 7.96a 7.60a 6.63 

MAPpol 2 6.42a 6.95ab 5.97a 7.57a 6.38ab 6.66 

Average 6.42 6.61 5.96 7.39 6.67 

CV (%): 13.61       

DMS: 1.69       

Note. ¹ Mean scores with same letters in column do not differ by Tukey’s test at 0.05 significance. 

 

In the significant interaction between sources and doses for the P-leaf variable (Table 3 and Figure 3), it is noted 
that when sources were partitioned within doses, there was a significant difference between sources only for the 
doses of 40 and 160 kg ha-1 P2O5, and when doses were partitioned within sources, there was a significant quadratic 
fit for all sources. Accordingly, the highest P-leaf contents were obtained by the application of MAPCONVENCIONAL, 
FOM, MAPpol 2 and MAPpol 1 at doses of 100.75; 166.00; 106.25 and 181.25 kg ha-1 P2O5, reaching contents of 3.59; 
4.50; 4.07 and 4.38 g kg-1, respectively. 

 

Table 3. Average values of P-leaf content of soybean fertilized with phosphate fertilizers at different rates and 
from different sources. Coromandel, 2020 

Sources 
Doses of P2O5 kg ha-1 

Average 
0 40 80 120 160 

MAPCONVENCIONAL 1.49a 2.99b 3.59a 3.48a 3.2b 2.95 

FOM 1.49a 3.4ab 3.21a 3.42a 3.54b 3.02 

MAPpol 1 1.49a 3.35ab 3.47a 3.65a 4.59a 3.31 

MAPpol 2 1.49a 3.88a 3.58a 3.37a 3.26b 3.11 

Average 1.49 3.35 3.46 3.48 3.64 

CV (%): 13.37       

DMS: 0.775       

Note. ¹ Mean scores with same letters in column do not differ by Tukey’s test at 0.05 significance. 
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Table 6. Relative agronomic efficiency of soybean cultivation as a function of phosphorus dosage 

Sources 
Relative Agronomic Efficiency (%) 

Average 
40 80 120 160 

FOM 151.49 125.98 97.24 88.15 115.71 

MAPpol 1 111.95 137.98 142.65 120.74 128.33 

MAPpol 2 71.51 118.82 150.39 137.55 119.57 

Average 111.65 127.59 130.09 115.48 

 
4. Conclusion 
The use of phosphate sources with associated technologies resulted in an increase in the relative agronomic 
efficiency and productivity of the soybean crop compared to MAPCONVENCIONAL. Compared to the conventional 
MAP, the application of FOM showed an increase in agronomic efficiency at 40 and 80 kg ha-1 P2O5, while with 
MAPpol1 and MAPpol 2 additives, the highest values of agronomic efficiency were obtained at doses above 80 kg 
ha-1 P2O5. At a dose of 120 kg ha-1 P2O5, the use of MAPpol 1 and MAPpol 2 resulted in an increase in agronomic 
efficiency of 50 to 40% compared to the conventional MAP, indicating the potential of the additives to increase 
productivity. 
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