

Advances in Research 9(5): 1-9, 2017; Article no.AIR.32005 ISSN: 2348-0394, NLM ID: 101666096

SCIENCEDOMAIN international www.sciencedomain.org

Database Derived Microsatellite Markers (SSRs) of Stevia rebaudiana for Cross-transferability Testing Across Species in Family Asteraceae

Poonam¹, Shilpa^{1*}, Neha Sharma², Rajinder Kaur¹ and Samriti¹

¹Department of Biotechnology, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India. ²Department of Fruit Science, Indian Agricultural Research Institute, New Delhi, India.

Authors' contributions

This work was carried out in collaboration between all authors. Author Poonam carried out the experiments and managed the literature searches. Author Shilpa performed the statistical analysis and wrote the first draft of the manuscript. Author NS assisted the experiments and author RK designed the study. Author Samriti helped to carry out the experiments. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AIR/2017/32005 <u>Editor(s):</u> (1) Marco Trevisan, Faculty of Agricultural Sciences, Institute of Agricultural and Environmental Chemistry, Catholic University of the Sacred Heart, Italy. <u>Reviewers:</u> (1) Pieter Agusthinus Riupassa, Pattimura University, Indonesia. (2) Wagno Alcantara De Santana, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil. (3) Neeraj Jain, Maharishi University of Information Technology, Sitapur Road, Lucknow, UP, India. Complete Peer review History: <u>http://www.sciencedomain.org/review-history/18936</u>

Original Research Article

Received 2nd February 2017 Accepted 6th April 2017 Published 6th May 2017

ABSTRACT

Aims: Simple sequence repeat markers derived from expressed sequences tags (ESTs) were used to carry out transferability studies across members of Asteraceae family.

Study Design: NTSY Spc ver.2.0 was used to construct similarity matrix and dendrogram.

Place and Duration of Study: Present study was undertaken in Department of Biotechnology, Dr Y S Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India -173230 from 2013-2015.

Methodology: EST-SSRs were used for PCR amplification of genomic DNA of Asteraceae family members. The data was compiled in the form of per cent polymorphism depending on polymorphic and monomorphic bands. Similarity matrix was generated to find out per cent similarity between species and dendrogram represented visual phylogenetic tree of species used.

^{*}Corresponding author: E-mail: shilpachaudhary05@gmail.com;

Results: In this study we have studied the level of transferability of 45 *Stevia* EST-SSRs in 20 members of Asteraceae family, representing 20 genera of three subfamilies of Asteraceae. All selected 45 primers generated polymorphism. Transferability of the EST-SSRs ranged from 6.5% in *Dimorphothica sinuata* to 75.5% in *Tagetes erecta*, both of which belong to subfamily Asteroideae. Narrow base of studied material was depicted as similarity matrix values ranged from 0.00 to 0.30. Dendrogram was divided into two main clusters. Cluster 'I' contained only one genotype i.e. '*Dimorphothica sinuata*', while Cluster 'II' consisted rest 20 species. **Conclusion:** Present study targeted those important members of Asteraceae family which were not undertaken all together for molecular studies. As number of sequences in database repository for Asteraceae family is low, thus utilizing the repository from one crop to other members of same family is the only way to carry forward molecular research. Overall our findings suggested that transferability of *Stevia* EST-SSRs across Asteraceae genera is varied, yet valuable, thereby providing a good set of markers for genetic diversity, molecular mapping, gene tagging and comparative mapping studies.

Keywords: Markers; amplification; polymorphism; transferability.

1. INTRODUCTION

The Asteraceae family is one of the largest and most diverse plant families comprising more than 23000 species [1]. Most recent molecular phylogenetic analysis of the family recognized 12 subfamilies, though three of these (Asteroideae, Cichorioideae and Carduoideae) account for nearly 95% of the species. Though medicinally very important, unfortunately Stevia could not catch the attention of molecular biologists. Molecular marker represent a valuable resource for genetic analysis of Stevia and related species and also have the potential to facilitate comparative map based analysis across of the species within the Asteraceae family. Simple sequence repeats (SSR) or microsatellites are regions of genome whereas a few bases are randomly repeated and are the markers of choice in genetics and breeding studies due to their multiallelic nature, co dominant inheritance, high abundance, reproducibility and transferability over genotypes and genome- wide coverage [2-3]. SSR markers are categorized into two classes, based on their origin: genomic which are developed from enriched DNA libraries and genic SSRs or expressed sequence tags (EST)-SSRs, derived from EST sequences originating from the expressed region of the genome which are submitted in public domain as cDNA clones. The development of genomic SSRs is tedious, expensive and time consuming, while EST-SSRs are easier to be searched in silico for a particular organism and these have been reported to be transferable across different relatives. Because of these issues related to genomic SSRs, many researchers have attempted to use EST-SSRs developed from one species for studies on related species and genera. In fact, ESTs are

one of the powerful tools of genomics research. Transferability of markers from one genus to another genus helps in comparative genetic analysis such as comparative mapping and evolutionary studies. Comparative genetic analysis has shown that different plant genera often share orthologous genes for very similar functions and gene content and gene order among different plant genera are highly conserved. Therefore, data mined EST-SSRs were screened for polymorphism and tested for their transferability across the genera in Asteraceae family.

2. MATERIALS AND METHODS

2.1 Source Plant Material and DNA Isolation

The plant material i.e. 21 species of different genera of Asteraceae family, which include eight medicinal plants 12 ornamental plants and one vegetable crop (Table 1) was collected from experimental fields. Young and healthy leaves were excised from the plants in the field and brought to laboratory in ice box and stored in deep freezer at -80°C till further use. Genomic DNA was isolated using CTAB method of Doyle and Doyle [4] with some modifications, followed by further purification.

2.2 PCR Amplifications and Gel Electrophoresis

Concentration of different components standardized for EST-SSR-PCR in 20 μ l of reaction mixture is as follows: 1X PCR buffer, 2.2 mM MgCl₂, 1 mM dNTPs, 35 μ M each primer (forward and reverse), 1U Taq DNA Polymerase,

50 ng template DNA following a thermal profile as: 5 min of initial denaturation at 95°C followed by 40 cycles of 1 min denaturation at 94°C, annealing varied with Tm of each primer for 1 min and extension of 2 min at 72°C, further followed by final extension of 5 min at 72°C. The amplified DNA was electrophoresed in 2% agarose gel in 1X TAE buffer (40mMTris-acetate, 1.0 mM EDTA).

2.3 SSR Studies for Cross-transferability and Data Analysis

Out of 21 genotypes, S. rebaudiana was initially used for amplification of 45 EST-SSRs. Primers which gave polymorphism with S. rebaudiana genotypes were screened out to check their transferability across 20 species of Asteraceae family. Then the percentage of polymorphism (number of polymorphic bands/ total number of bands) and cross transferability (number of polymorphic primers/ total number of primers examined) was calculated. All Gel images were transformed into binary matrix and were NTSYSpc analysed using ver.2.0 [5]. Dendrogram was created for the results obtained and compared for the efficiency of generation of polymorphism by EST-SSRs in all the species under study.

The polymorphism information content (PIC) values provided an estimate of the discriminative power of a marker by taking into account not only the number of alleles at a locus but also relative frequencies of those alleles in the genotypes and was calculated using the formula: PIC= $1-\Sigma \rho l^2$, where *pi* is the frequency of the *i*th allele [6].

3. RESULTS AND DISCUSSION

3.1 Survey of Polymorphism and Cross Transferability Studies

45 EST-SSRs (Table 2) published by Kaur et al. [3] were tried for amplification on S. rebaudiana. All these primers generated amplification. After this, these primers were tried for cross-genera portability in 20 genera of Asteraceae family. S. rebaudiana was again used along with 20 genera to confirm amplification. Each of the 45 primers was able to amplify the genomic DNA of at least one genotype. Total 166 amplified bands were scored with 45 primer pairs in 21 genotypes of Asteraceae family including S. rebaudiana. Maximum number of amplified bands i.e. seven was produced by primer 'P4', 'P15' and 'P25' and minimum number of bands i.e. one was produced by primer 'P20', 'P37' and 'P40'. A total of 166 scorable bands were found (Table 2). Average number of polymorphic bands per primer was recorded to be 3.67. Average number of amplified fragments per accession was 24.09 and average number of amplified fragments per informative primer was 11.24. A total of 506 fragments were amplified in all the 21 genotypes. Primer 'P15' amplified maximum number of fragments i.e. 39 where as minimum number of fragments i.e. one was given by primers 'P37' and 'P40'. 'Tagetes erecta' produced maximum number of amplified fragments i.e. 63, while 'Chrysanthemum coronarium' produced minimum number of amplified fragments i.e. two with all primer pairs used. PIC value of Stevia EST-SSR primers ranged from zero in primer P20, P37 and in P40 to 0.83 in primer P15 with an average value of 0.415 (Table 2).

S. no.	Medicinal plants	Sub family	S. no.	Ornamental crops	Sub family
1.	Stevia rebaudiana	Asteroideae	10.	Callistephus chinensis	Asteroideae
2.	Spilanthes acmella	Asteroideae	11.	Calendula officinalis	Asteroideae
3.	Eclipta alba	Asteroideae	12.	Chrysanthemum coronarium	Asteroideae
4.	Echinacea angustifolia	Asteroideae	13.	Tagetes erecta	Asteroideae
5.	Achillea millefolium	Asteroideae	14.	Helichrysum bractiatum	Asteroideae
6.	Artemisia annua	Asteroideae	15	Arctotis stoechodifolia	Cichorioideae
7.	Matricaria recutita	Asteroideae	16.	Dimorphothica sinuate	Asteroideae
8.	Silybum marianum	Asteroideae	17.	Acroclinum roseum	Asteroideae
	Vegetable crop		18.	Brachyscome dichromosomatica	Asteroideae
9.	Lactuca sativa	Cichorioideae	19.	Centaurea cyanus	Carduoideae
			20.	Bellis perennis	Asteroideae
			21.	Anthemis coluta	Asteroideae

Table 1. List of genotypes used in present study

P1 F: CTCATATCTGCCGCTCACA 59.97 50.00 0.64 10 P2 F: ATGAAAGCGAAGCCTGATGAT 59.80 45.00 0.22 8 P3 F: CTCATATCTGCCGCTCACA 59.87 55.00 17 P4 F: ATGAAACCGGCGCGCTCACA 59.97 50.00 0.24 17 P4 F: AATACAAACAGGCGCGCGCTCACA 59.92 45.00 0.22 9 P5 F: CTCATAGGATTCCACTTCG 59.87 55.00 0 0.24 17 P6 F: CTTCAGGACGCGATGCCACAA 59.92 45.00 0.2 9 P6 F: CTTCAGGACGATGCACAGC 59.99 55.00 0.19 13 P7 F: ACAGGCGATGCTCAGAGG 60.07 45.00 0.76 33 P7 F: CAAAGCCCGGATGCACAGAG 69.81 50.00 0.66 20 P8 F: CCCAGGATGTACAGAGG 59.87 50.00 0.67 33 P10 F: GGGAGACACAGAGGAGAACAA 59.97 50.00 0.80 20 P2	Primer code	Primer sequence	Tm	GC%	PIC	Number of alleles				
R: CTTGCTAGGGTTCCACTTCG 59.87 55.00 P2 F: ATGAAAGCGAGCCTGATGAT 59.80 45.00 0.22 8 P3 F: CTCATAATCGCGCCTCACA 59.97 50.00 0.54 17 P4 F: AATACAAACAGGGCGAGTGC 60.14 50.00 0.82 21 P5 F: CTTCAGGATCGCCACCAA 59.97 50.00 0.22 9 P6 F: CTTCAGGACGATGGTGCAGGT 60.11 55.00 0.2 9 P6 F: CTTCCGGCAGGAA 60.18 50.00 0 13 P7 F: AAGGCGACGGTGTATCTAG 60.07 50.00 0.71 10 P8 F: GCCGGGTTCACTGA 60.07 50.00 7 33 P10 F: GGGGAAACAGGGAAGAACAA 59.77 45.00 0.69 7 P11 F: TGGTGGCGTATTCACTACT 59.99 50.00 7 5 P11 F: GGGGAAACATGGGAAGAACAA 59.77 45.00 0.58 14 P12 F: GCCCTGCTATACTACT 59.99 50.00			(°C)		value					
P2 F: ATGAAAGCGAGCCTGATGAT 58.80 45.00 0.22 8 P3 F: CTGATAATCTGCCGCTCACA 59.97 50.00 0.54 17 P4 F: ATGAAACAAGCGGCGAGTGCA 59.92 45.00 0.82 21 P5 F: CTTGCAGGAGTGCACCCAA 59.92 45.00 0.2 9 P6 F: CTTCAGGACGATGGCAGTGC 59.99 55.00 0.2 9 P6 F: CTTCCGTCAGGAGTTCAGC 59.99 55.00 0.19 13 P7 F: AGAGGCAGCGGTGTATCTA 60.00 55.00 0.71 10 P8 F: GCGGGTTCAGTGATGGCCCCA 69.99 50.00 0.66 20 P8 F: GCGGGTTCAGGTGTATTCAG 60.07 50.00 7 33 P10 F: GCGGGTTCATCACGAGGTG 59.87 50.00 7 P11 F: TGGTGGCATAGCGAGAGACAA 59.97 50.00 66 20 P11 F: GGGGGTGTCATCATACT 59.99 50.00 7 5 5 P12 F: GCGCGGTCAAATGTGGCCTCA 60.99 55.00 0.65 14 5 <t< td=""><td>P1</td><td></td><td></td><td></td><td>0.64</td><td>10</td></t<>	P1				0.64	10				
R: TCAAGCAACGATTCTTCA 59.40 40.00 P3 F: CTGATAATCTGCCGCTCACA 59.97 50.00 0.54 17 P4 F: AATACAACAGGGCGAGTGC 60.14 50.00 0.82 21 P5 F: CTTCAGGACGATGGCGAGGT 60.11 55.00 0.2 9 P6 F: CTTTCCGTCAGGAGTTCAGC 59.99 55.00 0.19 13 P7 F: AGAGCGACGCGGGTGTATCTA 60.00 55.00 0.71 10 P8 F: GCGGGTTTCAGTGTATTCGT 60.00 50.00 0.76 33 P8 F: GCGGGTGTCATCAGG 59.81 50.00 0 66 20 P3 F: CCATACAGGATGTGCCCA 60.18 45.00 0.76 33 R: TTCTGTGAGTGTGCCCA 60.18 45.00 0.80 20 P10 F: GGGAACATGGGAAGAACAA 59.77 45.00 0.80 20 P11 F: TGTGTGCGTGTACTATCAT 59.99 50.00 65 5 P13 F: GAACAGTGCCGACGTTTCAT 59.97 50.0										
P3 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.54 17 P4 F: AATACAAACAGGGGGAGTGC 60.14 50.00 0.82 21 P5 F: CTCTAGGACGATGCCACCAA 59.92 45.00 0.2 9 P6 F: CTTCAGGACGATGCGCAGTGC 60.14 50.00 0.2 9 P6 F: CTTCAGGACGATGCAGC 59.99 55.00 0.19 13 P7 F: AGAGGCGAGCGGTGTATCTA 60.00 55.00 0.71 10 P8 F: GCGGGTTCAGGTATGGAG 69.99 50.00 0.66 20 P8 F: GCGGGTTCAGGTATCAGG 69.97 50.00 0.76 33 P10 F: GGGAACATGGAAGAACAA 59.97 50.00 0.80 20 R: TTCCTGTGGCATTAACT 59.99 50.00 0.56 5 P11 F: TGGAAGTGCGCATTAACT 59.99 50.00 0.58 14 R: AGGATGTGCATTAACT 59.99 50.00 0.58 14 R: GCAGTGTCATAAGTGTCC 59.99 50.00	P2				0.22	8				
P4 F: ATACAAACAGGGGAGTCC 59.87 55.00 P4 F: AGAACAGGGGGAGTCC 60.14 50.00 0.82 21 P5 F: CTTCAGGACGATGGTGAGGT 60.11 55.00 0.2 9 P6 F: CTTCCAGGACGATGGTGAGCT 60.01 55.00 0.19 13 P7 F: AGAGGCGAGCGTGTATCTA 60.00 55.00 0.71 10 P8 F: GCGGGTTCAGTAGGG 58.91 50.00 0.66 20 P8 F: GCGGGATCAGGAGGTGTATCTA 60.07 50.00 0.66 20 P9 F: CCAAGGAAGCACCAGAAG 59.77 45.00 0.69 7 P10 F: GGGGAACATGGGAAGAACAA 59.97 50.00 0.56 5 P11 F: TGGTGGCGTGTCATCATACT 59.99 50.00 0.56 5 P12 F: GCACGCGTTAAGGTTGGAGG 59.97 50.00 0.58 14 R: AGGGTGTATGGAAGACAG 59.99 50.00 0.58 14 R: CAATGTGCCCATAATGGAAGAG 59.99 50.00										
P4 F: AATACAAACAGGGGGAGTGC 60.14 50.00 0.82 21 P5 F: CTTCAGGACGATGGTGAGGT 60.11 55.00 0.2 9 P6 F: CTTTCCGTCAGGAGGTTGAGGT 60.18 50.00 13 P7 F: AGAGGCAGAGCGGTGTATCTA 60.00 55.00 0.71 10 R: AATGGCAATTCCACGAAGAG 59.81 50.00 71 10 R: AATGGCAACTCCACA 60.07 50.00 0.66 20 R: TCCATACAGGATGTGCCAGGT 60.07 50.00 76 33 P8 F: CCGGGGTTCCATCCAA 60.18 45.00 0.76 33 R: TTCCTTGGGAGTGGCACACA 59.87 50.00 7 33 P10 F: GGCGGTGTCATCATCT 59.99 50.00 8.80 20 R: CCGGTGTGTATGCGCAGGT 59.97 50.00 7 33 39 P11 F: TGGTGGCGTTATGCT 59.99 50.00 0.58 14 R: ACAAGTTCCGCATAATGTGGCT 59.97 50.00 0.83 39 <	P3				0.54	17				
R: TGGATATTGACTGCACCACA 59.92 45.00 P5 F: CTTCAGGACGATGGTGAGGT 60.11 55.00 0.2 9 P6 F: CTTTCCGTCAGGAGTTCAGC 59.99 55.00 0.19 13 P7 F: AGAGGCGAGCGGGTGTATCTA 60.00 55.00 0.71 10 P8 F: GCGGGTTCCAGGAGTGGTGCTCA 60.07 50.00 0.66 20 P9 F: CAAAACGCCTGGAATCAGGG 59.81 50.00 0.66 20 P10 F: GGGGAAACAGGTGTGCCTCA 60.07 50.00 0.76 33 P11 F: GGGGAAACATGGGAAGAACA 59.77 45.00 0.69 7 P11 F: GGGGAAACATGGGAAGAACA 59.97 50.00 0.80 20 P12 F: GCCGCTGCTAAGGCTTGCATG 59.99 50.00 0.56 5 P13 F: GAACAACTTGGACGATTGGACGAG 59.99 50.00 0.58 14 RAGGGTGGTGTATGGAGGC 50.99 50.00 0.58 14 P14 F: ACAACACTTGGACGCAAAGAG 60.00 <										
P5 F: CTTCAGGACGATGGTGAGGT 60.11 55.00 0.2 9 P6 F: CTTTCCGTCAGGAGACTGAGC 59.99 55.00 0.19 13 P7 F: AATGGCAATTCCACGAGAGG 60.07 45.00 7 P8 F: GCGGGGTGTATCTGT 60.00 55.00 0.71 10 R: GCATACAGGATGTGCCTCA 60.07 50.00 7 7 P7 F: AGAGGCAGCGCGGTGATCTACA 60.18 45.00 0.66 20 P8 F: CGCGGGTTTCAGGGAGTGGCCCA 60.07 50.00 7 33 P10 F: GGGAAACATGGGAAGAACAA 59.77 45.00 0.69 7 R: CCGGTGTGATTGCGGAGTG 59.99 50.00 0.80 20 P11 F: GGCGCTGCATAATGGGACC 59.99 50.00 0.56 5 P13 F: GACAGCTCCCGCAAGAGCAG 59.99 50.00 0.58 14 R: AGGTGTGGTGTGTGGAAGCAG 59.99 50.00 0.58 14 R: AGCACCACCCCCCCAAAGA 60.01 50.00 0.83	P4			50.00	0.82	21				
P6 F: GGCGATGATAGACTCGAAA 60.18 50.00 P7 F: AATGGCAATTCCACGAAGAG 60.07 45.00 P7 F: AGAGCGGAGCGTGTATCTA 60.00 55.00 0.71 10 P8 F: GCGGGTTTCAGTGATATCAG 59.91 50.00 745.00 745.00 P8 F: GCGGGTTCAGTGATTCGT 60.00 50.00 0.66 20 P9 F: CAAAGAAGGCTCCCATCA 60.07 50.00 77 33 P10 F: GGGGAACATGGGAAGACAA 59.77 45.00 0.69 7 P11 F: TGGTGGCGTGTCATCATACT 59.99 50.00 0.80 20 P11 F: GGGGGACCGCTTATGC 59.98 50.00 0.56 5 P12 F: GCCCGCTGTAAGCTTTGCAT 59.99 55.00 0.58 14 R: AGGGTGGTGTATGGAACAG 59.97 50.00 0.58 14 R: ACAACTTCGCGAAAGACAA 60.01 50.00 0.88 39 P14 F: ACCACACCGCTATGGAACA 60.01 50.00 0.78 10		R: TGGATATTGACTGCCACCAA	59.92	45.00						
P6 F: CTTTCCGTCAGGAGTTCAGC 59.99 55.00 0.19 13 P7 F: AGAGGCGACGGGTGTATCTA 60.07 45.00 7 P8 F: GCGGGTTTCAGTGAGAGAG 59.81 50.00 0.71 10 P8 F: GCGGGTTTCAGTGTATTCGT 60.07 50.00 0.76 33 P1 F: TCCATACAGGAGTGTCCACAGGTG 59.87 50.00 0.69 7 P10 F: GGGAAACATGGGAACAA 59.77 45.00 0.69 7 R: CCGGTGTGATTTGCCTTACT 59.99 50.00 0.60 7 P11 F: TGGTGGCGTGTCATCATACT 59.99 50.00 0.80 20 R: CCGGTGTGATTTGCATCATACT 59.99 50.00 0.65 5 7 P13 F: GAACACTCCGCGCTATGGAACCA 59.97 50.00 0.58 14 R: AGAGGTGGTATAGGAACACA 60.16 60.00 55.00 0.19 9 P14 F: ACACCACCACCGCTAATGAGAC 60.00 55.00 0.19 9 R: CACATCATCCTCGTCGCTAAGAAC <t< td=""><td>P5</td><td>F: CTTCAGGACGATGGTGAGGT</td><td>60.11</td><td>55.00</td><td>0.2</td><td>9</td></t<>	P5	F: CTTCAGGACGATGGTGAGGT	60.11	55.00	0.2	9				
P7 F: AGAGCGAACTCCACGAAGAG 60.07 45.00 P7 F: AGAGCGACGCGGTATCTA 60.00 55.00 0.71 10 P8 F: GCGGGTTTCAGTGTATTCGT 60.00 50.00 0.66 20 P9 F: CAAAGAAAGGCTCCCATCAA 60.18 45.00 0.76 33 P10 F: GGGAAACATGGGAAGAACA 59.77 45.00 0.69 7 R: TTTCTGTGGAGTTGCATCATACT 59.99 50.00 0.60 7 P11 F: TGGTGGCGTGTCATCATACT 59.99 50.00 0.80 20 P12 F: GCCGTGCTAAATGTGGAAGCAG 59.97 50.00 0.56 5 P13 F: GAACACTTCCGGCGTTTTGCT 69.98 50.00 0.58 14 R: CACACTACCGCGTTATGGAAGCAG 59.99 55.00 0.19 9 P14 F: ACCACACACCGCTAATGAGAC 60.00 55.00 0.78 10 P15 F: GTAAACGGTACCCCCATAAGA 60.00 55.00 0.78 10 P16 F: ACCACCACCGCTAATGAGAC 60.00		R: GGCGGATGATAGACTCGAAA	60.18	50.00						
P7 F: AGAGGCGAGCGTGTATATCTA 60.00 55.00 0.71 10 P8 F: GCAGACCCGGAATCAGAG 59.81 50.00 0.66 20 P9 F: CCATACAGGATGTGCCTCAA 60.07 50.00 0.66 20 P10 F: GGGAAACATGGGAAGAACAA 59.87 50.00 7 P11 F: TGGTGGCGTGTCATCATACT 59.99 50.00 0.69 7 P11 F: TGGTGGCGTGTCATCATACT 59.99 50.00 0.80 20 P12 F: GCCTGGCATTATGTGGTG 59.98 50.00 0.56 5 P13 F: GACAACTTCGCGACTTTCC 59.99 50.00 0.58 14 R: AGGGTGGTGTATGGAAGCAG 59.97 50.00 0.58 14 R: AGGGTGGTGTATGCAAGAC 60.01 50.00 0.58 14 R: AGGGTGGTATGGAAGAG 59.99 55.00 0.19 9 P14 F: ACCACCACCGCTAATGGAAC 60.01 50.00 0.83 39 R: GCACTCCTCGTCGCCAAAGA 60.01 50.00 0.78 10 R: GCACTCCTCGTCGCCAAAGAG 60.00 55.00 0.7	P6	F: CTTTCCGTCAGGAGTTCAGC	59.99	55.00	0.19	13				
R: GAAAACGCCTGGAATCAGAG 59.81 50.00 6 P8 F: GCGGGTTTCAGTGTATTCGT 60.00 50.00 0.66 20 P9 F: CAAAGAAAGGCTCCCATCAA 60.18 45.00 0.76 33 P10 F: GGGGAACATGGGAAGAACAA 59.87 50.00 69 7 R: CCGGTGTGATTTGCCTACT 59.99 50.00 69 7 P11 F: TGGTGGCGTGTCATCATACT 59.99 50.00 60 20 P11 F: GGCGGTGTCATCATAGT 59.99 50.00 60 20 P12 F: GCCCTGCTTAAGCTTTGCT 59.97 50.00 68 14 R: GCACTGCCGCTAAGGTGCG 59.97 50.00 68 14 R: ACAACTTCCCGCGTAATGGTGAGG 59.99 50.00 78 10 P13 F: GCACTCCCGCGCTAATGGAGAG 60.00 55.00 0.78 10 P14 F: ACCACCACCGCTAATGAGAC 60.01 50.00 78 10 P15 F: GCACTCCTCGTCGCTAGAAC 60.16 60.00		R: AATGGCAATTCCACGAAGAG	60.07	45.00						
P8 F: GCGGGTTTCAGTGTTCGT 60.00 50.00 0.66 20 P9 F: CCATACAGGAGTGCCTCA 60.07 50.00	P7	F: AGAGGCGAGCGGTGTATCTA	60.00	55.00	0.71	10				
P8 F: GCGGGTTTCAGTGTTCGT 60.00 50.00 0.66 20 P9 F: CCATACAGGAGTGCCTCA 60.07 50.00		R: GAAAACGCCTGGAATCAGAG	59.81	50.00						
R: TCCATACAGGATGTGCCTCA 60.07 50.00 P9 F: CAAAGAAAGGCTCCCATCAA 60.18 45.00 0.76 33 P10 F: GGGAAACATGGGATGGCGTG 59.87 50.00 7 P10 F: GGGAAACATGGGAAGAACAA 59.77 45.00 0.69 7 P11 F: TGGTGCGTCATCATACT 59.99 50.00 0.80 20 P12 F: GCCTGCTTAAGCTTTGCT 59.99 50.00 0.56 5 P13 F: GAACAACTTCGCGTTTTCGT 60.29 45.00 0.58 14 P14 F: ACCACCCGCTAATGGAGACCAG 59.99 55.00 0 19 9 P14 F: ACCACCACCGCTAATGGAGAC 60.00 55.00 0.19 9 P15 F: GTAAACGGTACCCGCAAAGA 60.00 50.00 0.83 39 P16 F: ACCACCACCGCTAATGAGAC 60.00 50.00 0.80 23 P17 F: CCATCATCCTCCTCCTCCTCC 59.41 55.00 0.77 7 R: GCACTCCTCGTCGCTGAGAAC 60.16 60.00<	P8	F: GCGGGTTTCAGTGTATTCGT	60.00		0.66	20				
P9 F: CAAAGAAAGGCTCCCATCAA 60.18 45.00 0.76 33 P10 R: TTTCTGTGGAGTTGCAGGTG 59.87 50.00 7 P10 R: GCGGTGTGATTTGCCTTACT 59.99 50.00 7 P11 F: TGGTGGCATCATCATACT 59.99 50.00 0.80 20 P11 F: GGCATGCCATAATGTGGTC 59.96 50.00 0.56 5 P12 R: GCATGTCCCGACGTTTGCT 59.97 50.00 0.58 14 R: ACGAGTGTCTCATAGACT 59.97 50.00 0.58 14 R: ACGAGTTTCCCGACGTTTGC 59.99 55.00 0.19 9 P14 F: ACCACCACCGCTAATGAGAC 60.00 55.00 0.19 9 R: GCACTCCTCGTCGTCGTAGAAC 60.00 50.00 0.83 39 P15 F: GTAAACGGTACCCCCCATAAGA 60.00 55.00 0.78 10 R: GCACTCCTCGTCGTCGTAGAAC 60.16 60.00 50.00 0.77 7 P16 F: ACCACCACCGCTAATGAGAC 60.16 60.00 0.77 7 R: GCACTCCTCGTCGTCGTCAGAAC 60.16 60.00										
R: TTTCTGTGGAGTTGCAGGTG 59.87 50.00 P10 F: GGGAAAACATGGGAAGAACAA 59.77 45.00 0.69 7 P11 R: GCGGTGTGCATCGTTACT 59.99 50.00 0.80 20 P11 F: TGGTGGCGTGCATCATACT 59.99 50.00 0.56 5 P12 F: GCCTGCTTAGCGTTGCAGGAG 59.97 50.00 0.58 14 P13 F: GAACAACTTCGCGGTATGAACG 59.99 55.00 0.19 9 P14 F: ACCACCACCGCGTATGAAGC 60.00 55.00 0.19 9 R: GCACTCCTCGTGCGCTAGAAC 60.16 60.00 50.00 0.83 39 P15 F: GTAAACGGTACCCGCAAAGA 60.01 50.00 0.78 10 R: GCACTCCTCGTCGCTAGAAC 60.16 60.00 55.00 0.78 10 P16 F: ACCACCACCGCCAATAGAGAC 60.16 60.00 55.00 0.77 7 P17 F: CCATCATCCTCCTCCT 59.41 55.00 0.79 13 R: GCACTCCTCGTGGCGAAACGA	P9				0.76	33				
P10 F: GGGAAACATGGGAAGAACAA 59.77 45.00 0.69 7 P11 F: TGGTGGCATTIGCCTTACT 59.99 50.00 0.80 20 P11 F: GGCGTGCATCATCATCT 59.99 50.00 0.80 20 P12 F: GCCCTGCTAAGCTTTGATG 59.98 50.00 0.56 5 P13 F: GAACAACTTCGCGACGTTTCC 59.97 50.00 0.58 14 R:AGGGTGGTGTATGGAAGCAG 59.99 55.00 0.19 9 P14 F: ACAACCCCCGCTAATGAGAC 60.00 55.00 0.19 9 P14 F: ACCACCACCGCTAATGAGAC 60.00 50.00 0.83 39 P15 F: GTAAACGGTACCCGCCAAAGA 60.00 55.00 0.78 10 P15 F: CCACCACCGCTAATGAGAC 60.00 55.00 0.78 10 P17 F: CCATCATCATCCTCCTCCTC 59.41 55.00 0.77 7 R: CCACCACCGCTAATGAGAC 60.00 55.00 0.77 7 P17 F: CCATCATCATCCTCCTCCTC 59.41 55.00 0.77 7 R: CGCACTCCTGTGGCAGAAAGGA										
Pi1 R: CCGGTGTGATTTGCCTTACT 59.99 50.00 P11 F: TGGTGGCGTGTCATCATACT 59.99 50.00 0.80 20 P12 F: GCCTGCGCATAATGTGGTC 59.98 50.00 0.56 5 P12 F: GCCCTGCTTAAGCTTTGCT 60.29 45.00 0.58 14 R: AGGGTGGTGTATGGAAGCAG 59.99 55.00 0.19 9 P14 F: ACCACCACCGCTAATGAAC 60.00 55.00 0.19 9 R: GCACTCCTCGTCGCTGGCAGAAG 60.00 55.00 0.78 10 P15 F: GTAAACGGTACCCCCAAAGA 60.01 50.00 0.83 39 P16 F: ACCACCACCGCTAATGAGAC 60.01 50.00 0.78 10 R: GCACTCCTCGTCGCTGCAGAAC 60.01 50.00 0.77 7 P17 F: CCATCATCACTCGCTGCAGAAC 60.01 60.00 77 7 R: GCACTCCTCGTCGCTAGAAC 60.16 60.00 0.77 7 P18 F: ACCACCACCGCTAATGAGAC 60.15 45.00 7	P10				0.69	7				
P11 F: TGGTGGCGTGTCATCATACT 59.99 50.00 0.80 20 P12 F: GCCTGCTTAAGCTTGGTC 59.96 50.00 0.56 5 P12 F: GACAGTTCCCGACGTTTCC 59.97 50.00 0.58 14 P13 F: GAACAACTTCGCGTTTCGT 60.29 45.00 0.58 14 P14 F: ACCACCCCCCTATGAAC 60.00 55.00 0.19 9 P14 F: ACCACCCCCCTATAGAAC 60.00 55.00 0.19 9 P15 F: GTAAACGGTACCCGCCAAAGA 60.01 60.00 55.00 0.78 10 P16 F: ACCACCACCGCTAATGAGAC 60.01 60.00 55.00 0.78 10 P17 F: CCATCATCATCCTCCTCCTC 59.41 55.00 0.78 10 P18 F: ACCACCACCGCTAATGAGAC 60.06 60.00 7 7 P18 F: ACCACCACCGCTAATGAGAC 60.06 0.77 7 R: GCACTCCTCGTCGCGCGCAGAC 60.05 45.00 0.79 13 P18 F: ACCACCACCGCTAAAGGAT 69.26 40.00 7 P20	1.10				0.00					
R: GCATGTCGCATAATGTGGTC 59.96 50.00 P12 F: GCCCTGCTTAAGCTTTGATG 59.98 50.00 0.56 5 P13 F: GAACAACTTCGCGCGTTTCC 59.97 50.00 0.58 14 R:AGGGTGGTGTATGGAAGCAG 59.99 55.00 0.19 9 P14 F: ACCACCACCGCTAATGAGAC 60.01 50.00 0.83 39 P15 F: GTAAACGGTACCCGCAAAGA 60.01 50.00 0.78 10 P16 F: ACCACCACCGCTAATGAGAC 60.16 60.00 77 7 R: CCACCTCGTCGCTGGCTAGAAC 60.16 60.00 77 7 P17 F: CCACCACCGCTAATGAGAC 60.16 60.00 77 R: CGATCCTCGTCGCTGAGAAC 60.16 60.00 77 7 R: GCATCCTCGTCGCTGAGAAC 60.16 60.00 77 7 R: GCACTCCTCGTCGCTAGAAC 60.16 60.00 77 7 R: GCGACTCCTCGTCGCTAGAAC 60.15 45.00 73 3 P19 F: CGTCTTTTCATGGCTCAAG	P11				0.80	20				
P12 F: GCCCTGCTTAAGCTTTGATG 59.98 50.00 0.56 5 P13 F: GAACAACTTCGCGACGTTTCC 59.97 50.00 0.58 14 R:AGGGTGGTGTATGGAAGCAG 59.99 55.00 0.19 9 P14 F: ACCACCACCGCTAATGAGAC 60.00 55.00 0.19 9 R: GCACTCCTCGTCGCCGCAAAGA 60.01 60.00 55.00 0.78 10 P15 F: GTAAACGGTACCCGCAAAGA 60.01 50.00 0.78 10 P16 F: ACCACCACCGCTAATGAGAC 60.01 60.00 77 7 P17 F: CCATCATCATCCTCCTCCTC 59.41 55.00 0.77 7 P18 F: ACCACCACCGCTAATGAGAC 60.01 55.00 0.77 7 R: GCACTCCTCGTCGCTAGAAC 60.16 60.00 77 7 P18 F: ACCACCACCGCTAATGAGAC 60.15 45.00 0.77 7 R: GCACTCCTCGTCGCTCAGAAC 60.15 45.00 0 3 7 P19 F: CGTCCTTTGTTTTGCAAGG 60.15 45.00 0 3 7 P20					0.00	20				
R: TACAAGTTCCCGACGTTTCC 59.97 50.00 P13 F: GAACAACTTCGCGTTTTCGT 60.29 45.00 0.58 14 R:AGGGTGGTGTATGGAAGCAG 59.99 55.00 0.19 9 P14 F: ACCACCACCGCTAATGAGAC 60.00 55.00 0.19 9 R: GCACTCCTCGTCGCTAGAAC 60.16 60.00 9 10 P15 F: GTAAACGGTACCCGCAAAGA 60.01 50.00 0.83 39 R: CCACATGATCCCCCCATAATGAGAC 60.16 60.00 55.00 0.78 10 P16 F: ACCACCACCGCTAATGAGAC 60.16 60.00 10 10 P17 F: CCATCATCATCCTCCTCCTC 59.41 55.00 0.77 7 R: GCACTCCTCGTCGCTAGAAAC 60.16 60.00 17 7 13 P18 F: ACCACCACCGCTAATGAGAC 60.15 45.00 0 3 P20 F: CGTCCTTTGTTTTCCATGGCTCAAG 60.15 45.00 13 R: GTGGTGATTAAAGGGATGA 59.26 40.00 13 P	P12				0.56	5				
P13 F: GAACAACTTCGCGTTTTCGT 60.29 45.00 0.58 14 P14 F: ACCACCACCGCTAATGAAGCAG 59.99 55.00 0.19 9 P14 F: ACCACCACCGCTAATGAGAC 60.00 55.00 0.19 9 P15 F: GTAAACGGTACCCGCAAAGA 60.01 50.00 0.83 39 P16 F: ACCACCACCGCTAATGAGAC 60.01 50.00 0.78 10 P17 F: CCATCATCATCCTCCTCCTC 59.41 55.00 0.78 10 P17 F: CCATCATCATCCTCCTCCTC 59.41 55.00 0.77 7 P18 F: ACCACCACCGCTAATGAGAC 60.16 60.00 55.00 0.77 7 P18 F: ACCACCACCGCTAATGAGAC 60.15 45.00 0.79 13 P20 F: ACGATTTTGGAGGAACCA 60.15 45.00 0 3 P21 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.77 32 R: CTGGGTGTTTTGGAGGAACGA 60.15 45.00 0 3 P20 F: ACGATTTTGGCGCTCACA 59.97 50.00 0.77 32	1 12				0.50	5				
R:AGGGTGGTGTATGGAAGCAG 59.99 55.00 P14 F: ACCACCACCGCTAATGAGAC 60.00 55.00 0.19 9 R: GCACTCCTCGTCGCTAGAAC 60.16 60.00 50.00 0.83 39 P15 F: GTAAACGGTACCCCCATAAAG 60.01 50.00 0.78 10 P16 F: ACCACCACCGCTAATGAGAC 60.01 60.00 55.00 0.78 10 P17 F: CCATCATCATCCTCCTCCTC 59.41 55.00 0.80 23 P18 F: ACCACCACCGCTAATGAGAC 60.16 60.00 55.00 0.77 7 R: TCGTTGGCAGCTAAAGGTT 59.88 45.00 7 7 7 P18 F: ACCACCACCGCTAATGAGAC 60.16 60.00 57 7 R: GCACTCCTCGTCGCTAGAAC 60.15 45.00 0.79 13 R: GCACTCCTCGTCGCTAGAAC 60.15 45.00 0 3 P20 F: ACGATTTTGAGGACAACGA 60.11 45.00 0 3 P21 F: CTCATAATCTGCCGCTCACA 59.97 50.00	D12				0.58	1/				
P14 F: ACCACCACCGCTAATGAGAC 60.00 55.00 0.19 9 P15 F: GTAAACGGTACCCGCAAAGA 60.00 50.00 0.83 39 P15 F: GTAAACGGTACCCGCAAAGA 60.00 50.00 0.83 39 P16 F: ACCACCACCGCTAATGAGAC 60.00 55.00 0.78 10 P16 F: ACCACCACCGCTAATGAGAC 60.00 55.00 0.80 23 P17 F: CCATCATCATCCTCCTCCTC 59.41 55.00 0.77 7 R: TCGTTTGGCAGCTAAAGGTT 59.88 45.00 0.77 7 P18 F: ACCACCACCGCTAATGAGAC 60.16 60.00 0.77 7 R: GCACTCTTCGTCGCTAGAACC 60.15 45.00 0.79 13 R: GCACTCTTGTTGTTGCACACCT 60.15 45.00 0 3 P20 F: ACGGTTTTTCATGGCGCTCAAG 59.97 50.00 0.77 32 R: CTGGTAGAGTCACCTTCG 59.87 55.00 0 72 6 P21 F: CTGATAATCTGCCGCTCACA 59.97 50.00 0.72 6 R: GTTGTTGTTCGCGGTTGAT 60.3	FIJ				0.50	14				
R: GCACTCCTCGTCGCTAGAAC 60.16 60.00 P15 F: GTAAACGGTACCCGCAAAGA 60.00 50.00 0.83 39 P16 F: ACCACCACCGCTAATGAGAC 60.01 50.00 0.78 10 P17 F: CCATCATCCTCGTCGCTAGAAC 60.16 60.00 77 7 P17 F: CCATCATCATCCTCCTCC 59.41 55.00 0.77 7 R: TCGTTTGGCAGCTAATGAGAC 60.01 60.00 77 7 P18 F: ACCACCACCGCTAATGAGAC 60.16 60.00 77 7 R: TCGTTTGGCAGCTAAAGGTT 59.88 45.00 77 7 P18 F: ACCACCACCGCTAATGAGAC 60.16 60.00 77 7 R: GCACTCCTCGTCGTCGCTAGAAC 60.15 45.00 0.79 13 R: GTCGAATTTGGAGGAAACGA 60.05 45.00 7 7 P20 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.77 32 P21 F: CTGGCTCCTCACAAAACCCTAT 60.33 55.00 0.72 6 P23 F: CTGATAATCTGCCGCTCACA 59.97 50.00 0.62 28	D14				0.10	0				
P15 F: GTAAACGGTACCCGCAAAGA 60.00 50.00 0.83 39 P16 R: CCACATGATCCCCCATAAAG 60.01 50.00 0.78 10 P16 R: ACCACCACCGCTAATGAGAC 60.00 55.00 0.78 10 P17 F: CCATCATCCTCGTCGCTGCAGAAC 60.16 60.00 7 7 P18 F: ACCACCACCGCTAATGAGAC 60.16 60.00 7 7 P18 F: ACCACCACCGCTAATGAGAC 60.16 60.00 7 7 P18 F: ACCACCACCGCTAATGAGAC 60.16 60.00 7 7 P19 F: CGTCCTTTGTTTTGCAACCT 60.15 45.00 0.79 13 R: GTCGAATTTGGAGGAAACGA 60.05 45.00 0 3 P20 F: ACGGGTTTAAAGGGATGA 59.26 40.00 0 3 P21 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.77 32 P21 F: CTGGCTCCTCACAAACCCTAT 60.33 55.00 0.72 6 P22 F: CGGCCTCCTACAAAACCCTAT 60.33 55.00 0.62 28 P23	F 14				0.19	9				
P16 R: CCACATGATCCCCCCATAAAG 60.01 50.00 0.78 10 P17 R: CCATCCTCGTCGCTAGAAC 60.16 60.00 55.00 0.78 10 P17 F: CCATCATCATCCTCCTCCTC 59.41 55.00 0.80 23 P18 F: ACCACCACCGCTAATGAGAC 60.00 55.00 0.77 7 P18 F: ACCACCACCGCTAATGAGAC 60.00 55.00 0.77 7 P19 F: CGTCCTTGTTTGCAACCT 60.15 45.00 0.79 13 P20 F: ACGGTTTTTCATGGCTCAAG 60.11 45.00 0 3 P21 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.77 32 P20 F: ACGGTTTTTCATGGCGCTCACA 59.97 50.00 0.77 32 P21 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.72 6 P22 F: CGGCCTCCTACAAACCCTAT 60.33 55.00 0.72 6 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 P24 F: TCTTGCAAGTGTGAGAGAACA 60.74 50.00 0.66 <	D15				0.02	20				
P16 F: ACCACCACCGCTAATGAGAC 60.00 55.00 0.78 10 P17 F: CCATCATCATCCTCCTCC 59.41 55.00 0.80 23 P18 F: ACCACCACCGCTAATGAGAC 60.00 55.00 0.77 7 P19 F: CGTCCTTGTTTGCAACCT 60.16 60.00 77 7 P19 F: CGTCCTTGTTTGCAACCT 60.16 60.00 77 7 P20 F: ACGGGTTTTTGCAACCT 60.15 45.00 77 32 P21 F: CTCATAATCTGCGCGCTCACA 59.26 40.00 3 P21 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.77 32 P21 F: CTGGCTCTCACAAACCCA 59.97 50.00 0.77 32 P21 F: CTGGCCTCCTACAAACCCTAT 60.33 55.00 0.72 6 P22 F: CGGCCTCCTACAAACCCTAT 60.33 55.00 0.72 6 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 P24 F: TCTTGCAAGTGTGAGGAGACA 60.74 50.00 0.66 3 P24	P15				0.03	39				
R: GCACTCCTCGTCGCTAGAAC 60.16 60.00 P17 F: CCATCATCATCCTCCTCC 59.41 55.00 0.80 23 P18 F: ACCACCACCGCTAATGAGAC 60.00 55.00 0.77 7 P19 F: CGTCCTTGTTTTGCAACCT 60.15 45.00 0 3 P20 F: ACGGTTTTTCATGGCTCAAG 60.11 45.00 0 3 P21 F: CTCATAATCTGCCGCTCAAG 60.11 45.00 0 3 P21 F: CTCATAATCTGCCGCTCAAG 60.11 45.00 0 3 P20 F: ACGGTTTTTCATGGCTCAAG 60.11 45.00 0 3 P21 F: CTCATAATCTGCCGCTCAAG 60.11 45.00 0 3 P21 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.77 32 P22 F: CGGCCTCCTACAAACCCTAT 60.33 55.00 0 72 6 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 P24 F: TCTTGCAAGTGTGAGGAGAC 60.74 50.00 0.66 3 P25 F: TGGTCGAGTGGTGACGA	B 40				0.70	40				
P17 F: CCATCATCATCCTCCTCC 59.41 55.00 0.80 23 P18 F: ACCACCACCGCTAATGAGAC 60.00 55.00 0.77 7 P19 F: CGTCCTTTGTTTGGCAGGAAACGA 60.16 60.00 7 P20 F: ACGGTGTTTTGGCAGGCTCAAG 60.15 45.00 0 3 P21 F: CGTCGTTTGTTTTGGCAGCTCAAG 60.11 45.00 0 3 P21 F: CCGTGATTAAAAGCGATGA 59.26 40.00 7 32 P21 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.77 32 P21 F: CTGGTAGGGTTCCACTTCG 59.87 55.00 0.72 6 P22 F: CGGCCTCCTACAAACCCTAT 60.33 55.00 0.72 6 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 P24 F: TCTTGCAAGGGTTCCACTTCG 59.87 55.00 0.82 26 P24 F: TCTTGCAAGTGTGAGAGAGCA 60.74 50.00 0.66 3 P25 F: TGGTCGAGTGGTGGTGACTA 60.15 55.00 0.82 26 P2	P16				0.78	10				
R: TCGTTTGGCAGCTAAAGGTT 59.88 45.00 P18 F: ACCACCACCGCTAATGAGAC 60.00 55.00 0.77 7 P19 F: CGTCCTTTGTTTTGCAACCT 60.16 60.00 7 13 P20 F: ACGGTTTTTCATGGCTCAAG 60.11 45.00 0 3 P20 F: ACGGTTTTTCATGGCTCAAG 60.11 45.00 0 3 P21 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.77 32 P21 F: CGGCCTCCTACAAACCTA 60.33 55.00 0.72 6 P22 F: CGGCCTCCTACAAAACCCTAT 60.33 55.00 0.72 6 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 P24 F: TCTTGCAAGTGTGAGGAGCA 60.74 50.00 0.66 3 P24 F: TCTTGCAAGTGTGAGGAGCA 60.74 50.00 0.82 26 P25 F: TGGTCGAGTGGTGGTGACTA 60.15 55.00 0.82 26 P26 F: CCGTAAACCGAAAGGTCAAAA 59.97 45.00 0.65 21	D.1-7				0.00	<u></u>				
P18 F: ACCACCACCGCTAATGAGAC 60.00 55.00 0.77 7 P19 F: CGTCCTTTGTTTTGCAACCT 60.16 60.00 7 13 P20 F: ACGGTTTTTGCAAGCA 60.15 45.00 0 3 P20 F: ACGGTTTTTCATGGCTCAAG 60.11 45.00 0 3 P20 F: ACGGTTTTCATGGCTCAAG 60.11 45.00 0 3 P21 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.77 32 P22 F: CGGCCTCCTACAAAACCCTAT 60.33 55.00 0.72 6 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 P24 F: TCTTGCTAGGGTTCCACTTCG 59.87 55.00 0 28 P24 F: TCTTGCAAGTGTGAGGAGCA 60.74 50.00 0.62 28 P25 F: TGGTCGAGTGGAGGAGCA 60.74 50.00 0.66 3 P25 F: TGGTCGAGTGGTGGTGACTA 60.15 55.00 0.82 26 P26 F: CCGTAAACCGAAAGGTCAAA 59.97 45.00 0.65 21	P17				0.80	23				
R: GCACTCCTCGTCGCTAGAAC 60.16 60.00 P19 F: CGTCCTTTGTTTGCAACCT 60.15 45.00 0.79 13 P20 F: ACGGTTTTCATGGCTCAAG 60.05 45.00 0 3 P20 F: ACGGTTTTCATGGCTCAAG 60.11 45.00 0 3 P21 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.77 32 P22 F: CGGCCTCCTACAAACCCTAT 60.33 55.00 0.72 6 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 R: CTTGCTAGGGTTCCACTTCG 59.87 55.00 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 R: CTTGCTAGGGTTCCACTTCG 59.87 55.00 P24 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 R: CTTGCTAGGGTTCCACTTCG 59.87 55.00 P24 F: TCTTGCAAGTGTGAGGAGAGCA 60.74 50.00 0.66 3 R: TTTGACCAGCGTGGTGGTGACTA 60.15 55.00 0.82 26 <						_				
P19 F: CGTCCTTTGTTTTGCAACCT 60.15 45.00 0.79 13 P20 F: ACGGTTTTTCATGGCTCAAG 60.05 45.00 0 3 P20 F: ACGGTGATTAAAAGCGATGA 59.26 40.00 0 3 P21 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.77 32 P22 F: CGGCCTCCTACAAACCCTAT 60.33 55.00 0.72 6 P22 F: CGGCCTCCTACAAACCCTAT 60.33 55.00 0.72 6 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 R: GTTTGTTCTCGCGGTTGAT 60.12 45.00 45.00 16 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 R: CTTGCTAGGGTTCCACTTCG 59.87 55.00 16 3 P24 F: TCTGCAAGTGTGAGGAGCA 60.74 50.00 0.66 3 R: TTTTGTGCGAGTGGTGAGGAGCA 60.15 55.00 0.82 26 P25 F: TGGTCGAGTGGTGGTGACTA 60.15 55.00 0.82 26 R: TTTGAGCCCCCATAGTTCTG 60.0	P18				0.77	7				
R: GTCGAATTTGGAGGAAACGA 60.05 45.00 P20 F: ACGGTTTTTCATGGCTCAAG 60.11 45.00 0 3 R: TCGGTGATTAAAAGCGATGA 59.26 40.00 0 3 P21 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.77 32 P22 F: CGGCCTCCTACAAACCCTAT 60.33 55.00 0 72 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 R: GTTTGTTCTTCGCGGTTGAT 60.12 45.00 45.00 6 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 R: CTTGCTAGGGTTCCACTTCG 59.87 55.00 6 3 P24 F: TCTGCAAGTGTGAGGAGCA 60.74 50.00 0.66 3 R: TTTTGTGACCAGCGTTGAC 59.74 45.00 6 3 P24 F: TCTTGCAAGTGTGAGGAGCA 60.74 50.00 0.66 3 R: TTTTGTGACCAGCGTTGAC 59.74 45.00 6 3 P25 F: TGGTCGAGTGGTGGTGACTA 60.15 55.00 0.82 26 <										
P20 F: ACGGTTTTTCATGGCTCAAG 60.11 45.00 0 3 P21 F: CTCATAATCTGCCGCTCACA 59.26 40.00 0.77 32 P21 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.77 32 P22 F: CGGCCTCCTACAAACCCTAT 60.33 55.00 0.72 6 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 R: CTTGCTAGGGTTCCACTTCG 59.87 55.00 0 6 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 R: CTTGCTAGGGTTCCACTTCG 59.87 55.00 0 6 P24 F: TCTGCAAGTGTGAGGAGCA 60.74 50.00 0.66 3 R: TTTTGTTGACCAGCGTTGAC 59.74 45.00 0 45.00 P24 F: TGGTCGAGTGGTGGTGACTA 60.15 55.00 0.82 26 R: TTTTGACCAGCGTTGAC 59.74 45.00 0.65 21 P25 F: TGGTCGAGTGGTGGTGACTA 60.07 50.00 0.82 26 R: TTTGAGCCCCCCATAGTTCTG 60.07 50.00 </td <td>P19</td> <td></td> <td></td> <td></td> <td>0.79</td> <td>13</td>	P19				0.79	13				
R: TCGGTGATTAAAAGCGATGA 59.26 40.00 P21 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.77 32 P22 F: CGGCCTCCTACAAACCCTAT 60.33 55.00 0.72 6 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.72 6 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 R: CTTGCTAGGGTTCCACTTCG 59.87 55.00 0 0.62 28 P24 F: CTTGCAAGTGTGAGGAGCA 60.74 50.00 0.66 3 P24 F: TCTTGCAAGTGTGAGGAGCA 60.74 50.00 0.66 3 P25 F: TGGTCGAGTGGTGGTGACTA 60.15 55.00 0 26 P26 F: CCGTAAACCGAAAGGTCAAA 59.97 45.00 0.65 21										
P21 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.77 32 P22 F: CGGCCTCCTACAAACCCTAT 60.33 55.00 0.72 6 P23 F: CTCATAATCTGCCGGTTGAT 60.12 45.00 0.72 6 P24 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 P24 F: TCTTGCAAGTGTGAGGAGCA 60.74 50.00 0.66 3 P25 F: TGGTCGAGTGGTGAGTGACTA 60.15 55.00 0.82 26 P26 F: CCGTAAACCGAAAGGTCAAA 59.97 45.00 0.65 21	P20			45.00	0	3				
R: CTTGCTAGGGTTCCACTTCG 59.87 55.00 P22 F: CGGCCTCCTACAAACCCTAT 60.33 55.00 0.72 6 R: GTTTGTTCTTCGCGGTTGAT 60.12 45.00 45.00 6 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 R: CTTGCTAGGGTTCCACTTCG 59.87 55.00 0 6 3 P24 F: TCTTGCAAGTGTGAGGAGCA 60.74 50.00 0.66 3 R: TTTTGTTGACCAGCGTTGAC 59.74 45.00 45.00 6 P25 F: TGGTCGAGTGGTGGTGACTA 60.15 55.00 0.82 26 R: TTTGAGCCCCCCATAGTTCTG 60.07 50.00 0.65 21		R: TCGGTGATTAAAAGCGATGA	59.26	40.00						
P22 F: CGGCCTCCTACAAACCCTAT R: GTTTGTTCTTCGCGGTTGAT 60.33 55.00 0.72 6 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 R: CTTGCTAGGGTTCCACTTCG 59.87 55.00 0.66 3 P24 F: TCTTGCAAGTGTGAGGAGCA 60.74 50.00 0.66 3 P25 F: TGGTCGAGTGGTGGTGACTA 60.15 55.00 0.82 26 R: TTTGAGCCCCCATAGTTCTG 60.07 50.00 0.65 21	P21	F: CTCATAATCTGCCGCTCACA	59.97	50.00	0.77	32				
R: GTTTGTTCTTCGCGGTTGAT 60.12 45.00 P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 R: CTTGCTAGGGTTCCACTTCG 59.87 55.00 26 P24 F: TCTTGCAAGTGTGAGGAGCA 60.74 50.00 0.66 3 R: TTTTGTTGACCAGCGTTGAC 59.74 45.00 45.00 26 P25 F: TGGTCGAGTGGTGGTGACTA 60.15 55.00 0.82 26 R: TTTGAGCCCCCCATAGTTCTG 60.07 50.00 0.65 21		R: CTTGCTAGGGTTCCACTTCG	59.87	55.00						
P23 F: CTCATAATCTGCCGCTCACA 59.97 50.00 0.62 28 R: CTTGCTAGGGTTCCACTTCG 59.87 55.00 0	P22	F: CGGCCTCCTACAAACCCTAT	60.33	55.00	0.72	6				
R: CTTGCTAGGGTTCCACTTCG 59.87 55.00 P24 F: TCTTGCAAGTGTGAGGAGCA 60.74 50.00 0.66 3 R: TTTTGTTGACCAGCGTTGAC 59.74 45.00 45.00 45.00 100 P25 F: TGGTCGAGTGGTGGTGACTA 60.15 55.00 0.82 26 R: TTTGAGCCCCCCATAGTTCTG 60.07 50.00 50.00 100 P26 F: CCGTAAACCGAAAGGTCAAA 59.97 45.00 0.65 21		R: GTTTGTTCTTCGCGGTTGAT	60.12	45.00						
R: CTTGCTAGGGTTCCACTTCG 59.87 55.00 P24 F: TCTTGCAAGTGTGAGGAGCA 60.74 50.00 0.66 3 R: TTTTGTTGACCAGCGTTGAC 59.74 45.00 45.00 45.00 100 P25 F: TGGTCGAGTGGTGGTGACTA 60.15 55.00 0.82 26 R: TTTGAGCCCCCCATAGTTCTG 60.07 50.00 50.00 100 P26 F: CCGTAAACCGAAAGGTCAAA 59.97 45.00 0.65 21	P23	F: CTCATAATCTGCCGCTCACA	59.97	50.00	0.62	28				
P24 F: TCTTGCAAGTGTGAGGAGGA 60.74 50.00 0.66 3 R: TTTTGTTGACCAGCGTTGAC 59.74 45.00 45.00 10				55.00						
R: TTTTGTTGACCAGCGTTGAC 59.74 45.00 P25 F: TGGTCGAGTGGTGGTGACTA 60.15 55.00 0.82 26 R: TTTGAGCCCCCATAGTTCTG 60.07 50.00 50.00 50.00 50.00 P26 F: CCGTAAACCGAAAGGTCAAA 59.97 45.00 0.65 21	P24				0.66	3				
P25 F: TGGTCGAGTGGTGGTGACTA 60.15 55.00 0.82 26 R: TTTGAGCCCCCATAGTTCTG 60.07 50.00										
R: TTTGAGCCCCCATAGTTCTG 60.07 50.00 P26 F: CCGTAAACCGAAAGGTCAAA 59.97 45.00 0.65 21	P25				0.82	26				
P26 F: CCGTAAACCGAAAGGTCAAA 59.97 45.00 0.65 21										
	P26				0.65	21				
		R: CATGAACGAAATGGCTGAAA	59.66	40.00						

Table 2. List of SSR primer pairs for S. rebaudiana

P27	F: GTGGGTGATGAGTCAGCAAA	59.68	50.00	0.71	9
	R: AGGCCTCAGCTTCTGACGTA	60.16	55.00		
P28	F: ACCACCACCGCTAATGAGAC	60.00	55.00	0.71	16
	R: GCACTCCTCGTCGCTAGAAC	60.16	60.00		
P29	F: GAGCAGGATGGGTGAAAAGA	60.20	50.00	0.77	11
	R: CAATCGCCTCTTTCTCTTGC	60.10	50.00		
P30	F: TCAAGTTAGGGTTCCGTTCG	60.10	50.00	0.44	3
	R: GCCGTTTTTCGTATCCTTCA	60.07	45.00		
P31	F: TGCTTTACACACGCACACAA	59.94	45.00	0.23	9
	R:GGCGGAGAGTATGAAGAGACC	60.23	57.14		
P32	F: GCGCACAATGAAACCCTAGT	60.14	50.00	0.50	2
	R: AAGCAGAAGGGGGATCATCT	60.04	50.00		
P33	F: CATGAACGAAATGGCTGAAA	59.66	40.00	0.62	4
	R: CCGTAAACCGAAAGGTCAAA	59.97	45.00		
P34	F: TCCAAAACCGTTTGTTTTCC	59.82	40.00	0.66	3
	R: CAGAACTATGGGGGCTCAAA	60.07	50.00		
P35	F: ACATGAAAAACCATGCGTCA	59.97	40.00	0.24	7
	R: ATGGTGTGGATTTTGGTGGT	59.95	45.00		
P36	F: TCAAGTTAGGGTTCCGTTCG	60.10	50.00	0.66	3
	R: GCCGTTTTTCGTATCCTTCA	60.07	45.00		
P37	F: TCAAGTTAGGGTTCCGTTCG	60.10	50.00	0	1
	R: AGCCGTTTTTCGGTATCCTT	59.97	45.00		
P38	F: CTCATAATCTGCCGCTCACA	59.97	50.00	0.66	3
	R: CTTGCTAGGGTTCCACTTCG	59.87	55.00		
P39	F: GTTCGGTTTGTTACGCGAAT	60.00	45.00	0.37	4
	R: GAATGAGGTAGTGGGGTCCA	59.78	55.00		
P40	F: AGGTAACACCTGCCCATCAG	59.99	55.00	0	1
	R: CCAGATGGAACCGAAGCTAA	60.21	50.00		
P41	F: CGGTCCACCAAGTCCTAAAA	59.96	50.00	0.44	3
	R: AAAGTATTCCAGCGGTGGTG	59.99	50.00		
P42	F: GTCGATCCCGTAGGAGGAAG	60.98	60.00	0.50	2
	R: CATCGCTGCTACCATCTGAA	59.97	50.00		
P43	F: CACTTCTTCCGGTTGTTGGT	60.01	50.00	0.37	6
	R: ACACTTGAACCTCCCATTCG	59.97	50.00		
P44	F: TATCACAACGCCCCAAAAAC	60.73	45.00	0.66	9
	R: TTCTGTTCAAACTCCGACGA	59.41	45.00		
P45	F: GGAAAGAATGCCGAATTTGA	48.00	40.00	0.44	3
	R: TGAGGATGAAGACGATGCTG	52.00	50.00		

Maximum 21 and minimum three polymorphic primers were produced in '*Chrysanthemum coronarium*' and '*Arctotis stoechodifolia*', respectively. Same pattern was followed in others parameters like total number of scorable bands and total number of amplified fragments. While '*Spilanthes acmella*' scored maximum two average number of amplified fragments per informative primer (Table 3).

Per cent transferability varied from 6.6 % to 75.5 % representing a broad range obtained with same primers in different members. Some earlier findings also supported the transferability of SSRs is high between species of the same genus and between closely related genera, as compared that between distant genera of the same family [7-10]. For low level of transferability

i.e. 6.6% in Dimorphothica sinuate, 8.8% in Calendula officinalis and 15.5% in Bellis perennis missing homologous genic regions in these members may be the reason. Reports with 16% -19% transferability by Folta et al. [11], Sargent et al. [12], Mneija et al. [13] and Lewers et al. [14] were in agreement with present findings. While presence of some homologous regions may be the cause for transferability not too high nor too low i.e. 20% in Echinacea angustifolia, Silybum marianum and Acroclinum roseum, 26.6% in Spilanthes acmella, Callistephus chinensis, 31.1% in Centaurea cyanus, 33.3% in Achillea millefolium, Arctotis stoechodifolia, 35.5% in Anthemis coluta, 37.7% in Chrysanthemum coronarium, 40.0% in Brachyscome dichromosomatica, 44.4% in Eclipta alba, Helichrysum bractiatum and 46.6% in Lactuca sativa. Findings of Gasic et al. [15] and Yasmin et al. [16] with 28 and 28.7% transferability supported these results. High level of transferability was observed in three members 51.1% in Artemisia annua, 64.4% in Matricaria recutita and 75.5% in Tagetes erecta which may be due to high degree similarity in sequences. Almost same percentages of transferability were obtained by various workers in their respective crops i.e. 44.4% to 68% between peach and apricot by Vendramin et al. Hormaza et al. Romero et al. and Zhebentyayeva et al. [17-20], 63.9% of peach 59.1% of apricot to other members of same family by Mnejja et al. [13], 20% by Messina et al. [21] from apricot SSRs to Prunus species.

In general EST-SSRs have been found to be significantly more transferable across taxonomic boundaries and perhaps this is one of the most important features of the EST-SSR markers [22-23]. Transferability of EST-SSR markers to related species and genera has been demonstrated in several studies [2,24-25]. The transferability of microsatellites within related species is extremely beneficial for the research community as it speeds up the process of generating linkage maps. Vanwynsberghe et al. [26] and Mnejja et al. [13] also reported significant transferability of EST-SSRs to members of same family.

3.2 Data Analysis

The coefficient values ranged from 0.00 to 0.300. This indicated a low range of genetic variability, suggesting a narrow base of the genotypes taken. The highest value of similarity 0.300 was found between genotypes 'Silybum marianum' and 'Echinacea angustifolia'. Minimum similarity was 0.00 obtained between many genotypes. In the dendrogram (Fig. 1), the 21 genotypes separated into two main clusters, 'I' and 'II', at two per cent similarity. Cluster 'I' was found to contain only one genotype i.e. 'Dimorphothica sinuata' and Cluster 'II' accommodated rest 20 genotypes. Cluster 'II' was further subdivided into two clusters at similarity value of 9% (Fig. 1). It was concluded that 'Echinacea angustifolia' and 'Silybum marianum' were closely related as they showed 30 per cent similarity.

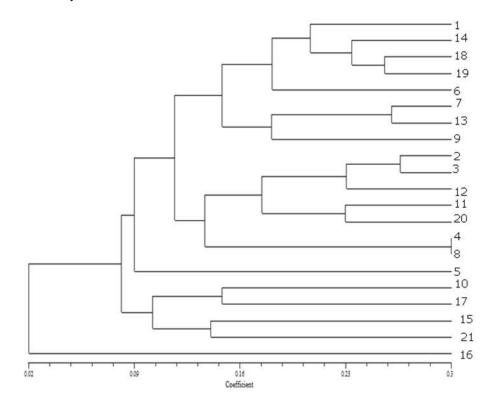


Fig. 1. Dendrogram of 21 species of different genera of Asteraceae family based on EST-SSR analysis; 1-21: Labels as described in Table 1

	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Total no. of primers examined	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45
Number of informative primers	12	20	9	15	23	29	9	12	4	17	34	20	15	3	9	18	14	7	16	21
Number of polymorphic primers	12	20	9	15	23	29	9	12	4	17	34	20	15	3	9	18	14	7	16	21
Total number of scorable bands	24	34	13	19	27	55	13	15	6	30	63	32	16	2	8	22	26	8	26	35
Total number of amplified fragments	24	34	13	19	27	55	13	15	6	30	63	32	16	2	8	22	26	8	26	35
Average number of amplified fragments per informative primer	2	1.7	1.4	1.2	1.1	1.8	1.4	1.2	1.5	1.7	1.8	1.6	1.0	0.6	0.8	1.2	1.8	1.1	1.6	1.6
Per cent transferability of stevia primers to other genotypes	26.6%	44.4%	% 20%	33.3%	51.1%	64.4%	20%	26.6%	8.8%	37.7%	75.5%	44.4%	33.3%	6.6%	20%	40%	31.1%	15.5%	35.5%	46.6%

Table 3. Summary of EST-SSR amplified products obtained from 20 species of different genera of Asteraceae family examined in study

2-21: Labels as described in Table 1

Poonam et al.; AIR, 9(5): 1-9, 2017; Article no.AIR.32005

4. CONCLUSION

This is the very first study of its own kind which targeted different members of same family which were otherwise underestimated for molecular studies. Present studies demonstrated that cross transferability of EST-SSR producing amplification and polymorphism across members of same family can often be transferred across relatively large taxonomic distances, crossing not just species within a genus, but in some cases across the genera within a family.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Jeffrey C. Compositae: Introduction with key to tribes. *In*: Families and Genera of vascular plants, flowering plants, Eudieats and Asterales. Kadereit J W and Jeffer C (Eds.). Springer-Verlag, Berlin. 2007;61-87.
- Kaur R, Shilpa, Vaidya E, Kumar K. Development, characterization and transferability of peach genic SSRs to some Rosaceae species. Adv Res. 2015a; 3:165-80.
- Kaur R, Sharma N, Raina R. Identification and functional annotation of expressed sequence tags based SSR markers of *Stevia rebaudiana*. Turk J Agric For. 2015b;39:1-12.
- Doyle JJ, Doyle JJ. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull. 1987;19:11-15.
- 5. Rohlf FJ. NTSYS-pc numerical taxonomy and multivariate analysis version 2.0. New York: Applied Biostatistics Inc. 2000;25.
- Smith JS, Chin EC, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Zeigle J. An evaluation of the utility of SSR loci as molecular markers in maize (*Zea* mays L.): Comparisons with data from RFLPs and pedigree. Theor Appl Genet. 1997;95(1-2):163-73.
- Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A. Cross species amplification of soybean (*Glycine max*) simple sequence repeats (SSRs) within the genus and other legume genera: Implications for the transferability of SSRs in plants. Mol Biol Evol. 1998;15:1275–87.

- Zhang LY, Bernard M, Leroy P, Feuillet C. High transferability of bread wheat EST derived SSRs to other cereals. Theor Appl Genet. 2005;111:677–87.
- Hendre PS, Phanindranath R, Annapurna V, Lalremruata A, Aggarwal RK. Development of new genomic microsatellite markers from robusta coffee (*Coffea canephora* Pierre ex A. Froehner) showing broad cross-species transferability and utility in genetic studies. BMC Plant Biol. 2008;8:51.
- Luro FL, Constantino G, Terol J, Argout X, Allaro T, Wincker P, et al. Transferability of the EST-SSRs developed on Nules Clementine (*Citrus clementina*) to other *Citrus* species and their effectiveness for genetic mapping. BMC Genomics. 2008;9: 1–13.
- Folta KM, Staton M, Stewart PJ, Jung S, Bies DH, Jesdurai C, et al. Expressed sequence tags (ESTs) and simple sequence repeat (SSR) markers from octoploid strawberry (*Fragaria ananassa*). BMC Plant Biol. 2005;5:12–23.
- 12. Sargent D, Rys A, Nier S, Simpson D, Tobutt K. The development and mapping of functional markers in *Fragaria* and their transferability and potential for mapping in other genera. Theor Appl Genet. 2007;114: 373–84.
- 13. Mnejja M, Garcia MM, Audergon MJ, Arus P. *Prunus* microsatellite marker transferability across rosaceous crops. Tree Genet and Genomes. 2010;6:689-700.
- 14. Lewers KS, Stayn MNS, Hokanson SC. Strawberry GenBank derived and genomic Simple Sequence Repeat (SSR) markers and their utility with strawberry, blackberry and red and black raspberry. J Am Soc Hort Sci. 2005;130(1):102-15.
- Gasic K, Han Y, Kertbundit S, Shulaev V, lezzoni AF, Stover EW, et al. Characteristics and transferability of new apple EST-derived SSRs to other *Rosaceae* species. Mol Breed. 2009;23: 397–411.
- 16. Yasmin ZF, Amalia C, Ana MT, Miguel AB, Victoriano V, Amparo M, et al. Development and bin mapping of strawberry genic-SSRs in diploid *Fragaria* and their transferability across the Rosoideae subfamily. Mol Breed. 2010;67: 123-28.

- Vendramin E, Dettori MT, Giovinazzi J, Micali S, Quarta R, Verde I. A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across *Prunus* species. Mol Ecol Notes. 2007;7(2):307-10.
- Hormaza JI. Molecular characterization and similarity relationships among apricot (*Prunus armeniaca* L.) genotypes using simple sequence repeats. Theor Appl Genet. 2002;104:321–28.
- Romero C, Pedryc A, Munoz V, Yacer G, Badenes ML. Genetic diversity of different apricot geographical groups determined by SSR markers. Genome. 2003;46:244–52.
- Zhebentyayeva TN, Reighard GL, Gorina VM, Abbott AG. Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor Appl Genet. 2003;106:435–44.
- Messina R, Laino O, Marrazzo MT, Cipriani G, Testolin R. New set of microsatellite loci isolated in apricot. Mol Ecol Notes. 2004;4:432–34.
- 22. Chandra A. Use of EST database markers from *Medicago truncatula* in the

transferability to other forage legumes. J Env Biol. 2010;32:347-54.

- Mishra RK, Gangadhar BH, Yu JW, Kim 23. SW. Development DH. Park and characterization of EST based SSR markers Madagoscar in periwinkle (Catharanthus roseus) and their transferability in other medicinal plants. Plant Omics Journal. 2011;4(3): 154-62.
- Park YH, Ahn SG, Choi YM, Oh HJ, Ahn DC, Kim JG, et al. Rose (*Rosa hybrid* L.) EST-derived microsatellite markers and their transferability to strawberry (*Fragaria* spp.). Sci Hort. 2010;125(4):733-39.
- Vaidya E, Kaur R, Bhardwaj SV. Datamining of ESTs to develop dbEST-SSR for use in polymorphism study of cauliflower (*Brassica oleracea* var. *botrytis*). J Hortic Sci Biotech. 2012;87:57-63.
- 26. Vanwynsberghe L, Decq L, Keulemans J. Transferability of *Malus* x *domestica* microsatellite markers to other species and genera of the Maloideae subfamily. Acta Hortic. 2009;39(6):567-74.

© 2017 Poonam et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://sciencedomain.org/review-history/18936