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Abstract 
 

This article introduces a new distribution called the Lomax-Gompertz distribution developed through a 
Lomax Generator proposed in an earlier study. Some statistical properties of the proposed distribution 
comprising moments, moment generating function, characteristics function, quantile function and the 
distribution of order statistics were derived. The plots of the probability density function revealed that it is 
positively skewed. The model parameters have been estimated using the method of maximum likelihood. 
The plot the of survival function indicates that the Lomax-Gompertz distribution could be used to model 
time or age-dependent data, where probability of survival is believed to be  decreasing  with time or age. 
The performance of the Lomax-Gompertz distribution has been compared to other generalizations of the 
Gompertz distribution using three real-life datasets used in earlier researches. 
 

 
Keywords: Gompertz distribution; Lomax generator; moments; maximum likelihood estimation. 
 

Original Research Article 



 
 
 

Omale et al.; AJPAS, 3(2): 1-17, 2019; Article no.AJPAS.47615 
 
 
 

2 
 
 

1 Introduction 
 
The Gompertz distribution (GD) as a generalization of exponential distribution can handle both positively 
and negatively skewed datasets and is commonly used in many applied problems, particularly in lifetime 
data analysis [1]. The GD is applied in the survival analysis, in some sciences such as Gerontology [2]; 
Computer [3]; Biology (Economos 1982); and Marketing science [4]. The hazard rate function of GDis an 
increasing function and often applied to describe the distribution of adult life spans by actuaries and 
demographers [5]. Burga et al. [6] discussed the stress-strength reliability problem in Gompertz case 
andbased on the exact central moments, higher accuracy approximations can be defined for them. In 
demographic or actuarial applications, maximum-likelihood estimation is often used to determine the 
parameters of the GD. The GD with parameters θ>0 andγ>0has cumulative distribution function (cdf) and 
probability density function (pdf) respectively given by: 
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For   0,   0,   0x     , where θ and γ are the respective shape and locationparameters. 
 
Recently, [7] proposed a generalization of the GD which was based on an idea of [8] and the resultant 
distribution is known as generalized Gompertz distribution (GGD)since it combines the features of the 
Gompertz distributions, exponential distribution(E), and the generalized exponential (GE). Other generalized 
Gompertz distributions include the Beta Gompertz distribution [9]; odd generalized Exponential-Gompertz 
distribution (OGEGD) [10] and the Transmuted Gompertz distribution (TGD) [11]. 
 
In this article, we introduce a new four parameter Lomax-Gompertz distribution (LGD) with the aid of a 
Lomax G generator proposed by Cordeiro et al. (2014). 
 

2 Material and Methods 
 
2.1 Introduction of Lomax-Gompertz distribution 
 
[12] defined the cdf and pdf of the Lomax-G family of distributions for any continuous distribution as 
follows: 
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Where g(x) and G(x) are the respective pdf and cdf of any continuous distribution to be 
generalized,while�>0 and β>0 are the two additional new parameters responsible for the scale and shape of 
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the distribution respectively. We now define the cdf and pdf of the proposed Lomax Gompertz distribution 
(LGD) by introducing the cdf and corresponding pdf of the Gompertz distribution into equations 2.1.1 and 
2.1.2 as follows; 
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The plot of the respective pdf and cdf of the LGD using some chosen values of the shape and scale 
parameters are presented below. 
 

 
 

Fig. 2.1.1. pdf plot of the LGD for different values of , ,   a b t and g       . 
 

Fig. 2.1.1 indicates that the LGDis a skewed distribution which is skewed to the right. This means that 
distribution can be very useful for datasets that are positively skewed. 
 

 
 

Fig. 2.1.2. cdf plot of the LGD for different values of , ,   a b t and g       . 
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From the above cdf plot, the cdf increases asXincreases, and approaches 1 when X becomes large as 
expected. 
 
Some properties of the LGD are presented below. 
 

2.2 Moments 
 
Moments of a random variable are very important in distribution theory, because they are used to study some 
of the most important features and characteristics of a random variable comprising mean, variance, skewness 
and kurtosis. 
 
The nth moment of a continuous random variable Xis given by: 
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Expansion and simplification the pdf of Lomax-Gompertz distribution in equation (2.1.4) yields 
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Using the generalized binomial theorem on A yield 
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Now, consider the following formula which holds for i≥1 
(http://function.wolfram.com/Elementaryfunctions/log/06/01/04/03/), and then we can write the last term in 
equation (2.2.4) as 
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Where for (for j≥0) Pj,0=1 and (for k=1,2,…..) 
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Combining equations (2.2.4) and (2.2.5) and inserting in equation (2.2.2), we have: 
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Using power series expansion on the last term in the numerator part of equation (2.2.6) yields: 
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Now, substituting equation (2.2.8) into equation (2.2.7) yields: 
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Thus we obtain the nth ordinary moment of a Lomax-Gompertz distributed random variable as: 
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The mean, median, kurtosis and skewness can be obtained from equation 2.2.13. 
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Also the second moment of the LGD is obtained from the nth moment of the distribution when n=2 as 
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2.2.2 The variance 
 
The nth central moment or moment about the mean of X, say��, can be obtained as 
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The variance of X for LGD is obtained from the central moment when n=2, that is, 
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2.3 Moment generating & characteristics functions 
 
The moment generating function (mgf) is a simple way of arranging all the respective moments in a single 
function. It produces all the moments of the random variable by way of differentiation i.e., for any real 

number say k, the kth derivative of ��(�) evaluated at � = 0 is the kth moment ��
′  of X. 
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Recall that by power series expansion, 
 

 
0 0! !

n n
tx n

n n

tx t
e x

n n

 

 

  
                                                                                                        (2.3.2) 

 
Using the result in equation (2.3.2) and simplifying the integral in (2.3.1), therefore we have;  
 

  '

0 0

( )
! !

n n
tx

x n
n n

tx t
M t E e

n n


 

 

      
                                                                              (2.3.3) 

 
where n and t are constants, t is a real number and ��

′  denotes the nth ordinary moment of X and can be 
obtained from equation (2.2.13) as stated previously. 
 
The characteristics function has many useful and important properties which give it a central role in 
statistical theory. Its approach is particularly useful for generating moments, characterization of distributions 
and in analysis of linear combination of independent random variables. 
 
The characteristics function of a random variable X is given by; 
 

     ( ) cos( ) sin( ) cos( ) sin( )itx
x t E e E tx i tx E tx E i tx                                  (2.3.4) 

 

Using power series expansion and simplifying the algebra above gives 
 

 
 

 
 

2 2 1
' '

2 2 1
0 0

1 1
( )

2 ! 2 1 !

n nn n

x n n
n n

t t
t i

n n
  

 


 

 
 


 

                                                          (2.3.5) 
 

Where ���
′  and �����

′ are the moments of X for n=2n and n=2n+1 respectively and can be obtained from ��
′   

in equation (2.2.13) 
 

2.4 Quantile function 
 
This function is derived by inverting the cdf of any given continuous probability distribution. It is used for 
obtaining some moments like skewness and kurtosis as well as the median and for generation of random 
variables from the distribution in question. Let Q(u) = ���(u) be the quantile function (qf) of F(x) for  0 < u 
<1. 
 
Taking F(x) to be the cdf of the Lomax-Gompertz distribution and inverting it as above will give us the 
quantile function as follows. 
 

 1
( ) 1 log 1 1

x

eF x e






 



                
 
Inverting F(x) = u 
 

 1
( ) 1 log 1 1

x

eF x ue






 



                                                                      (2.4.1) 
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Simplifying equation (3.29) above, we obtain: 
 

 
 

1

1
log 1

1
qQ u X

u 

 


 

   
                                                                                 (2.4.2) 

 
The quantile based measures of skewness and kurtosis are employed due to non-existence of the classical 
measures in some cases. The Bowley’s measure of skewness (Kennedy and Keeping, 1962.) based on 
quartiles is given by; 
 
















































4

1

4

3

4

1

2

1
2

4

3

QQ

QQQ

SK

                                                                                          (2.4.3) 
 
And the Moores’ (1998) kurtosis is on octiles and is given by; 
 

























































4

1

8

6

8

1

8

3

8

5

8

7

QQ

QQQ

KT

                                                                                 (2.4.4) 
 

2.5 Order statistics 
 
Order statistics are used in a wide range of problems including robust statistical estimation and detection of 
outliers, characterization of probability distributions and goodness of fit tests, entropy estimation, analyses 

of censored samples, reliability analysis, quality control and strength of materials. Suppose 1 2, ,..., nX X X
 

is a random sample from a distribution with pdf, f(x), and let 1: 2: :, ,...,n n i nX X X
 denote the corresponding 

order statistic obtained from this sample. The pdf,
 :i nf x

 of the ith order statistic can be defined as; 
 

 1
:

!
( ) ( ) ( ) 1 ( )

( 1)!( )!

n ii
i n

n
f x f x F x F x

i n i

 
                                                             (2.5.1) 

 
where f(x) and F(x) are the pdf and cdf of the LGD respectively.  
 
Using equations (2.1.3) and (2.1.4), the pdf of the ith order statistic��:�, can be expressed from equation 
(2.5.1) as; 
 

     
1

( 1)

:
0

!
( ) 1 *

( 1)!( )!
1 1( 1)

i k
n i k x x

i n
k

n in xx
ki n i

f e e e


  


   
 

 
  



  
        

                (2.5.2) 
 
Hence, the pdf of the minimum order statistic �(�)  and maximum order statistic �(�)  of the LGD are 

respectivelygiven by: 
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     
1 ( 1)

1:
0

1
( ) 1 * 1 1( 1)

k
n k x x

n
k

n xx n
k

f e e e


  


   
 

  



   
     

  

       (2.5.3) 
 

and 

     
1

( 1)

:
( ) 1 1 1

n

x x

n n

xx nf e e e


  


   
 



   
   

 

   
   (2.5.4) 

2.6 Reliability analysis 
 
2.6.1 Survival function 
 
Survival function is the likelihood that a system or an individual will not fail after a given time. It tells us 
about the probability of success or survival of a given product or component. Mathematically, the survival 
function is given by: 
 

   1S x F x 
                                                                                                                  (2.6.1) 

 
Where F(x) is cdf of the Lomax-Gompertz distribution, we have: 
 

  ( ) 1
x

S x e


 
 



  
                                                                                              (2.6.2) 

 
Below is a plot of the survival function at chosen parameter values in Fig. 2.6.1 
 

 
 

Fig. 2.6.1. The survival function of the LGD for different values of 
, ,a b t andg      

as 
shown on the key in the plot above 

 
Interpretation: The figure above revealed that the probability of survival for any random variable following a 
Lomax-Gompertz distribution drops as the values of the random variable increases, that is, as time or age 
grows, probability of life or survival decreases. This implies that the Lomax-Gompertz distribution can be 
used to model random variables whose survival rate decreases as their age grows. 
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2.6.2 Hazard function 
 

Hazard function as the name implies is also called risk function, it gives us the probability that a component 
will fail or die for an interval of time. The hazard function is defined mathematically as; 
 

 
 
 

 
 1

f x f x
h x

F x S x
 


                                                                                                     (2.6.3) 

 

Taking f(x) and F(x) to be the pdf and cdf of the proposed Lomax-Gompertz distribution and Substituting for 
f(x) and F(x) in equation (2.6.3) and simplifying gives the following results. 
 

  
1

( ) 1
x x

h x e e
 

 


  
                                                                                         (2.6.4) 

 
The following is a plot of the hazard function at chosen parameter values in Fig. 2.6.2 
 

 
 

Fig. 2.6.2. The hazard function of the LGD for different values of 
, ,a b t andg      

as 
shown on the key in the plot above 

 
Interpretation: the figure above revealed that the probability of failure for any random variable following a 
Lomax-Gompertz distribution is both increasing and decreasing as the values of the random variable 
increases depending on the chosen parameter values. 
 

2.7 Estimation of parameters 
 

Let 1 2, ,..., nX X X
 be a sample of size n independently and identically distributed random variables from 

the LGD with unknown parameters α, β, θ and γ as defined previously. 
  
The likelihood function of the random sample is given by: 
 

     
1

( 1)

1

1 2
1

, ,....., / , , , log 1 1

n
xi

i

i

n n
x

n
i

eL X X X e e







      

 

 



            


(2.7.1) 
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Taking the natural logarithm of the likelihood function, i.e., Let,

   1 2log , ,....., / ,  , , nL n L X X X    
: 

 

   1

1 1

log log log ( 1) log log 1 1
xin n

i
i i

el n n n n x e


      
 

 

                 
 

(2.7.2) 
 
Differentiating �(�) partially with respect to Ө, ᵞ, α and β respectively gives; 
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                                             (2.7.3) 
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  

 
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                                    (2.7.4) 
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
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
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 

  1

1
( 1)

1i

n

x
i

l n n

e







  

 
  

    
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 


                                                                  (2.7.6) 

 
Equating equations (2.7.3), (2.7.4), (2.7.5) and (2.7.6) to zero and solving for the solution of the non-linear 

system of equations will give us the maximum likelihood estimates (MLEs) of parameters , , , ,and   

respectively. However, the solution cannot be obtained analytically except with the aid of suitable statistical 
software like Python, R, SAS, etc. when data sets are given. 
 

3 Results and Discussion 
 
The three data sets, their descriptive statistics, graphics and applications are presented here. We have 
compared the performance of the proposed distribution, Lomax-Gompertz distribution to other 
generalizations of the Gompertz distribution such as Generalized Gompertz distribution (GGD), odd 
generalized Exponential-Gompertz distribution (OGEGD), Transmuted Gompertz distribution (TGD) and 
the Gompertz distribution (GD). 
 
The following are the data sets used for analysis and applications in this paper. These are: 
 
Dataset I: This data set represents the waiting times (in minutes) before service of 100 Bank customers and 
examined and analyzed by [13] for fitting the Lindley distribution. This dataset has been used previously by 
[14] and [15]. It is as follows: 0.8,  0.8,  1.3,  1.5,  1.8, 1.9,  1.9,  2.1,  2.6, 2.7,  2.9,  3.1,  3.2,  3.3,  3.5,  3.6,  
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4.0,  4.1,  4.2,  4.2, 4.3, 4.3,  4.4,  4.4,  4.6,  4.7,  4.7,  4.8,  4.9,  4.9,  5.0,  5.3,  5.5,  5.7,  5.7,  6.1,  6.2,  6.2,  
6.2,  6.3,  6.7,  6.9,  7.1,  7.1,  7.1,  7.1,  7.4,  7.6,  7.7,  8.0,  8.2,  8.6,  8.6,  8.6,  8.8,  8.8,  8.9,  8.9,  9.5,  9.6,  
9.7,  9.8,  10.7,  10.9,  11.0,  11.0,  11.1,  11.2,  11.2,  11.5,  11.9,  12.4,  12.5,  12.9,  13.0,  13.1,  13.3,  13.6,  
13.7,  13.9,  14.1,  15.4,  15.4,  17.3,  17.3,  18.1,  18.2,  18.4,  18.9,  19.0,  19.9,  20.6,  21.3,  21.4,  21.9,  
23.0,  27,  31.6,  33.1,  38.5. 
 
Dataset II: This data set is the strength data of glass of the aircraft window reported by [16]. This data has 
also been used by [17]. This data is as follows: 18.83, 20.8, 21.657, 23.03, 23.23, 24.05, 24.321, 25.5, 25.52, 
25.8, 26.69, 26.77, 26.78, 27.05, 27.67, 29.9, 31.11, 33.2, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 
37.08, 37.09, 39.58, 44.045, 45.29, 45.381. 
 
Dataset III: This data set represents the lifetime’s data relating to relief times (in minutes) of 20 patients 
receiving an analgesic and reported by [18] and has been used by [19] and [20]. It is as follows: 1.1,  1.4,  
1.3,  1.7,  1.9,  1.8,  1.6,  2.2,  1.7,  2.7,  4.1, 1.8,  1.5,  1.2,  1.4,  3.0,  1.7,  2.3,  1.6,  2.0. 
 

The following table gives the summary descriptive statistics for the three data sets above. 
 

Table 3.1. Summary Statistics for the three data sets 
 

Parameters N Minimum 
1Q

 
Median 

3Q
 

Mean Maximum Variance Skewness Kurtosis 

Values for 
data set I 

100 0.80 4.675 8.10 13.020 9.877 38.500 52.3741 1.4728 5.5403 

Values for 
data set II 

31 18.83 25.51 29.90 35.83 30.81 45.38 52.61 0.4054 2.2866 

Values for 
data set III 

20 1.10 1.475 1.70 2.05 1.90 4.10 0.4958 1.7198 5.9241 

 

We also provide some histograms and densities for the three datasets as shown in Figures 3.1, 3.2 and 3.3 
below respectively. 
 

 
 

Fig. 3.1. A histogram and density plot for waiting times of bank customers (Data set I) 
 

 
 

Fig. 3.2. A Histogram and density plot for the strength data of glass of aircraft window (Data set II) 
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Fig. 3.3. A Histogram and density plot for the Relief times of 20 patients (Data set III) 
 

From the descriptive statistics in Table 3.1 and the histograms and densities shown above in Figs. 3.1, 3.2 
and 3.3 for the three data sets respectively, we observed that the three data sets are positively skewed; 
however, the third data set has a higher skewness coefficient followed by the first and then the second with a 
very low peak.  
 

For us to fit and assess the performance of the models listed above, we made use of some criteria: the AIC 
(Akaike Information Criterion), CAIC (Consistent Akaike Information Criterion) and HQIC (Hannan Quin 
information criterion). The formulas for these statistics are given as follows: 
 

2 2AIC ll k   ,  
2

1
2 kn

n k
CAIC ll

 
  

 and 
 2 2 log logHQIC ll k n       

 
Where ll = L and it denotes the log-likelihood function evaluated at the MLEs, k is the number of model 
parameters and n is the sample size. 
 

Decision bench mark: The model with the lowest values of these statistics would be chosen as the best 
model to fit the data. 
 

Table 3.2. Performance evaluation of the Lomax-Gompertz distribution with some generalizations of 
the Gompertz distribution using the AIC, CAIC and HQIC values of the models evaluated at the MLEs 

based on data set I 
 

Distributions Parameter 
estimates  

-ƖƖ=(-log-
likelihood 
value) 

AIC CAIC HQIC Ranks of 
models 
performance 

LGD ��=0.2593 
��=0.4411 
��=2.3755 

��=3.1367 

347.8476 703.6952 704.1162 707.9126 1 

GGD ��=0.2215 
��=0.0932 
�̂=0.3262 

739.5045 1485.0090 1485.2590 1488.1720 4 

TGD ��=0.1950 
��=0.0217 

��=-0.1190 

365.8488 737.6975 737.9475 740.8606 2 

OGEGD ��=0.0347 
��=0.0063 
��=7.5647 

��=1.5793 

659.9827 1327.9650 1328.3870 1332.1830 3 

GD ��=2.0907 
��=0.0433 

2894.2880 5792.575 5792.6990 5794.6840 5 
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Using the values of the parameter MLEs and the corresponding values of -ƖƖ, AIC, CAIC and HQIC for each 
model as shown in Table 3.2, we can understand that the LGD performs better with smaller values of the 
information criteria compared the other models. The above performance can be traced to the fact that the 
proposed distribution is heavily skewed to the right with a high peak and the first data set is also positively 
skewed with a large coefficient of kurtosis. 
 
Table 3.3. Performance evaluation of the Lomax-Gompertz distribution with some generalizations of 
the Gompertz distribution using the AIC, CAIC, and HQIC values of the models based on dataset II 

 
Distributions Parameter 

estimates  
-ƖƖ=(-log-
likelihood 
value) 

AIC CAIC HQIC Ranks of 
models 
performance 

LGD ��=0.1808 
��=0.0108 
��=7.0269 

��=8.2813 

193.1088 394.2177 395.7562 396.0875 1 

GGD ��=0.2824 
��=0.0019 
�̂=3.0485 

281.3734 568.7469 569.6358 570.1492 2 

TGD ��=0.5276 
��=0.0122 

��=0.7111 

665.7328 1337.4060 1338.3540 1338.8680 4 

OGEGD ��=0.0545 
��=0.0373 
��=2.0383 

��=0.2229 

443.9031 895.8062 897.3447 897.6760 3 

GD ��=2.0907 
��=0.0433 

780.4185 1564.837 1564.961 1566.946 5 

 
Table 3.4. Performance evaluation of the Lomax-Gompertz distribution with some generalizations of 
the Gompertz distribution using the AIC, CAIC and HQIC values of the models based on data set III 

 
Distributions Parameter 

estimates  
-ƖƖ=(-log-
likelihood 
value) 

AIC CAIC HQIC Ranks of 
models 
performance 

LGD ��=0.2646 
��=1.0598 
��=2.9677 

��=8.5964 

25.1072 58.2143 60.8809 58.9918 4 

GGD ��=0.9839 
��=0.3899 
�̂=7.1231 

19.2364 44.4729 45.9729 45.0559 1 

TGD ��=0.1472 
��=0.8821 

��=0.1998 

24.6575 55.3151 56.8151 55.8982 2 

OGEGD ��=0.1094 
��=0.3918 
��=2.9711 

��=4.4035 

186.5786 381.1572 383.8238 381.9347 5 

GD ��=0.2765 
��=0.5845 

25.8436 55.6873 56.3932 56.0760 3 

 
Table 3.3 also shows the parameter estimates to each of the five fitted distributions for the second data set 
(data set II), the table also provide the values of -ƖƖ, AIC, CAIC and HQIC of the fitted models evaluated at 
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their corresponding MLEs. The values in Table 3.3 indicate that the LGD has better performance with the 
lowest values of AIC, CAIC and HQIC followed by the GGD, TGD, OGEGD and GD. Again the reason 
behind this outperformance is that, the second data set has a low degree of kurtosis and skewness to the right 
meanwhile, our proposed model has various shapes with both moderate and higher peak all skewed to the 
right. 
 
Table 3.4 also presents the parameter estimates and the values of -ƖƖ, AIC, CAIC and HQIC for the five fitted 
models for the third data set. However, the values in the above table show that the GGD has better 
performance with the lowest values of AIC, CAIC and HQIC compared to the other four models including 
the proposed distribution. The proposed model performed poorly, closely following the baseline distribution. 
This poor performance could be attributed to the smaller sample size. 
 

4 Summary and Conclusions 
 
This article introduced a new distribution called Lomax-Gompertz distribution. It studied some mathematical 
and statistical properties of the proposed distribution with some graphical demonstration appropriately. The 
derivations of some expressions for its moments, moment generating function, characteristics function, 
survival function, hazard function, quantile function and ordered statistics has been done effectively. The pdf 
plot of the distribution revealed that it is positively skewed and its degree of kurtosis depends on the values 
of the parameters. The model parameters have been estimated using the method of maximum likelihood 
estimation. The implications of the plots for the survival function indicate that the Lomax-Gompertz 
distribution could be used to model time-dependent events or variables whose survival decreases as time 
grows or where survival rate decreases with time. The results of the three applications showed that the 
proposed distribution performs better than some extensions of the Gompertz distribution however, 
depending on the nature of the data sets. It was revealed that this new distribution has better performance for 
positively skewed data sets with larger sample sizes. 
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