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Ribonucleic acid (RNA) methylation is the most abundant modification in

biological systems, accounting for 60% of all RNA modifications, and affects

multiple aspects of RNA (including mRNAs, tRNAs, rRNAs, microRNAs, and

long non-coding RNAs). Dysregulation of RNA methylation causes many

developmental diseases through various mechanisms mediated by N6-

methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A),

5-hydroxymethylcytosine (hm5C), and pseudouridine (9). The emerging tools

of RNA methylation can be used as diagnostic, preventive, and therapeutic

markers. Here, we review the accumulated discoveries to date regarding the

biological function and dynamic regulation of RNA methylation/modification,

as well as the most popularly used techniques applied for profiling RNA

epitranscriptome, to provide new ideas for growth and development.

KEYWORDS

RNA methylation,N6-methyladenosine, 5-methylcytosine, 5-hydroxymethylcytosine,
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1 Introduction

Ribonucleic acid (RNA) modification plays an important role in linking
deoxyribonucleic acid (DNA) to proteins during the transmission of genetic
information. More than 100 post-transcriptional RNA modifications have been
identified in important biological processes in viruses, archaea, bacteria, and eukaryotes.
Methylation accounts for 60% of the total RNA modifications. RNA methylation was
discovered as early as the 1970s (Cantara et al., 2011), and it is widely distributed in
messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), small nuclear
RNA (snRNA), small nucleolar RNA (snoRNA), and micro RNA (El Yacoubi et al.,
2012). Currently, various distinct modifications in natural RNA have been characterized:
N1-methyladenosine (m1A), N6-methyladenosine (m6A), N6, 2′-O-dimethyladenosine
(m6Am), 5-methylcytosine (m5C), 5-hydroxymethylcytosine (hm5C), pseudouridine
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(9), and Adenosine to inosine editing (A-to-I editing), etc.
(Roundtree et al., 2017a; Walkley and Li, 2017; Zhao et al.,
2020). Among these, m6A, m5C, m1A, and 9 have been well
studied (Figure 1). Compared with DNA methylation, RNA
methylation is more complex and diverse, participates in the
regulation of many more biological processes, and determines
the diversification of RNA post-transcriptional modifications.
Mutations in approximately half of the currently known RNA
methylation enzymes have been linked to human diseases,
including cancer, cardiovascular diseases, congenital genetic
disabilities, metabolic diseases, neurological disorders, and
mitochondrial-related defects (Jonkhout et al., 2017; Barbieri
and Kouzarides, 2020). Here, we review the discoveries to
date regarding the dynamic regulation and key roles of RNA
methylation.

2 Biological patterns of RNA
methylation/modification

2.1 N6-methyladenosine (m6A)

N6-methyladenosine (m6A), the most abundant
methylation modification in eukaryotic mRNA, is the most
thoroughly studied type of RNA modification (Schwartz et al.,
2013). m6A has been found in many eukaryotes, ranging from
yeast, Arabidopsis, and Drosophila to mammals and even in
viruses (Krug et al., 1976; Schwartz et al., 2013; Luo et al.,
2014; Lin et al., 2017; Guo et al., 2018). In mammals, m6A is
widely distributed in multiple tissues, with the highest level
of m6A in the brain, kidney, and liver (Meyer et al., 2012).
Although the existence of m6A on RNA was identified as
early as the 1970s, little was known about its precise location,
temporal dynamics, and regulation until 2011 (Desrosiers et al.,
1974). With the identification of the first demethylase fat mass
and obesity-associated protein (FTO) of RNA m6A and the
development of antibody enrichment and high-throughput
sequencing technology, accurate mapping of the transcriptome-
level m6A distribution has been achieved (Jia et al., 2011). The
sequence near the m6A methylation site on mRNA is highly
conserved and mainly occurs on the adenine of RRm6ACH,
where R = G/A (G > A) and H = U/A/C (U > A > C)
(Harper et al., 1990). In addition, whole-transcriptome m6A
sequencing and comprehensive bioinformatics analysis of
human and mouse samples revealed that m6A modifications
are species-specific (Liu et al., 2020a). m6A methylation is
a reversible dynamic modification in many species and is
jointly regulated by methyltransferases (writers), demethylases
(erasers), and binding proteins (readers). The main components
of the methyltransferase complex that have been identified
include methyltransferase 3 (METTL3), methyltransferase 14
(METTL14), Wilms’ tumor 1-associating protein (WTAP),
and KIAA1429 (vir-like m6A methyltransferase associated)

(Oerum et al., 2021). The demethylases FTO and AlkB homolog
5 (ALKBH5) can reverse methylation (Figure 2; Liu et al., 2013;
Zheng et al., 2013).

The biological function of m6A is mainly through
the post-transcriptional regulation of RNA by m6A-binding
proteins. Currently known binding proteins include the YT521-
B homology (YTH) domain proteins (YTHDF1, YTHDF2,
YTHDF3, YTHDC1, and YTHDC2) and nuclear heterogeneous
ribonucleoprotein HNRNP family proteins (HNRNPA2B1,
HNRNPC, and HNRNPG) (Alarcón et al., 2015; Roundtree
et al., 2017b). With the development of RNA modification
detection technology, m6A modifications have been determined
to functionally regulate the transcriptome of eukaryotes
and processes such as mRNA stability, splicing, nucleation,
localization, and translation (Figure 2). Furthermore, m6A
is involved in a variety of biological processes such as stem
cell differentiation, cell division, gametogenesis, and biological
rhythms. Under the catalytic regulation of relevant enzymes,
m6A participates in various diseases, including tumors, obesity,
and infertility (Jiang et al., 2021).

Knocking out the m6A demethylase gene ALKBH5
accelerates the nuclear export of mRNA (Zheng et al.,
2013), whereas RNAi silencing of the core of the m6A
methyltransferase complex METTL3 inhibits the nuclear
transport process (Fustin et al., 2013), thereby demonstrating
that m6A modification can promote nuclear transfer. The
nuclear export of mRNA is a bridge connecting mRNA
processing in the nucleus and translation in the cytoplasm.
Further, nuclear export is coupled with each step of pre-mRNA
processing, and only properly processed mRNA is nucleated
and translated into protein.

As an exocyclic ring amine involved in Watson Crick base
pairing, the rotation direction of Watson Crick base pairing
of m6A is opposite to the U force of the carbon-nitrogen
bond, showing the methyl group in the reverse conformation,
which destabilizes the RNA double strand to local unstructured
transcripts (Roost et al., 2015). m6A tends to weaken these
structures. This modification is enriched in the 3′-untranslated
region (UTR) and alternative splicing exons and introns and
is related to mRNA preprocessing, such as splicing regulation
and polyadenylation (Meyer et al., 2012). Structural switches,
including helices with buried binding sites, can be refolded to
allow access to their respective protein partners (Liu et al., 2015).
The formation of hybrid structures, such as miRNA-target
interactions, is also affected by m6A (Brummer et al., 2017).

2.2 5-methylcytosine (m5C)

RNA m5C modifications were discovered more than
40 years ago. Similar to m6A, RNA m5C modifications
are dynamically reversible. Methyltransferase uses S-adenosyl
methionine (SAM) as a methyl donor to methylate cytosine
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FIGURE 1

Structure and location of representative RNA post-transcriptional modifications. The chemical properties of RNA modifications (top). The
known sites (bottom) of m6A, m1A, m5C, and 9 modification on mRNA.

(C) to form m5C (Figure 3). The distribution and function
of m5C may be species- and tissue-specific. Bisulfite treatment
combined with transcriptome sequencing has identified m5C
modification sites in thousands of mRNAs in HeLa cells
(Squires et al., 2012). m5C antibody immunoprecipitation
combined with bisulfite sequencing allowed the identification of
multiple m5C modifications in archaeal mRNA. The conserved
sequence of AU (m5C) GANGU was consistent with the m5C
conserved sequence in archaeal rRNA (Edelheit et al., 2013). The
discovery of the m5C methyltransferase NSUN2 (NOP2/Sun
RNA methyltransferase family member 2) and the binding
protein ALYREF (Aly/REF export factor) also proved that RNA
m5C modifications have dynamic reversibility (Yang et al.,
2017b). RNA m5C methylation is widespread in cells and
plays an important role in various physiological (Flores et al.,
2017) and pathological processes, such as tumors (Huang et al.,
2021; Nombela et al., 2021), neurological disorders (Van Haute
et al., 2019), viral infections (Wnuk et al., 2020), and organism
ontogeny (Flores et al., 2017). However, research on RNA m5C
methylation is still in its infancy.

RNA m5C modification can be recognized by the
transporter linker protein ALYREF, which promotes the
transport of related mRNA out of the nucleus. Knockout of
the m5C-modified methyltransferase gene NSUN2 blocks the
shuttling of the ALYREF protein between the nucleus and
cytoplasm (Yang et al., 2017b). In addition, the patterns of
m5C distribution on mRNA in relation to cis-acting regulatory
motifs and miRNA/RISC-binding sites suggest that this

modification may be involved in the post-transcriptional
regulation of mRNA metabolism (Squires et al., 2012). NSUN2-
mediated methylation is required to process non-coding vault
RNAs (vtRNAs) into small vault RNAs (svRNAs); however,
consequences in the downstream coding transcripts have
not emerged because of the defect of RNA m5C modification
(Hussain et al., 2013). ALYREF can recognize m5C in mRNA via
a methyl-specific RNA-binding motif and regulate the export
of bound transcripts in an NSUN2-dependent manner (Yang
et al., 2017b), whereas hm5C, derived from the Tet-dependent
oxidation of m6C, preferentially marks mRNAs within coding
regions and favors the translation of Drosophila transcripts (Fu
et al., 2014; Delatte et al., 2016).

2.3 Other RNA
methylation/modifications

In addition to m6A and m5C, other RNA modifications,
including m1A, m6Am, hm5C, and pseudouridine (9), have
been a hot field of research in recent years.

2.3.1 N1-methyladenosine (m1A)
RNA m1A methylation was first discovered in non-coding

RNAs such as rRNA and tRNA and is widely present in
prokaryotic and eukaryotic mRNAs. Unlike m6A methylation,
m1A methylation occurs at the N1 position of the adenosine
base group. It carries a positive charge by blocking Watson-
Crick base-pairing under physiological conditions. Thus, it can

Frontiers in Cellular Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fncel.2022.1058083
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-16-1058083 December 13, 2022 Time: 15:15 # 4

Zou et al. 10.3389/fncel.2022.1058083

FIGURE 2

Regulatory roles of m6A effector proteins. The m6A effectors, including writer proteins (i.e., m6A methyltransferase complex: core subunits
METTL3 and METTL14 and additional adaptors proteins including WTAP, ZC3H13, VIRMA, METTL16, RBM15/15B, HAKAI, and KIAA1429); eraser
proteins (i.e., RNA demethylases: FTO and ALKBH5), and reader (three classes of reader proteins: À YTH-domain-containing proteins, including
YTHDC1, YTHDC2, YTHDF1, YTHDF2, and YTHDF3; Á proteins favoring RNA-binding events, including HNRNPA2B1, HNRNPC, and HNRNPG; Â

RNA binding proteins, including eIF3, IGF2BP1, IGF2BP2, and IGF2BP3). With the development of RNA modification detection technology, m6A
modifications have been determined to functionally regulate the transcriptome of eukaryotes and processes, such as mRNA stability, splicing,
nucleation, localization, and translation.

FIGURE 3

The reaction mechanism of a typical m5C-RNA cytosine methyltransferase [m(5)C-RMTs, in blue]. M5C, formed by the methylation of carbon 5
of cytosine.
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drastically alter protein-RNA interactions and RNA secondary
structures through electrostatic effects. m1A maps uniquely to
positions near the translation start and first splice sites in coding
transcripts and correlates with the upregulation of translation
(Dominissini et al., 2016). m1A can be removed by ALKBH3 and
is responsive to various types of cellular stress (Li et al., 2015a).
However, the methyltransferases and binding proteins of m1A
remain unknown; hence, its specific function and mechanism of
action need to be further explored.

In mRNA, m1A exists in the highly structured 5′UTRs,
indicating that it may change the predicted secondary structure
(Dominissini et al., 2016; Li et al., 2016c). In the loop
structure, this positive charge may stabilize interactions with
the RNA phosphate backbone. The methylation level of m1A
in transcripts is related to increased translation, which may be
due to the availability or direct recruitment of initiation factors
and extension factors. The positive charge of this modification
enables it to adapt to specific protein RNA and unique RNA-
RNA interactions, and its biological effects are still unclear.

2.3.2 N6, 2′-O-dimethyladenosine (m6Am)
The N6, 2′-O-dimethyladenosine (m6Am) modification

was found at the first nucleotide of certain mRNAs (Crain
et al., 1978). m6Am is formed by the combination of 2′-
O-methyltransferase (2′-O-MTase) and 2′-O-methyladenosine-
N6-methyltransferase. Adenosine is methylated by 2′-O-
methyltransferase (2′-O-MTase) to form Am, which can then be
methylated by 2′-O-methyladenosine-N6-methyltransferase to
form m6Am (Wei et al., 1975). Compared to m6A, the m6Am

level in RNA is very low. Studies in H1-ESCs and GM12878 cells
found that H1-ESC poly(A) + RNAs contained approximately
three m6A nucleotides per 105 nucleotides compared to ∼100
m6A nucleotides per 105 nucleotides, revealing 33 times more
m6A compared to m6Am (Molinie et al., 2016). m6Am and
m6A share similar chemical characteristics; m6Am can be
detected by m6A-seq, and it can be demethylated by FTO
and is involved in the regulation of mRNA stability (Mauer
et al., 2016). Chen et al. (2020a) demonstrated that METTL4
mediates the N6-methylating process of Am30 on U2 small
nuclear RNA (snRNA) under an AAG motif in vitro and in vivo
(Chen et al., 2020a). However, the binding protein of m6Am

and molecular mechanisms involved in regulating its biological
functions require further study.

2.3.3 5-hydroxymethylcytosine (hm5C)
Similar to m5C in DNA, m5C in RNA can be oxidized

by ten-eleven translocation (Tet)-family enzymes to hm5C
(Figure 4; Fu et al., 2014). The Tet family of Fe(II)- and 2-
oxoglutarate-dependent dioxygenases can induce the oxidation
of m5C to yield hm5C (Kriaucionis and Heintz, 2009; Ito
et al., 2011). In Drosophila melanogaster, which lacks DNA
hydroxymethylation, hm5C is present in greater than 1,500
mRNAs, and hm5C modification is mainly distributed in the

exons of mRNA and contains CU-enriched conserved motifs
(Delatte et al., 2016). hm5C modification can promote the
translation efficiency of mRNA, which is significantly higher
than that of RNA without hm5C modifications. After TET
knockout, the level of hm5C modification in RNA is reduced,
resulting in the abnormal development of the Drosophila brain
(Delatte et al., 2016).

2.3.4 Pseudouridine (9)
In addition to methylated modifications, there are some

unmethylated modifications of RNA, such as ψ (sometimes
referred to as pseudouracil). It is one of the most abundant forms
of post-transcriptional RNA modifications, widely present in
cellular RNA, and highly conserved among species. ψ is
formed by the sequence-specific isomerization of uracil (U)
(Figure 5), which is abundant in tRNA and rRNA (Goodman
et al., 1968). 9 is known to affect the secondary structure of
RNA, and its function in altering stop codon read-through
may also be biologically relevant (Karijolich and Yu, 2010;
Fernandez et al., 2013).

3 Dynamic regulation of RNA
methylation/modifications

3.1 Methyltransferase-writers

3.1.1 Core m6A methyltransferase complex
components: METTL3, METTL14, and WTAP

The RNA m6A methyltransferase holoenzyme complex
consists of at least two multicomponent factors of the whole
methyltransferase called MT-A (∼ 200 kDa) and MT-B (∼
800 kDa). However, only the METTL3 (methyltransferase like
3, ∼ 70 kDa) protein has been identified, and the subunit
alone had no enzymatic activity (Tuck, 1992). METTL3 is
widely present in various human tissues, especially in the
testes (Leach and Tuck, 2001). METTL3 has two key domains
that are used to combine SAM and catalyze the formation of
m6A (Figure 6). Knocking down METTL3 causes apoptosis in
human HeLa and HepG2 cells, accompanied by a significant
decrease in m6A levels (Dominissini et al., 2012). Apart
from the METTL3 component, other components of the
methyltransferase complex have not been comprehensively
studied. In 2014, an evolutionary analysis of the METTL3
family revealed the METTL14 and METTL4 genes, which are
highly homologous to different families of METTL3 (Bujnicki
et al., 2002). METTL14 is another component in the m6A
methyltransferase complex with enzymatic activity (Liu et al.,
2013). In HeLa and HEK 293FT cells, knocking down METTL14
resulted in a decrease in total mRNA of m6A content, while
METTL14 and METTL3 interacted with each other. In vitro size
exclusion chromatography (gel filtration) experiments and two-
dimensional gel electrophoresis analysis showed that METTL14

Frontiers in Cellular Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fncel.2022.1058083
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-16-1058083 December 13, 2022 Time: 15:15 # 6

Zou et al. 10.3389/fncel.2022.1058083

FIGURE 4

Ten-eleven translocation (Tet)-catalyzed formation of hm5C in RNA. The Tet family of Fe(II)- and 2-oxoglutarate-dependent dioxygenases can
induce the oxidation of m5C to yield hm5C.

FIGURE 5

Isomerization reaction of uridine into pseudouridine (9). ψ is formed by the sequence-specific isomerization of uracil (U).

and METTL3 can form a stable complex at a 1:1 ratio. In vitro
experiments on the activity of enzymes involved in m6A
formation showed that although a single METTL14 had slightly
higher enzymatic activity than METTL3, the heterodimer
formed by METTL14 and METTL3 with a strong preference for
substrates had the highest enzymatic activity for the RNA of the
stem-loop structure, which has no obvious secondary structures.
It preferentially methylates GGACU, which is consistent with

the conserved sequence of m6A distribution reported previously
(Liu et al., 2013).

The third component of the mammalian m6A
methyltransferase complex is WTAP (Ping et al., 2014b). WTAP
plays a key role in transcriptional and post-transcriptional
regulation and is an oncogene whose expression is elevated
in several types of human tumors. Through a yeast two-
hybrid experiment, FIP37 (FKBP12 interacting protein 37,
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FIGURE 6

m6A depletion by METTL3/14 gene knockdown can promote the proliferation of neural stem cells and lead to prolonged cell cycle progression
and maintenance of radial glial cells. IPC, intermediate progenitor cells.

At3g54170, which encodes a human WTAP homologous gene)
was found in Arabidopsis as a protein that interacts with
methylthioadenosine (MTA) (Zhong et al., 2008). In HeLa
cells, WTAP can co-precipitate with the METTL3-METTL14
heterodimer, and their combined effect is weaker than the
interaction between METTL3 and METTL14 (Liu et al., 2013).
WTAP lacks a catalytic region and has no methyltransferase
activity, but the interaction between WTAP and METTL3-
METTL14 can localize the methyltransferase complex in
nuclear spots (Ping et al., 2014a), thereby regulating the binding
of the methyltransferase complex to the target RNA, which
ultimately affects the m6A level. Downregulating WTAP can
suppress the localization of METTL3 in the nucleus and reduce
m6A levels. The field has demonstrated that the consistency
of the RNA substrates of the WTAP, METTL3, and METTL14
combination reached 36% using immunoprecipitation (PAR-
CLIP) experiments (Liu et al., 2013). The conserved sequence of
RNA binding is the same as the previously reported conserved
sequence of m6A, and the three sites of RNA binding are mainly
located in the intergenic and intron regions, indicating that
m6A is generated from the precursor RNA. Silencing of the
methyltransferase complex increases the expression of bound
RNA, indicating that m6A is inversely related to gene expression
(Batista et al., 2014; Schwartz et al., 2014a). Because WTAP is
a splicing factor, knocking down WTAP or METTL3 can result
in the formation of different isoforms of RNA containing m6A

(Dominissini et al., 2012; Ping et al., 2014a), indicating that
m6A affects alternative splicing of RNA.

Taken together, the discovery of METTL3, METTL14, and
WTAP, which are important active center components in the
m6A methyltransferase complex (Yao et al., 2020), has provided
many new insights into m6A, laying an important foundation
for revealing the biological function of m6A in RNA.

3.1.2 Other m6A methyltransferase complex
components
3.1.2.1 KIAA1429

KIAA1429 is an important methyltransferase that
participates in m6A modifications (Schwartz et al., 2014b).
Based on the protein immunoprecipitation-mass spectrometry
analysis of the core component of m6A methyltransferase,
KIAA1429 may be a new subunit component of the m6A
methyltransferase complex to catalyze the formation of m6A in
mRNA (Schwartz et al., 2014). In Drosophila, the homologous
gene of KIAA1429 interacts with the homologous gene of WTAP
and regulates the pre-mRNA selective splicing of the important
gene sex lethal (Sxl), which controls sex determination (Ortega
et al., 2003). In human A549 cells, deletion of KIAA1429 can
cause a sharp drop in the m6A peak, indicating that KIAA1429
plays an important role in the methyltransferase complex
(Schwartz et al., 2014). Another study found that KIAA1429
can recruit METTL3/METTL14/WTAP, the catalytic core of
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the m6A methyltransferase complex, to achieve site-specific
regulation of m6A levels in mRNA (Yue et al., 2018).

3.1.2.2 RNA binding motif protein 15(B)
(RBM15/RBM15B)

RBM15/15B, a protein-coding gene, is a part of the WTAP-
METTL3 m6A methyltransferase complex that interacts
with WTAP to recruit the complex to target mRNAs.
RBM15 and RBM15B can participate in catalyzing the
formation of m6A on mRNA and non-coding RNA X-inactive
specific transcripts (XIST). Further, immunoprecipitation
experiments showed that RBM15 and RBM15B could bind
and recruit the WTAP-METTL3 complex to specific target
sites. RBM15/RBM15B consists of an RNA recognition
domain, as per iCLIP (individual nucleotide resolution
crosslinking and immunoprecipitation) sequencing and single
miCLIP (m6A individual nucleotide resolution crosslinking
and immunoprecipitation). Sequencing analysis of the base
resolution revealed that the RBM15/RBM15B-binding site was
significantly enriched near the m6A methylation modification
site (Patil et al., 2016). In addition, the homologous protein Nito
of RBM15 was also identified as a component of the methylase
complex in Drosophila (Lence et al., 2016).

3.1.2.3 METTL16

METTL16, a homologous protein of METTL3, can
mediate the formation of m6A in U6 snRNA. A 2017 study
showed that METTL16 could also mediate the methylation
of mRNA and regulate the intracellular levels of SAM.
METTL16 contains methylation marks within the conserved
UACm6AGAGAA sequence in the 3′UTR hairpins of the
mRNA MAT2A and a special type of RNA structure (Figure 7;
Pendleton et al., 2017).

3.1.2.4 Zinc finger CCCH-type containing 13 (Zc3h13)

Zc3h13, a critical RNA m6A regulator, plays an
important role in modulating RNA m6A methylation in
the nucleus (Wen et al., 2018). In 2018, three studies almost
simultaneously described Zc3h13 as a new component of
the m6A methyltransferase complex that regulates m6A
modification. Wen et al. (2018) found that mouse Zc3h13
can stabilize the nuclear localization of the Zc3h13-WTAP-
Virilizer-Hakai complex and regulate the self-renewal of
mouse embryonic stem cells (mESCs) by promoting m6A
methylation (Figure 8). Knuckles et al. (2018) further clarified
that mouse Zc3h13 and its Drosophila homologous gene
CG7358 (named Flacc) mediate the interaction between
RBM15/Nito and WTAP/Fl (2)d, thereby promoting m6A
modification of Mrna. They also found that Flacc regulates
sex determination and dosage compensation in Drosophila by
regulating alternative splicing of the Sxl gene. Guo et al. (2018)
identified the CG7358 gene of Drosophila (named Xio) and its
involvement in the sex determination pathway of Drosophila

through regulating the alternative splicing of Sxl via m6A
modification.

In addition to the above-mentioned members, there are
other methyltransferase components involved in the selective
recognition of methylation sites and division of labor to ensure
fine post-transcriptional regulation.

3.1.3 m5C methyltransferase: NSUN2 and
DNMT2

The identified RNA m5C-specific methyltransferases
include the NSUN (NOL1/NOP2/SUN) family proteins and
DNMT2 (DNA methyltransferase 2), which belong to the
superfamily of Rosman-folded enzymes and are characterized
by the conserved cysteine residue SAM. The RNA m5C
methyltransferase that has been studied the most recently is
the NSUN family, which acts as a methyl donor to catalyze
the transfer of methyl groups to cytosine residues of different
RNA substrates (Bujnicki et al., 2004). Among the nine
members of this family, many have catalytic and release sites for
methyltransferases, particularly NSUN2 (also known as Trm4).
NSUN2, encoded by the NSUN2 gene on chromosome 5p15.31-
33, is a nucleolar RNA methyltransferase that catalyzes the m5C
methylation of various RNAs such as mRNA, tRNA, and ncRNA
(Figure 9). Ultrahigh-performance liquid chromatography-
triple quadrupole mass spectrometry with multiple-reaction
monitoring (UHPLC-QQQ-MRM-MS/MS) studies have found
that NSUN2 is an mRNA-specific m5C methyltransferase, and
its catalytic activity depends on the C271 (cysteine 271) and
C321 (cysteine 321) sites, where C321 catalyzes the methylation
of cytosine by binding to the cytosine pyrimidine ring to
form a covalent bond, and C271 mediates the release of RNA.
High-throughput sequencing analysis also showed that NSUN2
knockdown significantly reduced mRNA m5C modification
(Yang et al., 2017b).

In addition to NSUN2, DNMT2 is an RNA m5C
methyltransferase that plays a role in multiple species. It was
initially considered a DNA methyltransferase, but the latest
research shows that human DNMT2 cannot catalyze DNA
methylation but can catalyze miRNA methylation and the
changes in the C38 methyl group of tRNAAsp (aspartatetRNA)
(Figure 9; Goll et al., 2006).

3.2 Demethylase-erasers

3.2.1 m6A demethylase: FTO and ALKBH5
During brain development, a dynamic change in m6A levels

in RNA has been observed (Meyer et al., 2012), suggesting the
existence of RNA m6A demethylases. Two novel mRNA m6A
demethylases (FTO and ALKBH5) have recently been identified,
confirming the dynamic regulation of m6A (Jia et al., 2011;
Zheng et al., 2013).
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FIGURE 7

The m6A methyltransferase METTL16 binds U6 snRNA. m6A typically locates at a DRACH motif, where D denotes A, G, or U; R denotes A or G;
and H denotes A, C, or U.

FIGURE 8

Zc3h13 modulates RNA m6A methylation in the nucleus. Zc3h13 anchors WTAP, Virilizer, and Hakai in the nucleus to facilitate m6A methylation
and to regulate mESC self-renewal. Upon Zc3h13 knockdown, a great majority of WTAP, Virilizer, and Hakai translocate to the cytoplasm to
inhibit m6A methylation.

The FTO gene is a major regulator of metabolism and energy
utilization (Church et al., 2009, 2010; Fischer et al., 2009). It
is a member of the Fe(II)- and oxoglutarate-dependent AlkB
oxygenase family and was originally shown to catalyze the
oxidative demethylation of methylated thymidine and uracil
(Gerken et al., 2007; Jia et al., 2008). Overexpressing FTO in
mice causes excessive energy intake and fattening; knocking
out FTO makes mice thinner and grow slowly and causes

teratogenic and lethal phenomena. In addition, FTO is closely
related to diseases such as type 2 diabetes, cancer, and dementia
(Boissel et al., 2009; Fu et al., 2013; Zhao et al., 2014). FTO
can remove 3mT and m3U from single-stranded DNA and
RNA (Jia et al., 2008), but its activity is very weak, and these
nucleic acid modifications are rarely found in the body. It is
generally believed that these are not the actual substrates for
FTO. In 2011, m6A was reported to be an enzyme substrate

Frontiers in Cellular Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fncel.2022.1058083
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-16-1058083 December 13, 2022 Time: 15:15 # 10

Zou et al. 10.3389/fncel.2022.1058083

FIGURE 9

Regulation and function of RNA m5C methylation.
C5-methylcytidine (m5C) is a common modification in (A) tRNAs
and (B) other non-coding RNAs (ncRNAs). NSUN family
enzymes (NSUN2, NSUN4) and DNMT2 have been identified as
m5C writers, while ALYREF and YBX1 have been identified as
m5C readers.

for FTO (Jia et al., 2011). By simulating the demethylation
reaction conditions in the physiological environment in vitro,
the wild-type and mutant proteins of the obesity gene FTO were
incubated with methylated substrates, and various methylation
forms were analyzed using mass spectrometry and high-
performance liquid phase technology. FTO had a demethylation
function for m6A on single-stranded RNA, and the enzyme
kinetic data indicated that the activity of FTO on m6A was
much higher than that on m3U. In vivo experiments showed
that the m6A content of mRNA in cells with knockdown of
the FTO gene increased by approximately 23%; overexpression
of FTO reduced the m6A content of mRNA by approximately
18% (Jia et al., 2011). Both in vivo and in vitro data indicate
that the actual demethylase substrate of FTO is m6A on nuclear
RNA. MeRIP-seq analysis of FTO-knockout brain tissue showed
that the m6A level was almost unaffected, but the m6A level of
certain specific mRNAs was significantly increased, indicating
that FTO acts only on specific mRNA substrates (Hess et al.,
2013). Epidemiological fluorescence experiments indicated that
FTO is partially located in nuclear spots, suggesting that nuclear
RNA is the main substrate of FTO (Jia et al., 2011).

Soon after FTO was discovered, a study reported a second
m6A demethylase, ALKBH5, in mammals (Zheng et al.,
2013). Integrating mass spectrometry, cell biology, genomics,
bioinformatics, and model biology revealed the catalytic
m6A demethylation activity of ALKBH5 (RNA demethylase).
As the second identified m6A demethylase, ALKBH5 has
m6A demethylase activity comparable to that of FTO and
preferentially acts on the m6A site of conserved motifs. Unlike
the oxidative demethylation of FTO, ALKBH5 can directly
catalyze the removal of m6A without generating intermediate

products (Zheng et al., 2013). In addition to FTO and ALKBH5,
more m6A demethylases are yet to be discovered.

3.3 Binding proteins-readers

3.3.1 m6A readers
The discovery of m6A methyltransferase and demethylase

in RNA means that m6A is a reversible chemical modification
that can dynamically regulate physiological development
processes. It is currently known that m6A-binding proteins in
mammals are mainly of families containing YTH (YT521-
B homology) domains, including YTHDF1, YTHDF2,
YTHDF3, YTHDC1, YTHDC2, and heterogeneous nuclear
ribonucleoproteins (HNRNP). Readers mainly work by directly
or indirectly binding RNA. Direct RNA binding is mediated
by a reader-specific recognition modification domain such
as the YTH family proteins, including YTHDF1, YTHDF2,
YTHDF3, YTHDC1, and YTHDC2, which can directly bind
to methylation modifications of the target genes in the nucleus
and cytoplasm (Figure 2). It can affect mRNA modifications,
including mRNA splicing, nuclear export, translation, and
mRNA degradation (Nachtergaele and He, 2017; Zhao et al.,
2017). Indirect RNA binding relies on methylation-induced
RNA unwinding, thereby exposing hidden protein-binding
motifs and making proteins more likely to bind to RNA.
HNRNP, known as heterogeneous nuclear ribonucleoproteins
and indirect RNA-binding proteins, is a complex of proteins
and RNA found in the nucleus of cells during gene transcription
and subsequent post-transcriptional modification of newly
synthesized RNA. It is involved in various cellular functions,
including mRNA stability (Zhao et al., 2009), mRNA transport
(Ma et al., 2018), miRNA maturation (Guil and Cáceres, 2007),
and telomere biogenesis (Labranche et al., 1998).

3.3.1.1 YT521-B homology domain family members

YTH is a newly discovered domain that can bind to short,
denatured single-stranded RNA (Zhang et al., 2010). The human
genome contains at least five YTH domain-containing proteins:
YTHDF1–3 and YTHDC1–2. Some YTH proteins contain a
low-complexity region (LCR) that can form a phase separation
of the protein (Ries et al., 2019), causing the cytoplasmic
YTHDF-m6A-RNA polymer to become processing bodies (P-
bodies). P-bodies are cytoplasmic ribonucleoprotein (RNP)
granules, which are aggregates of multiple functional proteins
and RNA in the cytoplasm (Wang et al., 2014). The binding
capacity of the YTH domain to RNA containing conserved m6A
sequences is approximately 1 µmol/L (Wang et al., 2014; Xu
et al., 2014, 2015; Zhu et al., 2014).

In 2014, the m6A-binding protein YTHDF2 (YTH
domain family, member 2) was first reported to mediate the
degradation of m6A-modified mRNA (Wang et al., 2014).
Photoactivatable ribonucleoside–enhanced crosslinking and
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PAR-CLIP sequencing results indicated that YTHDF2 mainly
binds to mRNA and some long non-coding RNA, and the
binding site is mainly in the 3′UTR rich in GAC sequences,
which is very similar to the distribution characteristics of
m6A. In general, YTHDF2 colocalizes with the deadenylation
and decapsidase complex in the cell, which can direct the
RNA substrate to the cytoplasmic subcellular organelle
P-body that mediates RNA degradation (Wang et al., 2014).
Subsequent studies further showed that YTHDF2 accelerated
the degradation of m6A-modified transcripts by recruiting
CCR4-NOT adenylate complexes (Du et al., 2016), primarily
comprising subunits with deadenylase activity (CNOT6,
CNOT6 L, CNOT7, or CNOT8) and regulatory NOT modules
(CNOT1, CNOT2, CNOT3, CNOT9, CNOT10, and CNOT11).

Similar to YTHDF2, the second identified m6A-binding
protein is YTHDF1 (YTH domain family, member 1), which
is also a cytoplasmic protein that can promote the translation
efficiency of the m6A-mRNA it binds. Ribosomal map analysis
showed that YTHDF1 promotes the binding of substrate RNA to
ribosomes, which is conducive to RNA translation (Wang et al.,
2015). In addition, YTHDF1 promotes translation initiation,
which, in turn, promotes protein synthesis. Downregulation of
YTHDF1 will result in a reduction in substrate RNA translation
efficiency, and the magnitude of the reduction is directly related
to how much YTHDF1 is downregulated. The discovery of
the YTHDF1 function indicates that m6A, as a dynamic RNA
marker, can effectively regulate protein production.

YTHDC1, an m6A-binding protein in the nucleus,
recognizes and binds m6A-containing RNAs and can mediate
m6A-regulated mRNA splicing (Xiao et al., 2016). YTHDC1 is
located at the YT body of the nucleus. In vitro electrophoretic
mobility shift assay (EMSA) experiments showed significant
binding of YTHDC1 to RNA containing m6A modifications,
while in vivo photoactivatable ribonucleoside enhanced
crosslinking and PAR-CLIP sequencing showed that the
binding motif of YTHDC1 is consistent with the conserved
motif RRACH of m6A. Most of the binding sites were
located near the stop codon, which is also consistent with the
distribution characteristics of m6A. YTHDC1 can interact
with the splicing factor SR protein to regulate the alternative
splicing of m6A-containing exons (Xiao et al., 2016). YTHDC1
also promotes XIST-mediated X-chromosome silencing by
identifying the m6A modification site on the non-coding gene
XIST (Patil et al., 2016). In HeLa cells, YTHDC1 interacts with
SRSF3 and the RNA export factor 1 (NXF1) to promote the
export of m6A-modified mRNA (Roundtree et al., 2017b).

YTHDF3 interacts with YTHDF1 and YTHDF2 to enhance
the binding ability of YTHDF1 or YTHDF2 to RNA containing
an m6A-modified substrate, thereby promoting RNA translation
or degradation. YTHDF3 may also interact with other proteins
to exert cell-specific regulatory functions (Li et al., 2017;
Ni et al., 2019).

YTHDC2 enhances the translation efficiency of target
mRNA by binding to the m6A-conserved motif (Wojtas et al.,
2017). YTHDC2 also plays an important role in spermatogenesis
by interacting with the meiosis-specific protein MEIOC to
affect substrate stability (Abby et al., 2016; Soh et al., 2017).
A study using infertile male and female mice with YTHDC2
knockout presented a defective phenotype during meiosis phase
I (Tanabe et al., 2016). In addition to containing the YTH
domain, YTHDC2 also contains an RNA-binding domain, a
helicase domain, and two ankyrin repeats, which may play a
role in the recruitment of RNA secondary structures, RNA
binding proteins, and other interacting proteins (Abby et al.,
2016; Tanabe et al., 2016). This also suggests that YTHDC2 may
play multiple roles in various biological processes.

3.3.1.2 HNRNP family members

The HNRNP protein family is mainly distributed in the
nucleus and is an RNA-binding protein that participates in
processes such as precursor RNA splicing, transportation, and
translation (Han et al., 2010). HNRNPA2B1, a member of the
HNRNP family, can bind m6A-modified RNA transcripts both
in vivo and in vitro. However, it remains controversial whether
HNRNPA2B1 is an m6A-binding protein. Alarcón et al. (2015)
found that HNRNPA2B1 can directly bind to m6A modification
sites and regulate alternative splicing and pri miRNA processing,
while Wu et al. (2018) found that HNRNPA2B1 does not directly
bind m6A but acts as a converter based on structural studies.
In addition, two other HNRNP family proteins, HNRNPC
and HNRNPG, can regulate the processing of RNA transcripts
containing m6A modifications. Unlike HNRNPA2B1, HNRNPC
and HNRNPG do not directly bind to the m6A site but mediate
the alternative splicing process of transcripts containing m6A
by recognizing and binding m6A-dependent structural switches
(Liu et al., 2015, 2017).

Additionally, studies based on RNA pull-down experiments
have detected other potential m6A binding proteins, including
ELAV-like RNA binding protein 1 (ELAVL1, also called
HuR), FMRP translational regulator 1 (FMR1), leucine-rich
pentatricopeptide repeat containing (LRPPRC), and insulin-like
growth factor 2 mRNA-binding proteins (IGF2BPs).

3.3.2 m5C-binding proteins: ALYREF
To identify the binding protein of m5C, two oligonucleotide

substrates, with and without m5C, were designed. Through
oligonucleotide enrichment combined with protein profiling,
the mRNA was identified as a nuclear functional complex
component. ALYREF binds to m5C-modified RNA
oligonucleotides. EMSA and RIP combined with HPLC
and sequencing technology demonstrated that ALYREF’s K171
(lysine 171) mutation can significantly reduce its ability to
bind m5C, thereby reducing its ability to bind RNA. Further,
fluorescence in situ hybridization technology (FISH) showed
that the efficiency of mRNA nucleation decreased with the
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knockdown of NSUN2 and ALYREF. However, backfilling
experiments demonstrated that only the wild-type NSUN2
and ALYREF could reverse the reduction in mRNA nucleation
caused by the knockdown of NSUN2 and ALYREF, suggesting
that m5C plays an important regulatory role in the process
of mRNA nucleation (Shi et al., 2017; Yang et al., 2017a;
Fan et al., 2019).

4 Biological processing of RNA
methylation

4.1 m6A and neural stem cells

m6A is distributed in distinct developmental stages in the
brain and controls the self-renewal of neural stem cells (NSCs)
and their differentiation into neurons (Yoon et al., 2017; Du
et al., 2019; Zhu et al., 2020). In METTL3/METTL14 gene
knockout mice, m6A can promote the proliferation of NSCs
and prolong the cell cycle of radial glial cells (Figure 6; Yoon
et al., 2017; Wang et al., 2018b). Such regulation may promote
the development of stem cell and gene-targeted therapies
for Alzheimer’s, Parkinson’s, and cognitive-related neurological
diseases.

4.2 m6A and synaptic functions

m6A modifications also contribute to the local regulation of
synaptic functions (Flamand and Meyer, 2019). Experimental
studies have shown that FTO protein in neurons can shift
between the nucleus, cell body, and dendrites (including
synapses) and can lead to changes in local RNA methylation
kinetics (Meyer et al., 2012; Chang et al., 2017). Methylated
transcripts are highly biased toward neuronal genes and
functions such as synaptic functions. The m6A transcriptome
is spatially regulated in different brain regions. At the
single neuron level, m6A-modified RNA and its interaction
groups diffuse to specific structures such as axons, dendrites,
pre-synaptic nerve endings, and dendritic spines. This spatial
distribution supports the m6A’s functional library to control
synapses, touch transmission, and plasticity. Transcriptomic
analysis of m6A in a mammalian brain revealed a specific
bias of m6A toward neuronal genes rather than glial cell
genes. The functional classification of m6A-seq analysis in the
entire mouse brain, midbrain, cortex, and cerebellum has been
identified. Most m6A-target genes are involved in nervous
system development, synaptic transmission, and post-synaptic
function. Other studies have reported the localization of m6A
in axons and its role in axon growth. Transcripts encoding the
axon elongation factor growth-associated protein-43 (GAP-43),
a specific marker for axonal regeneration, were identified as
targets for m6A modifications. The local translation of these

transcripts is negatively regulated by m6A and can be regulated
by FTO in axons (Geuens et al., 2016; Yu et al., 2018), showing
that RNA methylation also plays an important role in the
development and function of synapses.

4.3 m6A regulates nervous system
development

Among the various tissues and organs, the brain has
the most abundant expression of m6A and its recognition
proteins. m6A-related regulatory proteins perform important
functions in the cerebral cortex, such as synaptic function,
axon regeneration, neural stem cell self-renewal, and cerebellar
development (Yoon et al., 2017). The m6A modification plays an
irreplaceable regulatory role in the development and function
of the nervous system. Drosophila with a knockout of a yeast
m6A methyltransferase encoded by the Ime4 gene can be born
and survive until adulthood; however, the life span of the
fruit fly is shortened and shows obvious abnormal behavior,
suggesting that the deletion of m6A modification affects the
function of the fruit fly nervous system (Lence et al., 2016).
A specific knockout of METTL14 in the central nervous system
of mice can affect the development of the mouse cerebral cortex
(Yoon et al., 2017). Moreover, the deletion of the YTHDF2
gene in mice leads to an increase in the overall level of m6A,
preventing the differentiation of neural stem cells and the
formation of neuronal axis dendrites from entering the RNA
degradation pathway, resulting in the asymmetric division of
neural stem cells in the cerebral cortex (Li et al., 2018b). When
neural precursor cells are missing in mice, the differentiation of
neurons is affected, resulting in the slower development of the
forebrain cortex.

Except for the cerebral cortex, cerebellar RNA m6A patterns
and levels are particularly prominent. The dynamic process
of m6A methylation and demethylation occurs throughout the
entire developmental process of the cerebellum after birth,
and the lack of ALKBH5 in a low-pressure and low-oxygen
environment causes the m6A level of genes involved in the
regulation of cerebellar development to be disordered, speeding
up the process of RNA export and leading to a marked lag in
cerebellar development (Ma et al., 2018). The specific knockout
of METTL3 in the CNS causes severe motor dysfunction in
mice during lactation and leads to death. Anatomical and
pathological examination revealed that the deletion of m6A
methylation caused by METTL3 knockout severely affected the
development of the cerebral cortex and cerebellum, resulting in
thinning of the cerebral cortex and dysplasia of the cerebellum
(Wang et al., 2018a). The absence of m6A also causes disordered
gene expression regulation during the differentiation and
maturation of granule neurons in the cerebellum, resulting in
severe apoptosis of newborn granule neurons, revealing that
METTL3-mediated m6A modification plays an important role
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in the development of the mammalian central nervous system
(Wang et al., 2018a).

4.4 m5C is involved in brain
development

m5C-modified methyltransferase NOP2/Sun RNA
methyltransferase 2 (NSUN2), a protein-coding gene, also
regulates neuronal development. In a developing mouse brain,
the absence of NSUN2 did not affect RG cells but delayed their
differentiation into superior neurons. NSUN2 is expressed in
early neuroectodermal cells and can differentiate into various
region-specific neuronal and glial cell types (Li et al., 2005).
Mutations or deletions in the m5C methylase genes NSUN2
and NSUN3 can cause defects in the nervous system. NSUN2
mutations are associated with autosomal recessive mental
retardation (Khan et al., 2012). In the mouse brain, NSUN2 is
localized in the nucleolus of Purkinje cells in the cerebellum.
The mutated NSUN2 cannot function normally because it
cannot converge in the nucleolus. Further research revealed that
the methylation level of tRNA in the brains of NSUN2-deficient
mice decreased, the cerebral cortex thickened, the number of
intermediate progenitors increased, and the number of upper-
layer neurons decreased. In this process, the loss of NSUN2
may result in a reduction in the size of the hindbrain due to the
failure to produce sufficient numbers of differentiated neurons,
while the migration ability of human neuroepithelial stem cells
with NSUN2 loss is significantly reduced, which also suggests
that NSUN2-dependent tRNA methylation is essential for
brain development. The differentiation and migration of neural
progenitor cells thus play an important role (Flores et al., 2017).
In addition, the inactivation of NSUN3 in mouse embryonic
stem cells can further lead to impaired differentiation of the
neuroectodermal lineage (Trixl et al., 2018). The summary of
RNA modifications is presented in Table 1.

5 Methods to detect RNA
modifications

5.1 Wet-lab approaches applied for
profiling RNA epitranscriptome

Targeted approaches for detecting RNA modifications
have been well established. These include roughly four
types (Vandivier and Gregory, 2017): (1) direct sequencing
through nucleotide labeling and chromatography, (2) mass
spectrometry, (3) detecting the stalling and termination of
reverse transcriptase (RT), and (4) direct measurement of
changes in base pairing. We have summarized these targeted
technologies for detecting specific modifications (Li et al.,

2016b; Helm and Motorin, 2017; Lv et al., 2021). Recently,
the progress in combining existing biochemical techniques
and high-throughput sequencing has been rapid in covalent
RNA modification studies. These technologies include: (1) high-
throughput sequencing + antibody pull-down and (2) high-
throughput sequencing + chemical conversion and chemical
adduct coupling methods (Vandivier and Gregory, 2017).
(3) Single-molecule real time (SMRT) technology using
nanowells and nanopore sequencing (Furlan et al., 2021).
Recently developed in silico methods that detect RT errors in
high-throughput RNA sequencing data and high-throughput
single molecule sequencing data may read transcriptome and
extratranscriptome information simultaneously (Helm and
Motorin, 2017; Vandivier and Gregory, 2017). These methods
are summarized in Table 2.

These high-throughput mapping methods have enabled
the characterization of the epitranscriptome in diverse cellular
environments. However, further technical improvements are
needed to improve the resolution and sensitivity of these
methods. Following the recent discovery of more writers,
readers, and erasers of the epitranscriptome, as well as the
detailed analysis of the known epitranscriptome, new research
directions will emerge, which may lead to new treatment
strategies. In the future, improved high-throughput technology
should help improve spatial resolution, provide chemometric
data, and possibly detect new mRNA modifications in
the transcriptome.

5.2 Applied computational approaches
for profiling RNA epitranscriptome

Although wet-lab approaches can obtain relatively accurate
mRNA modification information, they are time-consuming,
costly, and difficult to conduct. Given that RNA sequence
numbers show explosive growth in the post-genomic era, wet-
lab approaches are obviously not suitable for systematic and in-
depth analysis of the relevant mechanisms and functions of RNA
methylation modification. Therefore, many researchers have
developed predictive and computational tools for identifying
epigenetic modifications (Chen et al., 2020c; Guo et al., 2021),
which have evolved rapidly in recent years (Rehman et al.,
2021b, 2022b; Liao et al., 2022). These tools are mainly based
on machine learning (ML) or deep learning (DL) algorithms
(Abbas et al., 2022). The information for most detection tools
and databases has been described in recent reviews published
by Chen et al. (2019b), El Allali et al. (2021) and Wang
et al. (2022b). We have integrated the information from those
studies with the most recent advances; this information is listed
in Table 3. Furthermore, we categorized emerging tools into
two types that identify single modification and multiple RNA
methylation sites, respectively, based on the year that the tool
developed (Table 3).
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TABLE 1 The summary of RNA modifications.

Modification types RNAs
presented

Modifying enzymes and
modification readers

Biological function

N6-methyladenosine
(m6A)

mRNAs,
rRNAs,
ncRNAs,
lncRNAs.

Write: METTL3
METTL14
WTAP
KIAA1429
RBM15
RBM15B
METTL16
Reader: YTHDF1
YTHDF2
YTHDF3
YTHDC1
YTHDC2
eIF3
HNRNPA2B1
HNRNPC
Eraser: ALKBH5
FTO

Regulating the transcriptome of
eukaryotes and processes such as mRNA
stability, splicing, nucleation, localization,
and translation.

5-methylcytosine (m5C) mRNAs,
tRNAs,
rRNAs,
miRNAs,
lncRNAs,
circRNAs.

Writer: NSUN1
NSUN2 NSUN3
NSUN4 NSUN5
NSUN6
NSUN7
DNMT2
Reader: ALYREF
YBX1
Eraser: still under debate

1. Stabilizing the secondary structure.
2. Influencing the anticodon stem-loop
conformation.
3. Affecting translational fidelity.

N1-methyladenosine
(m1A)

tRNAs,
rRNAs,
mRNAs.

Writes: TRMT61A TRMT6
TRMT10C
TRMT61B
Reader: remaining controversial
Eraser: ALKBH3 ALKBH1

1. Facilitating translation.
2. Affect tRNA structure folding.
3. Stabilizing the tertiary structures of the
tRNA molecules.

Pseudouridine (9) rRNAs,
tRNAs,
snRNAs.

Writes:
PUS1
PUSL1
PUS3
PUS7
PUS7L
PUS10 RPUSD1 RPUSD2 RPUSD3
RPUSD4 TRUB1 TRUB2
DKC1
Reader: none identified
Eraser: none identified

Stabilizing secondary structures to alter
translation efficiency, RNA localization,
and RNA stability.

N6 ,
2′-O-dimethyladenosine
(m6Am)

mRNAs,
rRNAs,
snoRNAs

Writes: METTL4
Reader: none identified
Eraser: FTO

1. Inhibiting adenosine deamination,
increase mRNA stability.
2. Controlling RNA stability and
translation.

m6A, N6-methyladenosine; m5C, 5-methylcytidine; m1A, N1-methyladenosine; 9 , pseudouridine; mRNA, messenger RNA; rRNAs, ribosomal RNA; ncRNA, non-coding RNA; lncRNA,
long non-coding RNA; tRNAs, transfer RNAs; miRNA, micro RNA; circRNA, circular RNA; snRNAs, small nuclear RNAs; snoRNAs, small nucleolar RNAs.

5.2.1 Prediction tools for identifying m6A sites
Dao et al. (2020) established the iRNA-m6A tool based

on the Support Vector Machine (SVM) with fivefold cross-
validation test. It can accurate identify m6A sites with
the data from high-throughput sequencing techniques in
multiple human, mouse, and rat tissues. Liu et al. (2020c)
further developed the im6A-TS-CNN tool and improved the
results of iRNA-m6A using a convolutional neural network

(CNN). Most recently, deep neural network (DNN)-based
m6A site computation models, such as TS-m6A-DL, iMethyl-
Deep, DNN-M6A, EDLm6APred, and DL-M6A, have been
developed. These tools can achieve the identification of m6A
methylation sites across species, and are specific to tissue
and even RNA types (Mahmoudi et al., 2020; Abbas et al.,
2021; Zhang et al., 2021a,b; Rehman et al., 2022a). Kortel et al.
(2021) developed m6Aboost by combining ML with miCLIP
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TABLE 2 Methods for detecting RNA modifications.

Methods Detection Pros Strengths Drawbacks

Direct sequencing Via nucleotide labeling and
chromatography

Various
modifications

• Powerful and able to produce high quality
data

• Labor intensive
• Restricting its use to
highly abundant RNAs

Direct sequencing
with SCARLET

Site-specific cleavage and
radioactive-labeling followed by
ligation-assisted extraction and
thin-layer chromatography

m6A
9

• Purifing less abundant species of RNA
• Including sequence information
• Quantification possible
• No specialized equipment

• Single-site query
• No high throughput
• Labor intensive

Direct sequencing
with mass
spectrometry

Analyze fragmented and whole
RNA

Various
modifications

• Unbiased manner
•Highly accurate quantification
• Expertise is reasonably widespread

• Labor-intensive
• No sequence
information
• Requires specialized
equipment
•Methodological and
computational challenges

Reverse
transcriptase-based
methods

Detecting the stalling and
termination

Various
modifications

• Targeting transcripts in a heterogeneous
pool of RNA
• Ideal approach for studying less abundant
RNAs
• Straightforward protocol
• Precise single-nucleotide mapping
• Adaptable to different types of
modification

• Semi-quantitative

High-resolution
melting

DNA polymorphisms
DNA methylation
covalent RNA modifications

Various
modifications

• Performing with any existing set of PCR
probes
• Covering a putative modification site

• Putative modifications
• Relying on a shift in
melting temperature.

Global methods for detecting RNA modifications

Antibody-based
enrichment coupled
to high-throughput
sequencing

Methyl and hydroxymethyl
RIP-seq, which rely upon
antibodies recognizing
modified ribonucleotide
epitopes

m6A
m1A
9

m5C
hm5C

• Unbiased surveys •Modification sites
cannot be defined with
singlenucleotide
resolution

High-throughput
sequencing with
chemical-based
methods

Specifically target or exclude
modified ribonucleotides with
high-throughput sequencing

m6A
m5C
9

• Determining the location of modification
sites
• Single-nucleotide resolution techniques

• Potential false negatives
• Apparent mismatches
from the expected
sequence

High-throughput
single-molecule
sequencing

Directly measuring changes in
base pairing like SMRT and
Nanopore sequencing

m6A, m5C, hm5C
Inosine
9

•Much longer sequencing-length
• Allow direct readout of modification sites
• Providing unbiased views of both the
transcriptome and epitranscriptome
• Allowing direct quantitation of
modification abundance

• Prone to noise and
sequencing error
• Statistics problems
• Unmatured
base-calling

In silico methods High-throughput analysis of
modified ribonucleotides

Various
modifications

• Identifying modifications
transcriptome-wide with single nucleotide
resolution
• Retrospectively and can be readily applied
to existing data and in meta analyses.
• Surveying multiple
•modification subtypes simultaneously

• Artifacts not be
properly controlled
Multiplesteps
• Limited to diploid and
haploid organisms

m6A, N6-methyladenosine; m5C, 5-methylcytidine; m1A, N1-methyladenosine; 9 , pseudouridine; hm5C, 5-hydroxymethylcytosine; SCARLET, site-specific cleavage and radioactive-
labeling followed by ligation-assisted extraction and thin-layer chromatography; SMRT, single molecule real-time; snRNAs; small nuclear RNAs; snoRNAs, small nucleolarRNAs.

(m6A individual-nucleotide resolution UV crosslinking and
immunoprecipitation) to significantly improve the detection
of m6A sites. miCLIP is a kind of antibody-based approach
for m6A site mapping with single-nucleotide resolution. Zhang
et al. (2021c) developed a novel predictor named M6A-GSMS
based on the GBDT (Gradient Boosting Decision Tree)

and stacking learning to identify m6A sites (Zhang et al.,
2021c). At the same time, Wang et al. (2021) proposed the
m6AGE predictor that combines sequence-derived features
and graph embeddings for m6A site prediction. Recently,
Rehman et al. (2021a) has made use of artificial intelligence
to produce an effective model, the m6A-NeuralTool, which
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TABLE 3 Summary of tools for identifying RNA methylation sites.

Targets of RNA
modification

Tools for identifying RNA methylation sites by years

N6-Methyladenosine (m6A) • iRNA-Methyl (Chen et al., 2015a), m6Apred (Chen et al., 2015b) (2015)
• pRNAm-PC (Liu et al., 2016), RNA-MethylPred (Jia et al., 2016), AthMethPre (Xiang et al., 2016b),
RNAMethPre (Xiang et al., 2016a), SRAMP (Zhou et al., 2016), TargetM6A (Li et al., 2016a), M6A-HPCS (Zhang et al.,
2016), M6ATH (Chen et al., 2016a) (2016)
•MethyRNA (Chen et al., 2017a), RAM-ESVM (Chen et al., 2017b), RAM-NPPS (Xing et al., 2017) (2017)
• iMethyl-STTNC (Akbar and Hayat, 2018), M6APred-EL (Wei et al., 2018), RFAthM6A (Wang and Yan, 2018), BERMP
(Huang et al., 2018), HMpre (Zhao et al., 2018), Zhang et al.’s (2018a) method, M6AMRFS (Qiang et al., 2018),
DeepM6ASeq (Zhang and Hamada, 2018), iRNA (m6A)-PseDNC (Chen et al., 2018a), M6Apred-EL (Wei et al., 2018),
m6ASNP (Jiang et al., 2018) (2018)
• Gene2vec (Zou et al., 2019), iN6-Methyl (5-step) (Nazari et al., 2019), WHISTLE (Chen et al., 2019a), DeepM6APred
(Wei et al., 2019), FunDMDeep-m6A (Zhang et al., 2019), iRNA-Freq (Zhuang et al., 2019) (2019)
• LITHOPHONE (Liu et al., 2020e), WITMSG (Liu et al., 2020g), m6A-pred (Khan et al., 2020a), iRNA-m6A (Dao et al.,
2020), im6A-TS-CNN (Liu et al., 2020c), iMethyl-deep (Mahmoudi et al., 2020), Pm6A-CNN (Alam et al., 2020),
M6A-word2vec (Tahir et al., 2020), m6A Reader (Zhen et al., 2020) (2020)
• TS-m6A-DL (Abbas et al., 2021), M6A-GSMS (Zhang et al., 2021c), m6AGE (Wang et al., 2021), m6Aboost (Kortel et al.,
2021),
DNN-m6A (Zhang et al., 2021b), EDLm6APred (Zhang et al., 2021a), m6A-NeuralTool (Rehman et al., 2021a) (2021)
• DL-m6A (Rehman et al., 2022a), m6A-TSFinder (Song et al., 2022a) (2022)

5-methylcytosine (m5C) • Feng et al.’s (2016) method, m5C-PseDNC (Feng et al., 2016) (2016)
• iRNAm5C-PseDNC (Qiu et al., 2017) (2017)
• pM5CS-Comp-mRMR (Sabooh et al., 2018), M5C-HPCR (Zhang et al., 2018b), PEA-m5C (Song et al., 2018),
RNAm5Cfinder (Li et al., 2018a), M5C–HPCR (Zhang et al., 2018b) (2018)
• RNAm5CPred (Fang et al., 2019) (2019)
• iRNA-m5C_SVM (Dou et al., 2020b), m5CPred-SVM (Chen et al., 2020b), iRNAm5C_NB (Dou et al., 2020a) (2020)
• Staem5 (Chai et al., 2021) (2021)
• Li et al.’s (2022b) method (2022)

N1-methyladenosine (m1A) • RAMPred (Chen et al., 2016b) (2016)
• ISGm1A (Liu et al., 2020f) (2020)
•m1ARegpred (Yao et al., 2022), m1A-Pred (Suleman and Khan, 2022) (2022)

N6, 2′-O-dimethyladenosine (m6Am) •m6AmPred (Jiang et al., 2022), DLm6Am (Luo et al., 2022) (2022)

5-hydroxymethylcytosine (hm5C) • iRNA5hmC (Liu et al., 2020i), iRNA5hmC-PS (Ahmed et al., 2020) (2020)
• iRhm5CNN (Ali et al., 2021), iR5hmcSC (Zhang and Shi, 2021) (2021)
• R5hmCFDV (Shi et al., 2022) (2022)

Pseudouridine (9) • tRNAmod (Panwar and Raghava, 2014) (2014)
• PPUS (Li et al., 2015b) (2015)
• iRNA-PseU (Chen et al., 2016c) (2016)
• PseUI (He et al., 2018) (2018)
• iPseU-CNN (Tahir et al., 2019), iPseU-NCP (Nguyen-Vo et al., 2019) (2019)
• RF-PseU (Lv et al., 2020b), iPseU–Layer (Mu et al., 2020), PIANO (Song et al., 2020b), EnsemPseU (Bi et al., 2020),
PSI-MOUSE (Song et al., 2020a), MixedCNN-PseUI (Aziz and Hasan, 2020), MU-PseUDeep (Khan et al., 2020b) (2020)
• PA-PseU (Wang and Zhang, 2021), XG–PseU (Liu et al., 2020d), Aziz et al.’s model (Aziz et al., 2021), Porpoise (Li et al.,
2021a), PseUdeep (Zhuang et al., 2021) (2021)

Multi-modification type prediction
tools.

•HAMR (Ryvkin et al., 2013) (2013)
• iRNA-PseColl (Feng et al., 2017) (2017)
• iRNA-3typeA (Chen et al., 2018b) (2018)
• DeepMRMP (Sun et al., 2019) (2019)
• iMRM (Liu and Chen, 2020), DeepPromise (Chen et al., 2020c) (2020)
• iRNA-Mod-CNN (Tahir et al., 2021), MultiRM (Song et al., 2021b) (2021)
• EMDLP (Wang et al., 2022a), ZayyuNet (Abbas et al., 2022) (2022)

can be utilized for speedy and efficient identification of N6-
methyladenosine sites (Rehman et al., 2021a). m6A TSHub is
a comprehensive online platform established by Song et al.
(2022a), which provides a web server constructed by multi-
instance deep neural networks with gated attention for high-
accuracy prediction of m6A methylation sites, named as m6A-
TSFinder (Song et al., 2022a).

5.2.2 Prediction tools for identifying m5C sites
Lv et al. (2020a) established a typical predictor named

as iRNA-m5C based on the best features and random forest
algorithm, to identify m5C sites in Homo sapiens, Mus musculus,
Saccharomyces cerevisiae, and Arabidopsis thaliana (Lv et al.,
2020a). Li et al. (2022b) developed a model to identify m5C
based on a deep fusion approach with an improved residual
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network via 10-fold cross-validation and independent set
testing, which shows a considerable improvement compared to
previous tools (Li et al., 2022b).

5.2.3 Prediction tools for identifying m1A sites
Yao et al. (2022) built the framework m1ARegpred (m1A

regulators substrate prediction), m1ARegpred was achieved
based on ML and the combination of sequence-derived and
genome-derived features. Suleman and Khan (2022) developed
an extreme gradient boost predictor named as m1A-Pred for the
prediction of modified m1A sites.

5.2.4 Prediction tools for identifying m6Am
sites

Jiang et al. (2022) presented the m6AmPred, the first
web server, for in silico identification of m6Am sites from
the primary sequences of RNA. m6AmPred was built
upon the XgbDart (eXtreme Gradient Boosting with Dart
algorithm) and EIIP-PseEIIP encoding scheme. Luo et al.
(2022) proposed an ensemble DL framework, named as
DLm6Am, to identify m6Am sites. DLm6Am consists of three
similar base classifiers, each of which contains a multi-head
attention module, an embedding module with two parallel
DL sub-modules, a CNN and a BiLSTM (Bidirectional long
short-term memory), and a prediction module. Compared
with the existing state-of-the-art m6Am prediction tool,
m6AmPred and MultiRM show superior performance (Luo
et al., 2022).

5.2.5 Prediction tools for identifying hm5C sites
Zhang and Shi (2021) designed a novel and powerful

model called iR5hmcSC for identifying hm5C. iR5hmcSC can
achieve high-throughput identification of hm5C (Zhang and
Shi, 2021). Shi et al. (2022) designed a model called R5hmCFDV.
R5hmCFDV showed higher accuracy than iR5hmcSC does in
the 10-fold cross-validation.

5.2.6 Prediction tools for identifying 9 sites
Zhuang et al. (2021) built PseUdeep, an RNA Pseudouridine

Site Identification framework with DL Algorithm. PseUdeep
outperformed the best traditional ML model available, which
was evaluated through 10-fold cross-validation and two
independent testing data sets (Zhuang et al., 2021).

5.2.7 Prediction tools for multi-modification
sites

Wang et al. (2022a) combined convolutional CNN and
BiLSTM, and developed an ensemble multiscale DL predictor,
EMDLP. It can identify RNA methylation sites by NLP (natural
language processing) and DL way, and also take better advantage
of the local and global information for site prediction. Abbas
et al. (2022) proposed a unified DL model named as ZayyuNet,
which can efficiently receive large inputs and achieve better

TABLE 4 RNA modification related database.

Targets of RNA
methylation/
modification

Database by years

N6-Methyladenosine (m6A) •MeT-DB V2.0 (Liu et al., 2018), m6Avar
(Zheng et al., 2018) (2018)
• CVm6A (Han et al., 2019) (2019)
• REPIC (Liu et al., 2020h) (2020)
• ConsRM (Song et al., 2021a), M6A2Target
(Deng et al., 2021) (2021)
•m6A-TSHub (Song et al., 2022a) (2022)

5-methylcytosine (m5C) • SyStemCell (Yu et al., 2012) (2012)
•m5C-Atlas (Ma et al., 2022) (2022)

N1-methyladenosine (m1A) /
N6, 2′-O-dimethyladenosine
(m6Am)

/

5-hydroxymethylcytosine
(hm5C)

/

Pseudouridine (9) /
Database containing multiple
types of RNA
methylation/modification

•MODOMICS (Dunin-Horkawicz et al., 2006)
• TCGA (Wang et al., 2016) (2006)
• REACTOME (Croft et al., 2011), RNAMDB
(Cantara et al., 2011) (2011)
• Gene-Expression Omnibus (GEO) (Barrett
et al., 2013), DARNED (Kiran et al., 2013) (2013)
• RCAS (Uyar et al., 2017) (2017)
• RMBase V2 (Xuan et al., 2018), REDIdb 3.0
(Lo Giudice et al., 2018) (2018)
• RNAmod (Liu and Gregory, 2019) (2019)
• RNAWRE (Nie et al., 2020), T-psi-C (Sajek
et al., 2020) (2020)
•m6A-Atlas (Tang et al., 2021), RMVar (Luo
et al., 2021), Lnc2Cancer 3.0 (Gao et al., 2021)
(2021)
• RMDisease V2.0 (Song et al., 2022b),
AgingBank (Gao et al., 2022), CPLM 4.0 (Zhang
et al., 2022), OncoDB (Tang et al., 2022), ASMdb
(Zhou et al., 2022), iMOMdb (Pan et al., 2022),
OAOB (Li et al., 2022a), ProMetheusDB
(Massignani et al., 2022), RM2Target (Bao et al.,
2022) (2022)

performance based on its SpinalNet architecture that was
inspired by the human somatosensory system.

5.3 Benchmark datasets related to RNA
methylation

It is important to understand the methylation-related
databases involved in developing these tools. We summarized
the database information involved in methylation modification
(Table 4) and sorted it into either single site or multiple
site modification based on the year that the database was
established in. Databases related to methylation modification
are under development from comprehensive databases to more
detailed and specialized ones. The following are the emerged
databases of methylation modifications associated with some
specific diseases and fields: (1) After m6A methylation-related
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genes based on The Cancer Genome Atlas (TCGA) were used
to predict the prognosis of hepatocellular carcinoma (Group
et al., 2020; Liu et al., 2020b; Li et al., 2021b), cancer-related
methylation modification databases have begun to emerge,
including, Lnc2Cancer 3.0 and OncoDB (Gao et al., 2021;
Tang et al., 2022); (2) Osteoarthritis-omics and molecular
biomarkers (OAOB), which are a group of database containing
differential molecular biomarkers related to osteoarthritis (Li
et al., 2022a); (3) Other than disease, Pan et al. (2022)
established an integrative multi-omic database (iMOMdb) of
Asian pregnant women providing the first blood-based multi-
omic analysis of pregnant women in Asia. This database
contains high-resolution genotypes, DNA methylation, and
transcriptome profiles, and fills the knowledge gap of complex
traits in populations of Asian ancestry; (4) Gao et al. (2022)
developed AgingBank, an experimentally supported multiomics
database of information related to aging in multiple species;
(5) ProMetheusDB, a database generated by analyzing and
sorting cell culture experiments data using ML tools from the
protein perspective (Massignani et al., 2022); (6) compendium
of protein lysine modifications (CPLM 4.0), a post-translational
modification (PTMs) database (Zhang et al., 2022); (7) tRNA-
related databases containing high-throughput tRNA sequencing
data (Sajek et al., 2020); (8) RNAWRE and RM2 Target are
two databases focusing on information of writers, readers,
and erasers (Nie et al., 2020; Bao et al., 2022); and (9)
SyStemCell, a multiple-levels experimental database for stem
cell research (Yu et al., 2012). With the emergence of these
specialized and multi-angle RNA methylation related databases,
the traditional databases are also constantly updated and
developed. Song et al. (2022a) established a comprehensive
online platform, m6A-TSHub, to reveal context-specific m6A
methylation and gene mutations that may regulate m6A
epigenetic markers. Ma et al. (2022) proposed the M5C Atlas,
a database for the comprehensive collection and annotation
of RNA5 methylcytosine. Zhou et al. (2022) built ASMdb, a
DNA modification database containing RNA sequencing data.
Nevertheless, at present, specific databases for methylation
modification such as m1A, m6Am, hm5C, and 9 are still
relatively lacking, which requires further improvement and
development by researchers.

6 Conclusion and outlook

To provide biochemical researchers with the latest progress
in RNA methylation, we reviewed the findings to date on
the dynamic regulation and key roles of RNA methylation.
We found that combining biochemical technology with
high-throughput sequencing has made rapid progress in
understanding the form and function of RNA modification,
especially in mRNA and lncRNA. We mainly discussed
m6A, m5C, m1A, pseudouridine, and 2’OMe. Other types
of modifications that can be detected but are not clearly

defined were not included. We also discussed the advantages
and disadvantages of the detecting method based on high-
throughput sequencing. It is worth mentioning that the
databases related to RNA methylation modification, as well as
the prediction and identification tools for RNA methylation
sites developed with the help of these databases, have played an
increasingly important role in RNA methylation modification
research. We found that establishing a powerful method to
investigate transcriptome modification is key to understanding
post-transcriptional regulation. We emphasized that RNA
methylation modification plays a key role in neural stem
cells, synaptic functions, nervous system development, and
brain development. Future research should focus on the role
and mechanism of RNA methylation in neurodevelopmental
disorders, which will greatly contribute to the prevention and
treatment of developmental diseases.
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