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Abstract 
 

The present study aims to obtain infinite fractional power series solution vectors of fractional Cauchy-
Riemann systems equations with initial conditions by the use of vectorial iterative fractional Laplace 
transform method (VIFLTM). The basic idea of the VIFLTM was developed successfully and applied to 
four test examples to see its effectiveness and applicability. The infinite fractional power series form 
solutions were successfully obtained analytically. Thus, the results show that the VIFLTM works 
successfully in solving fractional Cauchy-Riemann system equations with initial conditions, and hence it 
can be extended to other fractional differential equations. 
 

 
Keywords: Fractional Cauchy-Riemann systems equations; Caputo fractional derivatives; vectorial 

iterative fractional Laplace transform method. 
 

1 Introduction 
 
Fractional calculus theory is a mathematical analysis tool to the study of arbitrary order integrals and 
derivatives, which unify and generalize the notations of integer-order differentiation and n fold integration  
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[1,2,3,4]. The L'Hopital’s letter raised the question "What does ( )m

m

f x

x




 
 
mean if

2

1
m ?" to Leibniz in 1695 

is considered to be where the idea of fractional calculus started [2,5,6,7,8]. Since then, so many works on 
this question and other related questions have done up to the middle of the 19th century by many famous 
mathematicians such as Laplace, Fourier, Abel, Liouville, Riemann, Grunwald, Letnkov, Levy, Marchaud, 
Erdelyi and Reisz and these works sum up leads to contributions creating the field which is known today as 
fractional calculus [3]. 
 
However, fractional calculus has almost the age of standard calculus, it was only in recent few decades that 
its theory and applications have rapidly developed. Ross [9] was the first in organizing the first international 
conference on fractional calculus and its applications at the University of New Haven in June 1974 and 
edited the proceedings, and Oldham and Spanier [3] published the first monograph on fractional calculus in 
1974. Then after, because of the fact that fractional derivatives and integrals are non-local operators and then 
this property makes them a powerful instrument for the description of memory and hereditary properties of 
different substances [4], theory and applications of fractional calculus have attracted much interest and 
become an exciting research area. For more detailed information, the reader is kindly requested to go 
through [10,11] to know more details about the mathematical properties of fractional derivatives and 
fractional integrals, including their types and history, their motivation for use, their characteristics, and their 
applications. 
 
Due to this, fractional calculus has got many important applications in different fields of science, 
engineering and finance. For example, Shanantu Das [12] discussed that fractional calculus is applicable to 
problems in: fractance circuits, electrochemistry, capacitor theory, feedback control system, vibration 
damping system, diffusion process, electrical science, and material creep. Podlubny [4] discussed that 
fractional calculus is applicable to problems in fitting experimental data, electric circuits, electro-analytical 
chemistry, fractional multi-poles, neurons and biology [4]. Fractional calculus is also applicable to problems 
in: polymer science, polymer physics, biophysics, rheology, and thermodynamics [6]. In addition, it is 
applicable to problems in: electrochemical process [2,3,4], control theory [4,13], physics [14], science and 
engineering [8], transport in semi-infinite medium [3], signal processing [15], food science [16], food gums 
[17], fractional dynamics [18,19], modeling Cardiac tissue-electrode interface [20], food engineering and 
econophysics [13], complex dynamics in biological tissues [21], viscoelasticity [4,14,16,22,10], modeling 
oscillation systems [23]. Some of these mentioned applications were tried to be touched as follows. 
 
In the area of science and engineering, different applications of fractional calculus have been developed in 
the last two decades. For instance, fractional calculus was used in image processing, mortgage, biosciences, 
robotics, the motion of fractional oscillator and analytical science [8]. It was also used to generalize 
traditional classical inventory model to fractional inventory model [24]. 
 
In the area of the electrochemical process, for example, half-order derivatives and integrals proved to be 
more useful for the formulation of certain electrochemical problems than the classical models [2,3,4]. 
 
In the area of viscoelasticity, the use of fractional calculus for modeling viscoelastic materials is well known. 
For viscoelastic materials, the stress-strain constitutive relation can be more accurately described by 
introducing the fractional derivative [4,22,10,25,26,27]. Fractional derivatives, which are the one part of 
fractional calculus, are used to name derivatives of an arbitrary order [4]. Recently, fractional derivatives 
have been successfully applied to describe (model) real-world problems. 
 
In the area of physics, fractional kinetic equations of the diffusion, diffusion-advection and Fokker-Plank 
type are presented as a useful approach for the description of transport dynamics in complex systems that are 
governed by anomalous diffusion and non-exponential relaxation patterns [28]. Metzler and Klafter [28] 
derived these fractional equations asymptotically from basic random walk models, and from a generalized 
master equation. They presented an integral transformation between the Brownian solution and its fractional 
counterparts. Moreover, a phase space model was presented to explain the genesis of fractional dynamics in 
trapping systems. These issues make the fractional equation approach powerful. Their work demonstrates 
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that the fractional equations have come of age as a complementary tool in the description of anomalous 
transport processes. L.R. Da Silva, Tateishi, M.K. Lenzi, Lenzi and Da silva [29] were also discussed that 
solutions for a system governed by a non-Markovian Fokker Planck equation and subjected to a Comb 
structure were investigated by using the Green function approach. This structure consists of the axis of the 
structure as the backbone and fingers which are attached perpendicular to the axis, and for this system, an 
arbitrary initial condition in the presence of time-dependent diffusion coefficients and spatial fractional 
derivatives were considered and the connection to the anomalous diffusion was analyzed [29]. 
 
In addition to these, the following are also other applications of fractional derivatives. Fractional derivatives 
in the sense of Caputo fractional derivatives were used in generalizing some theorems of classical power 
series to fractional power series [1]. Caputo time-fractional derivatives was used to model a natural 
convection flow; see [30]. Fractional derivative was applied to study the effects of Lorentz force induced by 
convection; see [31] Fractional derivative in the Caputo sense was used to introduce a general form of the 
generalized Taylor’s formula by generalizing some theorems related to the classical power series into 
fractional power series sense [32]. A definition of Caputo fractional derivative proposed on a finite interval 
in the fractional Sobolev spaces was investigated from the operator theoretic viewpoint [33]. Particularly, 
some important equivalence of the norms related to the fractional integration and differentiation operators in 
the fractional Sobolev spaces are given and then applied for proving the maximal regularity of the solutions 
to some initial-boundary-value problems for the time-fractional diffusion equation with the Caputo 
derivative in the fractional Sobolev spaces [33]. With the help of Caputo time-fractional derivative and  

Riesz space-fractional derivative, the  -fractional diffusion equation, which is a special model for the two-

dimensional anomalous diffusion, is deduced from the basic continuous time random walk equations in 
terms of a time- and space-fractional partial differential equation with the Caputo time-fractional derivative 

of order 
2


 and the Riesz space-fractional derivative of order   [34]. Fractional derivatives were also used 

to describe HIV infection of TCD 4 with therapy effect [35]. 
 
In the area of modelling oscillating systems, caputo and Caputo-Fabrizio fractional derivatives were used to 
present fractional differential equations which are generalization of the classical mass-spring-damper model, 
and these fractional differential equations are used to describe a variety of systems which had not been 
addressed by the classical mass-spring-damper model due to the limitations of the classical calculus [23]. 
 
Podlubny [4] stated that fractional differential equations are equations which contain fractional derivatives. 
These equations can be divided into two categories such as fractional ordinary differential equations and 
fractional partial differential equations. Fractional partial differential equations (PDES) are a type of 
differential equations (DEs) that involving multivariable function and their fractional or fractional-integer 
partial derivatives with respect to those variables [36]. There are different examples of fractional partial 
differential equations. Some of them are: the time-fractional Boussinesq-type equation, the time-fractional 

)1 ,1 ,2(B -type equation and the time-fractional Klein-Gordon-type equation stated in Abu Arqub et al. 

[36], and time fractional diffusion equation stated in A. Kumar, Kumar and Yan [37], Cetinkaya and Kiymaz 
[38], Kumar, Yildirim, Khan and Wei [39], Kebede [40,41] and so on. 
 
Recently, fractional differential equations have been successfully applied to describe (model) real-world 
problems. For instance, the generalized wave equation, which contains fractional derivatives with respect to 
time in addition to the second-order temporal and spatial derivatives, was used to model the viscoelastic case 
and the pure elastic case in a single equation [42]. The time fractional Boussinesq-type equations can be 
used to describe small oscillations of nonlinear beams, long waves over an even slope, shallow-water waves, 

shallow fluid layers, and nonlinear atomic chains; the time-fractional )1 ,1 ,2(B -type equations can be used 

to study optical solitons in the two-cycle regime, density waves in traffic flow of two kinds of vehicles, and 
surface acoustic soliton in a system supporting love waves; the time fractional Klein-Gordon-type equations 
can be applied to study complex group velocity and energy transport in absorbing media, short waves in 
nonlinear dispersive models, propagation of dislocations within crystals as cited in [43]. As cited in Abu 
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Arqub [43], the time-fractional heat equation, which is derived from Fourier’s law and conservation of 
energy, is used in describing the distribution of heat or variation in temperature in a given region over time; 
the time-fractional cable equation, which is derived from the cable equation for electro diffusion in smooth 
homogeneous cylinders and occurred due to anomalous diffusion, is used in modelling the ion electro 
diffusion at the neurons; the time-fractional modified anomalous sub diffusion equation, which is derived 
from the neural cell adhesion molecules, is used for describing processes that become less anomalous as time 
progresses by the inclusion of a second fractional time derivative acting on the diffusion term; the time 
fractional reaction sub diffusion equation is used to describe many different areas of chemical reactions, 
such as exciton quenching, recombination of charge carriers or radiation defects in solids, and predator pray 
relationships in ecology; the time-fractional Fokker–Planck equation is used to describe many phenomena in 
plasma and polymer physics, population dynamics, neurosciences, nonlinear hydrodynamics, pattern 
formation, and psychology; the time-fractional Fisher’s equation  is used to describe the population growth 
models, whilst, the time fractional Newell–Whitehead equation is used to describe fluid dynamics model and 
capillary–gravity waves [41,44]. The fractional differential equations, a generalization of the classical mass-
spring-damper models, are useful to understand the behaviour of dynamical complex systems, mechanical 
vibrations, control theory, relaxation phenomena, viscoelasticity, viscoelastic damping and oscillatory 
processes [23]. The space-time fractional diffusion equations on two-time intervals were used in finance to 
model option pricing and the model was shown to be useful for option pricing during some temporally 

abnormal periods [45]. The  -fractional diffusion equation for 20   describes the so called Levy 

flights that correspond to the continuous time random walk model, where both the mean waiting time and 
the jump length variance of the diffusing Particles are divergent [34]. Time fractional diffusion equations in 
the Caputo sense with initial conditions are used to model cancer tumor [46]. 
 
The system of first-order linear equations:  
 

( , ) 0 1 ( , ) ( , )
 , 0

( , ) 1 0 ( , ) ( , )

u x y u x y f x y
; x IR y       

v x y v x y g x yy x

        
                                              (1.a) 

 

for the desired vector 








),(

),(

yxv

yxu
is involving real-valued functions ),( yxu and ),( yxv . Together, System 

(1.a) is elliptic while individually both the partial differential equations are hyperbolic for the ellipticity of 

the system [47]. If ),(0),( yxgyxf  , Equation (1.a) is the Cauchy-Riemann system and dependent 

variables u  and v are analytic. Thinking of y as a time variable and of data for the vector 








),(

),(

yxv

yxu
as 

being given on 0y , we are mainly concerned with the inhomogeneous Cauchy-Riemann System (1.a) 

subject to the following initial condition [48]: 
 

0

0

( , ) ( )
                                   

( , ) ( )

u x y x
; x IR             

v x y x





   
    
              (1.b) 

 

where )(x and )(x are analytic.  

 
It is well known that initial value problem for the Cauchy-Riemann system is ill-posed. The inherent 
instability of this system, for the first time was discussed by Hadamard [49]. Farmer and Howison [50] 
illustrate the ill-posed nature of the system in various contexts. 
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Joseph and Saut [51] associated that the ill-posedness of Cauchy problem with the non-existence of a 
solution to the initial-value problem for non-analytic data. They showed that the problems which are 
Hadamard unstable cannot be solved unless the initial data are analytic. Reichel [52] analyzed several fast 
numerical methods based on solving initial-value problems for the Cauchy-Riemann system. She discussed 
the techniques for analytic continuation of conformal mappings and indicated the available methods for 
finding analytic continuations which use Taylor coefficients or their approximations for the analytic 
functions, see for example Gustafson [53] and Henrici [54]. Reichel [52] also shows the stability and 
accuracy of her schemes through numerous applications. 
 
During the past couple of decades, researchers have been engrossed to constructing the approximate analytic 
solution for the partial differential equations. For example, Naseem and Tahir [48] used a Vectorial reduced 
differential transform (VRDT) method to solve the initial-value problem for the inhomogeneous Cauchy-
Riemann system. 
 
Recently, beyond standard partial differential equations, the fractional differential equations have gained 
much attention of researchers due to the fact that they generate fractional Brownian motion which is a 
generalization of Brownian motion [4]. Due this, fractional derivative provides an excellent tool for 
describing memory and hereditary properties for various [4] materials and processes ordinary (standard 
derivative) [55], and then based on this fact, the systems of first order linear equations form given by (1.a) 
[48] were extended to the form: 
 

 

 
































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


































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yxg
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yxv

yxu
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yxu
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where 








),(

),(

yxg

yxf
 is the source terms, which is a generalization of equation  a.1  given  b.1  , was 

considered and then solved it by Vectorial Iterative Fractional Laplace Transform method in this paper. Here


































 

),(

),(

),(

),( 1

yxv
y

yxu
y

J
yxv

yxu
D yy

 , where the Caputo fractional derivative, 

yD  has the advantage that 

the initial conditions for fractional differential equations with Caputo derivative take on the same form as for 
integer order differential equations [56]. 
 
The iterative method was firstly introduced by Daftardar-Gejji and Jafari [57] to solve numerically the 
nonlinear functional equations. By now, the iterative method has been used to solve many integer and 
fractional boundary value problem [58]. Jafari et al. [59] firstly solved the fractional partial differential 
equations by the use of iterative Laplace transform method (ILTM). More recently, Yan [60], Sharma and 
Bairwa [61], Sharma and Bairwa [62], Kebede [41] were used VILTM for solving Fractional Fokker-Planck 
equations, generalized time-fractional biological population model, Fractional Heat and Wave-Like 
Equations, and  (n+1)-Dimensional time fractional diffusion equations respectively. 
 
In this paper, the author has been presented how to obtain the solutions of fractional Cauchy-Riemann 
systems with initial conditions in the form infinite fractional power series form by the use of vectorial 
iterative fractional Laplace transform method (VIFLTM). The basic idea of VIFLTM was developed 
successfully, and then four test examples were presented to see its effectiveness and applicability. Their 
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solutions in the form of infinite fractional power series were successfully obtained by the use of vectorial 
iterative fractional Laplace transform method (VIFLTM). The results show that the vectorial iterative 
fractional Laplace transform method works successfully in solving fractional Cauchy-Riemann systems, and 
hence it can be extended to other systems of equations. 
 
This paper is organized as follows in the next sections. In the methods and materials section, the way the 
study was designed to go through was discussed. In the preliminaries section, some definitions, properties 
and theorems of fractional calculus theory. In the results and discussion section, the results which are the 
basic idea of vectorial fractional Laplace transform method, application examples and discussion of the 
application of the results obtained were presented. Finally, the conclusions are presented. 
 

2 Methods and Materials 
 
First, the background theory for the objective of the study was set. Next, inhomogeneous Cauchy system of 

fractional differential equations with initial conditions of the form: Equation  a.2 given that Equation 

 b.2 was considered and then solved analytically by using vectorial iterative fractional Laplace transform 

method following the next five procedures sequentially. First, some basic definitions and properties of 
fractional calculus and Laplace transform were revisited. Secondly, basic idea of iterative fractional Laplace 

transform method for Equation  a.8  given that Equation  b.8  was developed and then remark 3.2.2.1 was 

obtained. Thirdly, solutions of Equation  a.2 given that Equation  b.2  in the form of infinite fractional 

power series was obtained by using the remark 3.2.2.1. Lastly, the exact solution vector of the standard form 

of Equations  a.2 given that Equation  b.2 for the special case 1 was obtained. 

 

3 Preliminaries 
 
Some basic definitions and properties of fractional calculus and Laplace transform were revisited as follows 
to use them in this paper; see [2,4,10,11]. 
 

Definition3.1. A real valued function 0, ),,(  tIRxtxu , is said to be in the space IRC   , ,
 
if there 

exists a real number q  such that ),()( 1 txutxu q , where )),0[(),(1  IRCtxu  and it is said 

to be in the space 
mC if

  INnCtxu m   ,),(  . 

 

Definition3.2. The Riemann-Liouville fractional integral operator of order 0  of a function 

-1 ,),(  Ctxu
 
is defined as  
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
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But, Riemann Liouville derivative does not allow the utilization of initial and boundary conditions involving 
integer order derivatives during modelling real-world problems with fractional differential equations. To 
beat this disadvantage of Riemann Liouville derivative [2,4], Caputo proposed a modified fractional 

differentiation operator 

aD  [55] to illustrate the theory of viscoelasticity as follows: 

 

    4                            0 ,)()(
)(

1
)()( 1 


 

 


 dfx
m

xfDJxfD m
x

a

mmm

aa

 
 

where
 

  and  ,1  
1

mCfaxmm


  . 

 
This Caputo fractional derivative allows the utilization of initial and boundary conditions involving integer 
order derivatives, which have clear physical interpretations of the real situations. 
 

Definition3.3. For the smallest integer that exceeds  ,
 
the Caputo time fractional derivative order 0  of 

a function ),( txu  is defined as:  
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Theorem3.1. If
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Definition3.4. [11] Laplace transform of 0),( tt  is 
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4 Results and Discussion 
 
4.1 Main results 
 
Basic idea of vectorial Iterative fractional Laplace transform method is illustrated as follows. 
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Step1. Consider a fractional  non-linear  inhomogeneous Cauchy Riemann System of partial differential 
equations with initial conditions of the form: 
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Step2. Now apply fractional Laplace transform method to Equation  a.8 given that Equation  b.8  as 

follows. 
 

i. Applying the Laplace transform denoted by L  to Equation  a.8 , we obtain: 
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ii. By using Equation   7 , we get: 
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iii. Taking inverse Laplace transform of Equation   10 , we get: 
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Step3. Now we apply the iterative method to Equation  11  as follows. 
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i. Let 
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be the solution vector of Equation  a.8  and has the infinite series form 
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Since, 
x


is the linear operator, using Equation  12 , 
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ii. Since N is the non-linear operator, by using Equation  12 , N is decomposed as: 
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iii. By substituting Equations  12 ,  13  and  14  in Equation  11 , we get 
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iv. Now from Equation  15 , we define recurrence relations: 
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Continuing with this procedure, we get 
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Therefore the 
thi term approximate solution vector of Equation  a.8 given that Equation  b.8 in power 

series form is given by 
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Step4. The infinite power series form solution vector of Equation  a.8 given that Equation  b.8  as

INp approaches , is obtained from Equation  21 and it is given as Equation  11 . 

 

Remark 4.1.1: If 0Nu , then Equation  a8 given that Equation  b8  becomes Equation  a.2 given that 
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ii. 1u which is given by Equation  17
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iii. 2u which is given by Equation  18
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iv. 3u which is given by Equation  19
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v. Continuing with this procedure , 1 pi uu which is given by Equation  20  becomes 
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4.2 Applications 
 
The vectorial iterative fractional Laplace transform method (VIFLTM) was applied to four initial-value 

problems of fractional Cauchy-Riemann systems of the form Equation  a.2 given that Equation  b.2  for 

determining closed solution vectors in infinite fractional power series. 
 

Example 1. Taking 0),( yxf and 0),( yxg  in Equation  a.2 and choosing 0)( x  and

xx sinh)(  in Equation  b.2 , consider the fractional Cauchy Riemann system 
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By Equation  22 , 
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Continuing with this process, we obtain that 
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The 
thi order fractional power series solution vector of Equation  a.27 given that Equation  b.27 , 

denoted by 








),(~
),(~
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i

i
 is given by 
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By letting INp to  or taking limit of both sides of Equation   33 as  INp , the infinite 

fractional power series solution vector of Equation  a.27 given that Equation  b.27 denoted by 
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Lastly, as   approaches to1 from left, Equation (34) approaches to the exact solution vector of the ordinary 

(standard) Cauchy Riemann system of equations which can be obtained from Equation  a.27 given that 

Equation  b.27 , and is given by  
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Example 2. Taking 0),( yxf and 0),( yxg  in Equation  a.2  and choosing xx sin)(   and

xx cos)(   Equation  b.2 , consider the homogeneous fractional Cauchy Riemann system problem  
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Subject to initial conditions: 
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By Equation  23 , 
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By Equation  24 : 
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By Equation  25 , 
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Continuing with this process, we obtain that 
 

 

 
 41            ,1321 ,0 ,R x,10   ,

)1(

1
cos

)1((

1
sin

1

1
INP,P, , , iyI

i

y
x

i

y
x

v

u

v

u

ii

ii

p

p

i

i
































































 

 

The 
thi order approximate fractional power series form solution vector of Equation  a.36  given that 

Equation  b.36 , denoted by 
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By letting INp to or taking limit of both sides of Equation   42  as  INp , the of infinite 

fractional power series form solution vector of Equation  a.36  given that Equation  b.36 denoted by 
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Lastly, as   approaches to1 from left, Equation (43) approaches to the exact solution vector of the ordinary 

(standard) Cauchy Riemann system of equations, which can be obtained from Equation  a.36  given that 

Equation  b.36 , and is given by 
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Example 3.Taking axyyxf sin),(  and 0),( yxg  in Equation  a.2  and choosing axx sin)(   

and axx cos)(   in Equation  b.2 , consider the following inhomogeneous fractional Cauchy Riemann 

system problem 
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Subject to initial conditions: 
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Continuing with this process, we obtain that 
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Lastly, as   approaches to1 from left, Equation (52) approaches to the exact solution vector of the ordinary 

(standard) Cauchy Riemann system of equations, which can be obtained from Equation  a.45  given that 
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Subject to initial conditions: 
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By Equation  23 , 
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By Equation  24 : 
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By Equation  25 , 
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Continuing with this process, we obtain that 
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By letting INp to or taking limit of both sides of Equation  60  as  INp , the solution vector 
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Lastly, as   approaches to1 from left, Equation (61) approaches to the exact solution vector of the ordinary 

(standard) Cauchy Riemann system of equations, which can be obtained from Equation  a.54 given that 

equation  b.54 , and is given by 
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4.3 Discussion 
 
Through the four examples considered above, the vectorial iterative fractional Laplace transform method 
(VIFLTM) was successfully applied to initial-value problems fractional Cauchy-Riemann systems of the 

form Equation  a.2  given that Equation  b.2  for: 0),( yxf and 0),( yxg with initial conditions

0)( x  and xx sinh)(  ; 0),( yxf and 0),( yxg with initial conditions xx sin)(   and 

xx cos)(  ; axyyxf sin),(  and 0),( yxg with initial conditions axx sin)(   and 

axx cos)(  ; xyyxf ),( and xyyxg ),( with initial conditions 0)( x  and 0)( x  for 

10   .  

 

Through examples one and two, the solution vectors of Equation  a.2  given that Equation  b.2 in the form 

of infinite fractional power series was obtained and the solution vectors are in complete agreement with the 

results of Naseem and Tahir [48] for 1 . So, the solution vectors of Equation  a.2  given that Equation

 b.2  in the form of infinite fractional power series generalizes the results in Naseem and Tahir [48]. 

 

Applying VIFLTM to Equation  a.2  given that Equation  b.2  through the second and third examples 

where axyyxf sin),(   and 0),( yxg with initial conditions axx sin)(   and axx cos)( 

for  10   ; 
 

axyyxf sin),(  and 0),( yxg with initial conditions axx sin)(   and 

axx cos)(  for  10   ; xyyxf ),( and xyyxg ),( with initial conditions 0)( x  and 

0)( x for 10   , the solution vectors in the form of infinite fractional power series were obtained 

successfully. 
 

5 Conclusion 
 
In this paper, basic idea of vectorial iterative fractional Laplace transform method (VIFLTM) for solving 

fractional Cauchy-Riemann System equations with initial conditions with initial conditions of the form  a.2  

given that Equation  b.2 was developed and it was successfully applied to fractional Cauchy-Riemann 

System equations with initial conditions to obtain their closed solution vectors in the form of infinite 
fractional power series with a minimum size of calculations. 
 
Thus, we can conclude that the VIFLTM used in solving fractional Cauchy-Riemann System equations with 
initial conditions can be extended to solve other fractional partial differential equations with initial 
conditions which can arise in fields of sciences.  
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