
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Qsun: an open-source platform towards practical
quantum machine learning applications
To cite this article: Quoc Chuong Nguyen et al 2022 Mach. Learn.: Sci. Technol. 3 015034

 

View the article online for updates and enhancements.

You may also like
Simulating quantum materials with digital
quantum computers
Lindsay Bassman, Miroslav Urbanek,
Mekena Metcalf et al.

-

Thermochemical Stability Study of Alkyl-
Tethered Quaternary Ammonium Cations
for Anion Exchange Membrane Fuel Cells
Angela D. Mohanty, Steven E. Tignor,
Matthew R. Sturgeon et al.

-

Multi-scale dilated dense reconstruction
network for limited-angle computed
tomography
Haichuan Zhou, Yining Zhu, Huitao Zhang
et al.

-

This content was downloaded from IP address 106.213.28.225 on 05/07/2023 at 12:08

https://doi.org/10.1088/2632-2153/ac5997
https://iopscience.iop.org/article/10.1088/2058-9565/ac1ca6
https://iopscience.iop.org/article/10.1088/2058-9565/ac1ca6
https://iopscience.iop.org/article/10.1149/2.0141713jes
https://iopscience.iop.org/article/10.1149/2.0141713jes
https://iopscience.iop.org/article/10.1149/2.0141713jes
https://iopscience.iop.org/article/10.1088/1361-6560/acbe8e
https://iopscience.iop.org/article/10.1088/1361-6560/acbe8e
https://iopscience.iop.org/article/10.1088/1361-6560/acbe8e


Mach. Learn.: Sci. Technol. 3 (2022) 015034 https://doi.org/10.1088/2632-2153/ac5997

OPEN ACCESS

RECEIVED

20 December 2021

REVISED

17 February 2022

ACCEPTED FOR PUBLICATION

1 March 2022

PUBLISHED

25 March 2022

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Qsun: an open-source platform towards practical quantum
machine learning applications
Quoc Chuong Nguyen1,∗, Le Bin Ho2,3,∗, Lan Nguyen Tran2 and Hung Q Nguyen4,∗

1 Vietnamese-German University, Ho Chi Minh City 70000, Vietnam
2 Ho Chi Minh City Institute of Physics, National Institute of Applied Mechanics and Informatics, Vietnam Academy of Science and
Technology, Ho Chi Minh City 70000, Vietnam

3 Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
4 Nano and Energy Center, VNU University of Science, Vietnam National University, Hanoi 120401, Vietnam
∗ Authors to whom any correspondence should be addressed.

E-mail: quoc.chuong1413017@gmail.com, binho@riec.tohoku.ac.jp and hungngq@hus.edu.vn

Keywords: quantum virtual machine, quantum machine learning, quantum differentiable programming, quantum linear regression,
quantum neural network

Abstract
Currently, quantum hardware is restrained by noises and qubit numbers. Thus, a quantum virtual
machine (QVM) that simulates operations of a quantum computer on classical computers is a vital
tool for developing and testing quantum algorithms before deploying them on real quantum
computers. Various variational quantum algorithms (VQAs) have been proposed and tested on
QVMs to surpass the limitations of quantum hardware. Our goal is to exploit further the VQAs
towards practical applications of quantum machine learning (QML) using state-of-the-art
quantum computers. In this paper, we first introduce a QVM named Qsun, whose operation is
underlined by quantum state wavefunctions. The platform provides native tools supporting VQAs.
Especially using the parameter-shift rule, we implement quantum differentiable programming
essential for gradient-based optimization. We then report two tests representative of QML:
quantum linear regression and quantum neural network.

1. Introduction

The advent of quantum computers has opened a significant turning point for exponentially speeding up
computing tasks that classical computers need thousand years to execute [1, 2]. Although mankind has
witnessed tremendous development in this field theoretically and experimentally in the last few years, most
state-of-the-art quantum computers still rely on noisy intermediate-scale quantum (NISQ) computers.
Noises and qubit-number constraints prevent to build high-fidelity quantum computers capable of
substantially implementing quantum algorithms [3–6]. To bypass these constraints, various hybrid
quantum–classical algorithms that use classical computers to optimize quantum circuits have been proposed
[7–9]. Among these, variational quantum algorithms (VQAs) may be the most promising ones in the NISQ
era.

VQAs generally consist of three essential steps: (a) initializing quantum states for a given wavefunction
ansatz, (b) measuring a cost function suitable for problems being considered, and (c) minimizing the cost
function and updating new parameters. The self-consistency is performed until convergence. VQAs have
been extensively employed to tackle numerous tasks, including the variational quantum eigensolvers (VQEs)
[10–16], quantum dynamics simulation [17–22], mathematical applications [23–31], quantum machine
learning (QML) [32–40], and new frontiers in quantum foundations [8, 41–47].
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Typically, VQAs employ VQCs to measure the cost function on a quantum computer and outsource its
optimization to a classical computer. While one can manipulate gradient-free optimizers, such as
Nelder-Mead simplex [48], to minimize the cost function, using gradient-based methods like gradient
descent can help us speed up and guarantee the convergence of the optimization. Several quantum
algorithms have been proposed to evaluate the cost function gradient measured on quantum computers
[49–54]. Among those methods, quantum differentiable programming (QDP) has been introduced and
utilized extensively [36, 51, 54–59]. It relies on a technique called the parameter-shift rule that evaluates the
derivative of any differentiable function using quantum circuits [36, 55–59]. Therefore, this method is
beneficial for developing ‘on-circuit’ gradient-based optimization techniques, especially for QML
applications where various methods like quantum neural networks (QNNs) demand the derivative
information of the cost function.

While quantum algorithms should be performed on quantum computers, the current limitation of NISQ
computers cause challenges in developing and testing new quantum algorithms, demanding the use of
virtual alternatives called quantum virtual machines (QVMs). Besides, QVMs are necessary for modeling
various noisy channels to characterize the noises and the efficiency of quantum error correction. One can
classify QVMs into two types according to the way to build them: (a) the matrix multiplication approach
[4, 56, 60–65], and (b) the wavefunction approach [66–72]. While the former performs matrix
multiplication for all qubits in quantum circuits, the latter represents quantum circuits by corresponding
wavefunctions. On the one hand, the former can significantly reduce the memory capacity using tensor
network contraction [73, 74], and the cost to pay is exponentially increasing the computational time. On the
other hand, the latter, in principle, can require less computational time in a limit of qubits number and a
sufficiently large memory size that can store the total quantum wavefunction. Therefore, both approaches
exist side by side and a possible hybrid approach [1, 75] for convenient purposes.

There are several QVM’s libraries developed for QML orientation, such as TensorFlow Quantum library
[76] implemented in Cirq [61], Pennylane [56] designed for photonics devices, and TensorNetwork [62, 77].
These libraries are all constructed in the matrix-multiplication type of QVMs, designed to submit quantum
tasks to the developed hardware conveniently.

In this work, we develop a QVM platform named Qsun using the wavefunction approach towards the
QML applications. In Qsun, a quantum register is represented by a wavefunction, and quantum gates are
manipulated directly by updating the amplitude of the wavefunction. Measurement results rely on
probabilities of the wavefunction. Our simple approach yields faster computation speed for a small number
of qubit when compared to other QVMs such as Qiskit, ProjectQ, or Pennylane. Basing on this generic QVM,
we aim to exploit the advantages of QDP with the parameter-shift rule as the core engine towards practical
applications in QML. Two representative examples of QML are demonstrated: quantum linear regression
(QLR) and QNN. These algorithms are compared to standard progams: Qiskit, ProjectQ, and Pennylane,
and classical algorithms when applicable. In these comparisons, Qsun performs slightly better for QDP, QLR,
and QNN. All in all, Qsun is an efficient combination of QVM with QDP features that is oriented toward
machine learning problems. In the following, we introduce the QVM platform Qsun and its performance
compared to others in section 2, followed by an introduction to the QDP implementation within Qsun in
section 3. We then discuss some QML applications of the Qsun package in section 4.

2. QuantumVirtual Machine implementation in Qsun

In practice, quantum computers work on quantum algorithms by composing a quantum register, or qubits,
operated by a sequence of quantum gates. Results are then traced out from quantum measurements. We now
introduce our QVM named Qsun, an open-source platform simulating the operation of a generic quantum
computer [78]. We aim the platform to the development of QML and related problems. We develop it in
Python and employ the Numpy library for fast matrix operations and numerical computations.

2.1. Simulating quantum computers using wavefunction basis
Unlike widely-used approaches based on matrix multiplication [4, 56, 60–65], our platform is developed
using the class of ‘wavefunction’ approach [66–72], in which a quantum register is represented by its
wavefunction. The operation of quantum gates is simulated by updating the wavefunction’s amplitude, and
output results are obtained by measuring wavefunction’s probabilities. We expect that working directly on
wavefunction is beneficial for QML applications, especially for building and training VQCs in QNNs. As
depicted in figure 1, Qsun consists of three main modules Qwave, Qgates, and Qmeas for quantum
register, quantum gates, and quantum measurement, respectively.
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Figure 1. Qsun quantum virtual machine (QVM) consists of three main modules Qwave, Qgates, and Qmeas, to simulate
quantum circuits with a quantum register (qubits), quantum gates, and quantummeasurements, respectively. In Qsun, a quantum
register is constructed by its wavefunction through the Wavefunction class and its containing objects, as illustrated in the figure.

Table 1. List of methods used in the class Wavefunction.

Methods Description

amplitude a NumPy array of complex numbers that stores the amplitudes of quantum states.
state a NumPy array of strings that labels the quantum states’s basis.
probabilities return a list of corresponding probabilities for each basis vector in the superposition.
print_state return a string representing a quantum state of the system in bra-ket notations.
visual_circuit print a visualization of a quantum circuit.

2.1.1. Qwave
In general, for a quantum register with N qubits, its quantum states are represented in the 2N-dimension
Hilbert space as

|ψ⟩=
2N−1∑
j=0

αj| j⟩, (1)

where αj are complex amplitudes obeying a completeness relation
∑2N−1

j=0 |αj|2 = 1, and vectors | j⟩ are
elements of the computational basis. We integrate quantum state’s information into the class Wavefunction
as described in figure 1 and table 1. The class allows us to access and update amplitudes directly according to
the evolution of the quantum state under the action of the unitary quantum gates. It also measures
probabilities that contain output information.

2.1.2. Qgates

To manipulate a single-qubit gate U=

(
a c
b d

)
acting on the nth qubit, the nonzero elements in amplitude

array are updated as [69] (
αsi

αsi+2n

)
→ U

(
αsi

αsi+2n

)
, (2)

where si = floor(i/2n)2n+1 +(imod2n), for all i ∈ [0,2N−1 − 1]. Here, floor(x) is the standard floor function
taking the greatest integer less than or equal to the real of x. We unify the implementation of single- and
multiple-qubit gates into a common framework. We outline the operation of single-qubit gates in
algorithm 1 and an example of the Hadamard gate in algorithm 2. We emphasize that Qgates only update
nonzero components of wavefunction amplitudes. This way, we can avoid demanding matrix multiplications
that escalate exponentially (2N × 2N) with the number of N qubits. This generic algorithm allows us to

3
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Algorithm 1. Operation of a single-qubit gate.

Result:Wavefunction with new probability amplitudes
w←Wavefunction;
states← w.state; ampl← w.amplitude;
N← size(state[i][0]); n← target qubit;
n_ampl← [0, …, 0], size(n_ampl)= size(ampl);
cut← 2N−n−1;
for i← 0, size(ampl) do

if state[i][n]== 0 then
n_ampl[i]← n_ampl[i]+ a∗ampl[i];
n_ampl[i+ cut]← n_ampl[i+ cut]+ b∗ampl[i];

else
n_ampl[i]← n_ampl[i]+ d∗ampl[i];
n_ampl[i− cut]← n_ampl[i− cut]+ c∗ampl[i];

end
end
w.amplitude← n_ampl

Algorithm 2. Operation of Hadamard gate.

Result:Wavefunction with new probability amplitudes corresponding to Hadamard state
w←Wavefunction;
states← w.state; ampl← w.amplitude;
N← size(state[i][0]); n← target qubit;
n_ampl← [0, …, 0], size(n_ampl)= size(ampl);
cut← 2N−n−1;
for i← 0, size(ampl) do

if state[i][n]== 0 then
n_ampl[i]← n_ampl[i]+ (1/

√
2)∗ampl[i];

n_ampl[i+ cut]← n_ampl[i+ cut]+ (1/
√
2)∗ampl[i];

else
n_ampl[i]← n_ampl[i]+ (−1/

√
2)∗ampl[i];

n_ampl[i− cut]← n_ampl[i− cut]+ (1/
√
2)∗ampl[i];

end
w.amplitude← n_ampl

end

implement arbitrary unitary gates without decomposing them into universal ones, which may be
advantageous to model a general class of neural networks using quantum circuits.

To mimic the actual operation of quantum computers, we introduce noises into the wavefunctions. In
Qsun, the standard quantum depolarizing channel is implemented as a single-qubit gate E that is a part of
quantum circuits acting on the wavefunctions. For a given noisy probability p, applying the gate E on a
mixed quantum state ρ will transform it to [79]

ρ
E−→ (1− p)ρ+

p

2
I, (3)

where I is an 2× 2 identity matrix. In general, one can decompose the depolarizing channel into the bit-flip,
phase-flip, and phase-bit-flip as

ρ
E−→ (1− p)ρ+ pxXρX+ pyYρY+ pzZρZ, (4)

where px,py,pz are the probabilities of bit-flip, phase-bit-flip, and phase-flip, respectively [4, 79]. In Qsun, we
use px = py = pz = p/3 and apply to every qubits in the circuit each after the action of a quantum gate on the
circuit.
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Figure 2. Comparing computational time t (in seconds) of different QVMs as increasing the number of qubitsN. Inset: the testing
circuit including an H, a

√
X, and a CNOT gates acts on each qubit. The depth is fixed at 10, and the number N of qubits is varied

to assess the QVM performance.

2.1.3. Qmeas
The module Qmeas is designed to execute quantum measurements on a single qubit or all qubits in the
quantum circuit. For a measurement on a single qubit n, the probability for that its outcome is |0⟩ reads

p(0) =
2N−1−1∑
i=0

⟨ψ| jsi⟩⟨ jsi |ψ⟩=
2N−1−1∑
i=0

|αsi |2, (5)

with | jsi⟩ as the basis element and the post-quantum state after the measurement is given as

|ψ ′⟩=
∑2N−1−1

i=0 | jsi⟩⟨ jsi |ψ⟩√
p(0)

. (6)

Similarly, the probability for getting the outcome |1⟩ reads

p(1) = 1− p(0), (7)

and the post-state is

|ψ ′⟩=
∑2N−1−1

i=0 | jsi+2n⟩⟨ jsi+2n |ψ⟩√
p(1)

. (8)

For all-qubit measurement, the post-quantum state will collapse to one of {| j⟩} with the probability of
|αj|2. In Qsun, we build these two measurements onto measure_one and measure_all, respectively.

2.2. Assessing the QuantumVirtual Machine performance
Let us now assess the performance of Qsun and compare it with three existing ones in Pennylane, Qiskit, and
ProjectQ. Note that Qsun and ProjectQ belong to the wavefunction class, while the others are in the matrix
multiplication class. We have adopted the testing circuit from [80] composed of the Hadamard,

√
X, and

CNOT gates acting on each qubit. We have fixed the depth of the circuit at 10 and varied the number of
qubits N. The code for this test is shown in appendix A.

Figure 2 represents the change of computational time when the number N of qubits increases. In general,
there are two magnitudes of slope corresponding to two ways of QVM implementation. While the
wavefunction-based approach is faster than the matrix-multiplication one for small numbers of qubits
(N < 8), the opposite behavior is observed for larger numbers of qubits. This observation reflects the basic
properties of these two approaches as discussed above and see also [72]. However, there are some available
techniques to improve the performance of the wavefunction approach for larger numbers of qubits, such as,
SIMD (single-instruction, multiple data) optimization and multi-threading [72]. We further summarize a
comparison between Qsun and other simulators in terms of practical quantum algorithms in table 2.

5
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Table 2. Comparison between Qsun and other simulators.

Algorithms Qsun ProjectQ Qiskit Pennylane

Standard algorithms 3 3 3 3

Quantum differentiable programming 3 3 3 3

Quantum linear regression 3 3 3 3

Quantum neural network 3 3 3

3. QuantumDifferential Programming implementation in Qsun

Given a quantum state |ψ(θ⃗)⟩ with θ⃗ as variational parameters and an observable Ĉ, the task is to seek the
global minimum of the expectation value C(θ⃗) = ⟨ψ(θ⃗)|Ĉ|ψ(θ⃗)⟩ with respect to parameters θ⃗. For example,
if Ĉ is a Hamiltonian, its global minimum is the ground state energy. In general, C(θ⃗) is called as the cost
function, and minimizing the cost function requires its derivative with respect to parameters θ⃗, ∂C(θ⃗)/∂θ. In
classical computing, if the analytical form of ∂C(θ⃗)/∂θ is unknown, finite difference methods are often used
to evaluate the derivative approximately. Although this approximation is fast and easy to implement, its
accuracy depends on discretization steps. In contrast to the classical finite differentiation, QDP is an
automatic and exact method to compute the derivative of a function. QDP is thus essential for accurate
gradient computation in multiple VQAs, including QML models.

The heart of QDP is the parameter-shift rule that is analytically computed using quantum circuits. The
algorithm is outlined in algorithm 3. Let us introduce a parameterized generator V̂ independent of θ⃗ such

that |ψ(θ⃗)⟩= eiθ⃗ V̂|ψ⟩. The cost function is then rewritten as

C(θ⃗) = ⟨ψ|e−iθ⃗ V̂Ĉeiθ⃗ V̂|ψ⟩= Tr
(
ĈeZ [ρ]

)
, (9)

with ρ= |ψ⟩⟨ψ|; Z = iθ⃗V̂, and the superoperator eZ [ρ] = e−ZρeZ [81]. The parameter-shift rule for each
θ ∈ θ⃗ states that

∂C(θ⃗)

∂θ
= Tr

(
Ĉ∂θe

Z [ρ]
)
= c

[
C(θ⃗+ s)−C(θ⃗− s)

]
, (10)

where c= 1/(2sin(s)), and s is determined based on the superoperator and independent of θ⃗. The values of
the cost function C at θ⃗± s are measured on quantum computers by implementing two quantum circuits as
follows

The derivative is finally obtained by subtracting measurement results from the two circuits. An advantage
of the parameter-shift rule is that it can compute the derivative of the given function exactly while the shift s
can be chosen arbitrarily large [82].

We combine the QDP implemented in Qsun with a classical optimizer like adaptive moment (Adam)
optimization and implement quantum gradient descent, making the optimization procedure fully quantum.
Let us now examine the performance of the QDP in comparison with Pennylane, another QML-oriented
platform. In this test, we measure the computational time spent for optimizing the ground state of an Ising
model. The code for running this test is given in B, and a tutorial explaining how to use QDP with sample
codes is written in appendix C.

Figure 3 presents the change of computational time when increasing the number of qubits N for three
cases of Qsun, Pennylane, and ProjectQ. As shown in the inset of figure 3, for each qubit, we have two
variational parameters θ⃗, meaning that the number of variational parameters is twice of N. Qsun is faster
than Pennylane for N < 5, whereas it is slower for larger numbers of qubits (N > 5). Among the three cases,
ProjectQ consumes the most computational time for all N. Of course, the exponential growth with the
number of qubits is not inevitable.

6
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Algorithm 3. Quantum differentiable programming implementation in Qsun.

Result: Derivative of a function
f← Function; c← Quantum Circuit;
p← Params; s← Shift;
diff← [0, …, 0], size(diff )= size(p);
for i← 0, size(diff ) do

p_plus← copy(p);
p_subs← copy(p);
p_plus[i]← p[i] + s;
p_subs[i]← p[i]− s;
diff [i]← ( f(c,p_plus)−f(c,p_subs))/(2∗sin(s));

end

Figure 3. Computational time t in seconds of the QDP implementation in Qsun, ProjectQ using an engine Simulator() and
Pennylane using a default.qubit device when the number of qubits increases. Inset: quantum circuits used for the QDP test.

4. QuantumMachine Learning applications using Qsun

Various QML models can be developed with QDP implementations to evaluate the gradient and employ
gradient-based optimization. This section demonstrates QML applications using Qsun in two well-known
models: QLR and QNN. Its performances are compared to other standard tools.

Before digging into detailed examples, let us derive the QDP implementation in derivative of a standard
mean squared error cost function:

C(θ⃗) =
1

M

M−1∑
i=0

(
yi − ŷi

)2
, (11)

where θ⃗ is a tuple of variational parameters, yi represents the true value and ŷi stands for prediction value,
with i ∈ [0,M− 1],M the number of samples in the dataset to be trained. Concretely, we also consider the
prediction value is a composition function of an activation function f(θ⃗), i.e. ŷi( f(θ⃗)). Then, we derive at a
chain rule:

∂C(θ⃗)

∂θ
=

1

M

M−1∑
i=0

∂C(̂yi)

∂ŷi

∂ ŷi( f)

∂f

∂f(θ⃗)

∂θ
, (12)

where θ ∈ θ⃗, with

∂C(̂yi)

∂ŷi
=−2[yi − ŷi], (13)

7
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the derivative ∂ ŷi( f )
∂f depends on the particular form of the activation function, and

∂f(θ⃗)

∂θ
=
∑
k

∂mk(θ⃗)

∂θ

=
∑
k

ck
[
mk(θ⃗+ sk)−mk(θ⃗− sk)

]
, (14)

wheremk(θ⃗) = ⟨ψ(θ⃗)|M̂k|ψ(θ⃗)⟩ is a measurement outcome of an operator M̂k for a measurement set {k}.
To arrive at the second equality in equation (14), we have applied the parameter-shift rule (10).

4.1. Quantum Linear Regression
We implement QLR on a ‘diabetes’ dataset [83] available in the scikit-learn package [84] with 400 samples
for the training set and 10 samples for the testing set. We write the linear regression model in the form

ŷ= wx+ b, (15)

where w and b are the slope and intercept of the linear regression need to be obtained. To evaluate them on
quantum computers, we store their values in two qubits. The values of w and b now become the expectation
values of the Pauli matrix σ̂z. The quantum version of linear regression model (15) states

ŷ(θ⃗) = k
(
⟨ŵ⟩x+ ⟨b̂⟩

)
, (16)

where k is the scaling factor that transforms the output data from [−1,1] into [−k,k]. Its value should be
chosen so that the R.H.S can cover all of the true values {yi}. Here, w,b are functions of variational
parameters θ⃗, for example w≡ w(θ⃗) = ⟨ψ(θ⃗)|σ̂z|ψ(θ⃗)⟩ with the initial state |ψ⟩= |0⟩, (see the inset figure 4).
The cost function is the mean squared error as described in equation (11).

After having the model, we run the circuit in the inset figure 4 to find the optimized values for w and b
via updating θ⃗. We first calculate their derivatives using the chain rule as shown in equation (12) and the
parameter-shift rule in the QDP as depicted in algorithm 3, and then update new parameters using gradient
descent

θt+1 = θt − η
∂C(θ⃗t)

∂θ
, (17)

where η the learning rate, θ⃗t is the set of parameters at time step t. They are continuously updated until the
optimized values are found. The quantum circuit that used to train the model is represented in the inset
figure 4, and the code is given in appendix D.

For comparison, we next provide the analytical solution for minimizing the cost function (11) with (15).
We vectorize: (

w
b

)
= (XTX)−1XTY (18)

where

X=

 x0 1
...

...
xM−1 1

 ,Y=

 y0
...

yM−1

 , (19)

and T the transpose operator.
The performance of Qsun is compared to those of Pennylane, ProjectQ, and analytical solution using the

same set of parameters. We use the maximum number of iterations 1000 and k= 10. For Pennylane, we use
GradientDescentOptimizer() with its default configuration. For ProjectQ, we use the same optimize
algorithm as we have used for Qsun, which is shown in appendix D. As we can see from figure 4, Qsun’s
result is closer to the analytical result than the Pennylane and ProjectQ one, which implies a high
performance of Qsun. In the same case of the ‘wavefunction’ approach, Qsun has a better efficiency than
ProjectQ in the speedup as shown in figures 2 and 3, and in the optimization process.

8
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Figure 4. Linear regression models trained by quantum programming using Qsun (blue), Pennylane (green), ProjectQ (orange)
and analytical solution (dashed purple). We use the diabetes dataset [83] with 400 samples for the training set and 10 samples for
the testing set. The boundary k= 10 with 1000 iterations. Inset: the quantum circuit that trains the quantum linear regression
models.

4.2. QuantumNeural Network
In this subsection, we show the ability of Qsun for deep learning by building and training a QNN. We model
the QNN as a variational quantum circuit (VQC) parameterized with multiple variables that are optimized
to train the model. Figure 5 represents the process for building and training our QNNs. It is a hybrid
quantum–classical scheme with five steps summarized as follows:

• The quantum part:
• Step 1:Quantizing and encoding dataset into quantum states using the amplitude encodingmethod [38, 85].
• Step 2: Building a QNN circuit and measurement.
• Step 3: Evaluating the derivative of measurement results using QDP.
• The classical part:
• Step 4: Deriving the derivative of the defined cost (loss) function.
• Step 5: Running a gradient-based optimization and updating parameters.

4.2.1. Data quantization and amplitude encoding

Set x(i)j as the ith sample (i ∈ [0,M− 1]) of the jth feature (j ∈ [0,N− 1]) in the dataset of N features withM
samples for each feature. Since we only analyze one sample (other samples are treated similarly), we can omit

the indicator i and rewrite x(i)j as xj. We now map xj into a qubit by normalizing its value in range

[x(min)
j ,x(max)

j ] into [0,1]. Using the Min-Max normalization, we obtain

x̃j =
xj − x(min)

j

x(max)
j − x(min)

j

. (20)

Here, the normalized value x̃j ∈ [0,1]. We map this value into the amplitudes of a qubit as
|ψj⟩=

√
x̃j|0⟩+

√
1− x̃j|1⟩. Then, the quantum state for N features reads

|Ψ⟩=
N−1⊗
j=0

|ψj⟩=
N−1⊗
j=0

(√
x̃j|0⟩+

√
1− x̃j|1⟩

)
. (21)

The encoding implementation is given in algorithm 4.

4.2.2. Building the QNN circuits
The QNNmodel uses N qubits for N features and includes multiple layers. It is parameterized through a set
of variables θ⃗ = {θkjj ′} with k as the layer index, j as qubit (feature) indices, and j

′
indicates the number of

rotation gates implementing on each qubit. Each layer has one Rx and Ry gates for each qubit followed by
CNOT gates generating all possible entanglements between them if the number of qubits is more than one.

9
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Figure 5. A quantum neural network (QNN) framework. The blue box is the quantum part of the QNN, and the green box is the
classical part of the QNN. At first, quantify and encode the dataset (training and testing) into quantum states of qubits |ψi⟩. Each
feature in the dataset encodes into one qubit. The employed rotation gates will parameterize the quantum circuit, and the CNOT
gates cause entangled in the circuit. These gates repeat L times for L layers in the QNN. After that, we measure the circuit and give
the corresponding probabilities pk. We employ a QDP scheme with the pentameter-shift rule to calculate the derivative of pk and
send the results to a classical computer to derive the derivative of the loss function. After that, we implement a gradient-based
optimization to obtain new parameters. When the scheme is not optimal yet, we update the circuit with new parameters; when it
is optimal, we turn it to the testing process.

Algorithm 4. Encoding data in Qsun.

Result: Probablity amplitudes of QNN’s initial quantum states
sample← sample_scaled;
N← number_of_features;
ampl← [0, …, 0], size(ampl)= N;
for i← 0, N-1 do

ampl[i]← [sqrt(sample[i]), sqrt(1-sample[i])];
end
ampl_vec← ampl[0]⊗ ampl[1]⊗ ·· ·⊗ ampl[N− 1];

4.2.3. Decoding probabilities into predictions
Here, we map measurement results from the previous step into classical predictions by using an activation
function. We consider the expectation value of the projection operator Π̂ = |1⟩⟨1| as

p(i)j ≡ ⟨Π̂⟩= ⟨ψ(i)
j |1⟩⟨1|ψ(i)

j ⟩= |⟨1|ψ(i)
j ⟩|2. (22)

Note that |ψ(i)
j ⟩ is the final state of qubit j at sample i. We also emphasize that one can choose the projection

operator Π̂ arbitrarily. We use the sigmoid function, S(x) = 1/(1+ e−x) to transform the measurement data
into predictions. In our concrete example below, we have two features represented by two qubits, i.e, j= 0,1.
We use the prediction rule as

Si(p) = S
(
γ(p(i)0 − p(i)1 )

)
, (23)

where γ is a scaling shape for the sigmoid function such that for large γ then S(x) becomes a Heaviside step
function. To use a soft prediction, we introduce a label-conditional probability for a prediction value as

ŷi(l) =

{
Si(p), for l= 0
1− Si(p), for l= 1

. (24)

10
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4.2.4. Training the QNN model
In the current version of Qsun, we are using a quantum–classical hybrid scheme combining QDP and the
classical Adam optimization to train our QNN model. The cost function is defined by

C(θ⃗) =
1

M

M−1∑
i=0

[
1− ŷi(yi)

]2
, (25)

which is a function of θ⃗. Here, yi ∈ {0,1} are true values, ŷi(yi) are predicted probability conditioned on the
label yi. We then evaluate the derivative of the cost function using QDP, followed by a gradient-descent
procedure to search for optimal parameters θ⃗.

The derivative of the cost function concerning each θkjj ′ ∈ θ⃗ following the chain rule (12) gives (hereafter,
we omit its indices)

∂C(θ⃗)

∂θ
=

1

M

M−1∑
i=0

∂C(yi)

∂ŷi(l)

∂ ŷi(l)

∂p

∂p(θ⃗)

∂θ
, (26)

with

∂C(yi)

∂ŷi(l)
=−2[1− ŷi(l)], (27)

∂ ŷi(l)

∂p
= (−1)lŷi(l)[1− ŷi(l)], (28)

and

∂p(θ⃗)

∂θ
= γ

∂

∂θ

(
p(i)0 − p(i)1

)
= γ

{
c0
[
p(i)0 (θ+ s0)− p(i)0 (θ− s0)

]
− c1

[
p(i)1 (θ+ s1)− p(i)1 (θ− s1)

]}
, (29)

here, we have applied the parameter-shift rule (10). We finally update the model with new parameters using
the Adaptive Moment (Adam) optimization algorithm [86] as follows. Let gt+1 be the gradient of the cost
function w.r.t. θ at time step t+1, (t starts from 0):

gt+1 ≡
∂C(θ⃗t)

∂θ
, (30)

where θ⃗t is the set of parameters at time step t. Next, we estimate the first and second order moments of the
gradient as

vt+1 = β1vt +(1−β1)gt+1 (31)

wt+1 = β2wt +(1−β2)g
2
t+1,

and compute

v̂t+1 =
vt+1

1−βt+1
1

, and ŵt+1 =
wt+1

1−βt+1
2

. (33)

Here, β1,β2 and ϵ are nonnegative weights, originally suggested as β1 = 0.9,β2 = 0.999 and ϵ= 10−8. Also,
v0 = w0 = 0. Finally, the parameter θ is updated to

θt+1 = θt −
ηv̂t+1√
ŵt+1 + ϵ

, (34)

where η is the learning rate. The implementation of Adam algorthims in a combination with QDP is given in
algorithm 5.

11
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Algorithm 5. Adam optimization implementation in Qsun.

Result: Updated parameters
c← Quantum Circuit;
p← Params; s← Shift;
β1,β2, ϵ,η← Beta1, Beta2, Epsilon, Eta;
v_adam, s_adam← v_adam, s_adam;
t← tth iteration;
diff← zero_matrix, size(diff)= size(p);
for i← 0, size(param) do

for j← 0, size(param[i]) do
for k← 0, size(param[i][j]) do

p_plus← copy(p);
p_subs← copy(p);
p_plus[i][j][k]← p[i][j][k] + s;
p_subs[i][j][k]← p[i][j][k]− s;
diff[i][j][k]← QDP(p_plus, p_subs, c, s);

end
end

end
p, v_adam, s_adam← Adam(diff, p, v_adam, s_adam, η, β1, β2, ϵ, t) ;

Figure 6. (a) Classical NN model; (b) and (c) QNN models using Pennylane and Qsun, respectively; (d) and (e) are the zoom-in
of (b) and (c), respectively. Each plot shows from 1 layer (1L) to 5 layers (5Ls). See text for more details about parameters used for
each model.

4.2.5. Preliminary QNN results
We apply the QNN model on the Social Network Ads dataset [87]. This is a categorical dataset to determine
whether a user purchases a particular product or not. We consider two features ‘Age’ and ‘EstimatedSalary’ to
train the model with the output ‘Purchased’. We use 400 samples and split them into 323 samples for the
training set and 80 samples for the testing set. Once the data is normalized, we encode ‘Age’ and
‘EstimatedSalary’ into two qubits |ψj⟩, j= 0,1, while y = Purchased. We evaluate the predicted value ŷ and
minimize the loss function (25) to train the QNN model. The full code is given in appendix E.

For the comparison of performance, we train the QNN model using Qsun and Pennylane. We note that
while the QDP and Adam algorithm are implemented in Qsun and Pennylane separately, the QNN circuit,
encoding, and decoding procedures are the same for both approaches. We also compare their results with
those from a classical model to explore advantages of QNN. For the classical NN model, we use the
MLPClassifier function from scikit-learn that has 100 nodes per layer with the ReLU activation function. For
the QNN model, we have four nodes per layer with the sigmoid activation function. We fix s0 = s1 = π/20 in
the parameter-shift rule and η= 0.1. For all optimization, we use the Adam algorithm with
β1 = 0.9,β2 = 0.99, and ϵ= 10−6.

Figure 6 represents the loss function versus iteration for different layers as shown in the figure for three
cases: a classical NN model (a) and a QNNmodel trained by Pennylane (b) and Qsun (c). In general, the loss

12
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Figure 7. Results from our QNN model with five layers and two features on the Social Network Ads dataset. (a) Plot of loss and
accuracy versus iteration for the training and testing process. (b), (c) The confusion matrices for the training and testing sets.
Here we use 400 samples and split them into 320 samples for training and 80 samples for testing with 400 iterations.

function will reduce and get unchanged after sufficient layers. In our example, the loss function becomes
saturated after five layers. As expected, the loss function of QNNmodel is much smaller than the the classical
one. Interestingly, when comparing the two quantum approaches (see insets (d) and (e) for a zoom in), the
Qsun loss is converged faster than the Pennylane one.

We next focus on our QNN model with fixed five layers. In figure 7(a), we show the reduction of cost
functions and activation functions during the iteration for the training and testing processes. They both
behave similarly and become saturated after 100 iterations. Figures 7(b) and (c) represent results for the
training and testing sets. In the figure, both the true value y and the predicted value ŷ are labeled as ‘0’ and ‘1’
for ‘no-purchase’ and ‘purchase’, respectively. yŷ= ‘00’ or ‘11’ indicates a correct prediction, whereas yŷ=
‘01’ or ‘10’ indicates a wrong prediction. It can be seen from figure 7 that our QNN model has a good
performance, reflected by large values of main diagonal elements yŷ= ‘00’ and ‘11’. Importantly, unlike the
classical neural network [87], it does not require many nodes in each layer, which is one of the main
advantages of QNN.

5. Conclusion

We have developed Qsun, an open-source platform of QVM, that simulates the operation of a real quantum
computer using the wavefunction approach. For small qubit numbers, the current version of Qsun runs
standard tasks significantly faster than other platforms do. The QDP is implemented as a built-in function of
Qsun, allowing us to execute QML applications effectively. We have employed Qsun to implement two
standard models in machine learning: linear regression and neural network. For the former, Qsun yields a
quantum regression model nearly overlap with the classical reference, and somewhat better than the
Pennylane one. For the latter, the QNN model trained using Qsun shows a good performance with a less
number of nodes in each layer than the classical neural network. Although Qsun is aimed to QML problems,
as a generic QVM, it can be used for multiple other purposes, such as developing and testing VQAs for
electronic structures or quantum information. It is well-fit to personal use thanks to its light weight. Qsun is
under active development to cover a wide range of contents in machine learning. Our code is open source
and available on GitHub [78].
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Appendix A. Code for benchmarking

In this section, we present the code used to benchmark the performance of Qsun and compared it to other
packages such as Qiskit, ProjectQ, and Pennylane. The criteria are the time to execute a certain quantum
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circuit of constant depth. The circuit contain an H, a
√
X, and a CNOT with ‘depth= 10’ and measurements

on all qubits. With the number of qubits as a variable, the time needed to execute the circuit is estimated,
yielding the package’s performance. The number of qubits varies from 2 to 15 qubits, which means we have
to implement 14 circuits for each simulation. The implementation’s time is stored in a Pandas’s Dataframe
and is shown in figure 2 in the main text.

Code example 1. Implementation of the benchmarking test on four typical languages: Qsun, Qiskit, ProjectQ, and
Pennylane.

1 #import module for visualization
2 import pandas as pd
3 import seaborn as sns
4 import time
5 import matplotlib.pyplot as plt
6
7 #import Qiskit module
8 import qiskit import IBMQ, BasicAer
9 import qiskit.providers.ibmq import least_busy
10 import qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute
11
12 #import ProjectQ module
13 from projectq import MainEngine
14 import projectq.ops as ops
15 from projectq.backends import Simulator
16
17 #import Qsun module
18 from Qsun.Qcircuit import ∗

19 from Qsun.Qgates import ∗

20
21 #import Pennylane module
22 import pennylane as qml
23 from pennylane import numpy as np
24
25 # Qsun circuit
26 def qvm_circuit(n_qubit, depth):
27 circuit = Qubit(n_qubit)
28 for m in range(depth):
29 for i in range(n_qubit):
30 H(circuit, i)
31 Xsquare(circuit, i)
32 for i in range(1, n_qubit):
33 CNOT(circuit, i, 0)
34 return circuit.probabilities()
35
36 # Pennylane circuit
37 dev = qml.device('default.qubit', wires = qubit_max)
38
39 @qml.qnode(dev)
40 def qml_circuit(n_qubit, depth):
41 for m in range(depth):
42 for i in range(n_qubit):
43 qml.Hadamard(wires = i)
44 qml.SX(wires = i)
45 for i in range(1, n_qubit):
46 qml.CNOT(wires = [i, 0])
47 return qml.probs(wires = range(n_qubit))
48
49 # Qiskit circuit
50 def qiskit_circuit(n_qubit, depth):
51 qr = QuantumRegister(n_qubit)
52 cr = ClassicalRegister(n_qubit)
53 circuit = QuantumCircuit(qr, cr)
54 for m in range(depth):
55 for i in range(n_qubit):
56 circuit.h(qr[i])
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57 circuit.rx(math.pi/2, qr[i])
58 for i in range(1, n_qubit):
59 circuit.cx(qr[i], qr[0])
60 circuit.measure_all()
61 backend = BasicAer.get_backend('qasm_simulator')
62 result = execute(circuit, backend = backend, shots = 1024).result()
63 return result.get_counts(circuit)
64
65 # ProjectQ circuit
66 def projectq_circuit(n_qubit, depth):
67 eng = MainEngine(backend = Simulator(gate_fusion = True),engine_list = [])
68 qbits = eng.allocate_qureg(n_qubit)
69 for level in range(depth):
70 for q in qbits:
71 ops.H|q
72 ops.SqrtX|q
73 if q ! = qbits[0]:
74 ops.CNOT|(q,qbits[0])
75 for q in qbits:
76 ops.Measure|q
77 eng.flush()
78
79 #run test for Qsun
80 data_qvm = []
81
82 for n_qubit in range(qubit_min, qubit_max):
83 start = time.time()
84 qvm_circuit(n_qubit, depth)
85 end = time.time()
86 data_qvm.append(end-start)
87
88 #define the test parametes
89 qubit_min = 2
90 qubit_max = 10
91 depth = 10
92
93 #run test for Pennylane
94 data_qml = []
95
96 for n_qubit in range(qubit_min, qubit_max):
97 start = time.time()
98 qml_circuit(n_qubit, depth)
99 end = time.time()

100 data_qml.append(end-start)
101
102 #run test for Qiskit
103 data_qiskit = []
104
105 for n_qubit in range(qubit_min, qubit_max):
106 start = time.time()
107 qiskit_circuit(n_qubit, depth)
108 end = time.time()
109 data_qiskit.append(end-start)
110
111 #run test for ProjectQ
112 data_projectq = []
113
114 for n_qubit in range(qubit_min, qubit_max):
115 start = time.time()
116 projectq_circuit(n_qubit, depth)
117 end = time.time()
118 data_projectq.append(end-start)
119
120 df = pd.DataFrame({'QVM': data_qvm, 'Pennylane': data_qml,
121 'Qiskit': data_qiskit, 'ProjectQ': data_projectq},

index = range(qubit_min, qubit_max))
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122
123 sns.lineplot(data = df)
124 plt.xlabel('Number of Qubits with depth = '+str(depth))
125 plt.ylabel('Time(s)')
126 plt.grid()
127 plt.savefig('compare.png')

Appendix B. Code for QuantumDifferential Programming benchmarking

For this code, we run the QDP algorithm on Qsun and measure how long it will take to update parameters.
We implement the circuit described in figure 3 and measure the expected values of output, then record the
time. The number of qubits varies from 1 to 10, and the maximum number of iterations is 1000. Parameters
for QDP, in this case, are η= 0.1 and s= π/20.

Code example 2. Implementation of the quantum differentiable programming test in Qsun.

1 from Qsun.Qcircuit import ∗

2 from Qsun.Qgates import ∗

3 import numpy as np
4 import time
5
6 def circuit(params, n):
7 c = Qubit(n)
8 for j in range(0, 2∗n, 2):
9 RX(c, j//2, params[j])

10 RY(c, j//2, params[j+1])
11 return c
12
13 def output(params):
14 c = circuit(params, len(params)//2)
15 prob = c.probabilities()
16 return -np.sum([i∗prob[i] for i in range(len(prob))])
17
18 def cost(params):
19 expval = output(params)
20 return expval
21
22 def grad(params, shift, eta):
23 for i in range(len(params)):
24 params_1 = params.copy()
25 params_2 = params.copy()
26 params_1[i] + = shift
27 params_2[i] - = shift
28 diff[i] = (cost(params_1)-cost(params_2))/(2∗np.sin(shift))
29 for i in range(len(params)):
30 params[i] = params[i] - eta∗diff[i]
31 return params
32
33 time_qvm = []
34 n = 10
35 for i in range(1, n+1):
36
37 start = time.time()
38 params = np.random.normal(size = (2∗i,))
39 diff = np.random.normal(size = (2∗i,))
40
41 for i in range(1000):
42 params = grad(params, np.pi/20, eta = 0.01)
43 end = time.time()
44
45 time_qvm.append(end-start)
46 print(cost(params))
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Appendix C. QuantumDifferential Programming tutorial appendix

This appendix demonstrates how to run a gradient descent algorithm using QDP in Qsun. We use η= 0.1
and s= π/20 to find the derivative of a circuit. By doing that, we maximize the expectation values of one
qubit. So the objective function we want to maximize is |⟨1|ψ⟩|2, where |ψ⟩ is a quantum state of that
qubit.

Code example 3. Implementation of the Gradient Descent algorithm by using QDP in Qsun.

1 import numpy as np
2 from Qsun.Qcircuit import ∗

3 from Qsun.Qgates import ∗

4
5 def circuit(params):
6 c = Qubit(1)
7 RX(c, 0, params[0])
8 RY(c, 0, params[1])
9 return c

10
11 def output(params):
12 c = circuit(params)
13 prob = c.probabilities()
14 return 0.∗prob[0] + 1∗prob[1]
15
16 def cost(params):
17 c = circuit(params)
18 prob = c.probabilities()
19 expval = output(params)
20 return np.abs(expval - 1)∗∗2
21
22 def grad(params, shift, eta):
23 for i in range(len(params)):
24 params_1 = params.copy()
25 params_2 = params.copy()
26 params_1[i] + = shift
27 params_2[i] - = shift
28 diff[i] = (cost(params_1)-cost(params_2))/(2∗np.sin(shift))
29 for i in range(len(params)):
30 params[i] = params[i] - eta∗diff[i]
31 return params
32
33 params = np.random.normal(size = (2,))
34 diff = np.random.normal(size = (2,))
35
36 for i in range(1000):
37 params = grad(params, np.pi/20, eta = 0.01)
38
39 print('Circuit output:', output(params))
40 print('Final parameter:', params)
41
42 >>> Circuit output: -0.9381264201123851
43 >>> Final parameter: [ 0.29017649 -2.93657549]

Appendix D. Quantum Linear Regression appendix

Here, a QLR model is programmed in Qsun, with results shown in figure 4. Its parameters are k= 10,
η= 0.1, and s= π/20. The optimization algorithm used in this code is Gradient Descent.
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Code example 4. Implementation of the linear regression model in qSUN.

1 from Qsun.Qcircuit import ∗

2 from Qsun.Qgates import ∗

3 from sklearn import datasets
4
5 def circuit(params):
6 c = Qubit(1)
7 RX(c, 0, params[0])
8 RY(c, 0, params[1])
9 return c

10
11 def output(params):
12 c = circuit(params)
13 prob = c.probabilities()
14 return 1∗prob[0] - 1∗prob[1]
15
16 def predict(x_true, coef_params, intercept_params, boundary = 10):
17 coef = boundary∗output(coef_params)
18 intercept = boundary∗output(intercept_params)
19 return coef∗x_true.flatten() + intercept
20
21 def errors(x_true, y_true, coef_params, intercept_params, boundary):
22 return mean_squared_error(y_true, predict(x_true, coef_params, intercept_params,

boundary))
23
24 def grad(x_true, y_true, coef_params, intercept_params, shift, eta, boundary):
25
26 coef_diff = np.zeros((2,))
27 intercept_diff = np.zeros((2,))
28
29 for i in range(len(coef_params)):
30 coef_params_1 = coef_params.copy()
31 coef_params_2 = coef_params.copy()
32 coef_params_1[i] + = shift
33 coef_params_2[i] - = shift
34 for x, y in zip (x_true, y_true):
35 coef_diff[i] - = x∗(y-predict(x, coef_params, intercept_params,

boundary))∗(output(coef_params_1)-output(coef_params_2))/(2∗np.sin(shift))
36
37
38 for i in range(len(coef_params)):
39 intercept_params_1 = intercept_params.copy()
40 intercept_params_2 = intercept_params.copy()
41 intercept_params_1[i] + = shift
42 intercept_params_2[i] - = shift
43 for x, y in zip (x_true, y_true):
44 intercept_diff[i] - = (y-predict(x, coef_params, intercept_params,

boundary))∗(output(intercept_params_1)-output(intercept_params_2))/
(2∗np.sin(shift))

45
46 coef_diff = coef_diff∗boundary∗2/len(y_true)
47 intercept_diff = intercept_diff∗boundary∗2/len(y_true)
48
49 for i in range(len(coef_params)):
50 coef_params[i] = coef_params[i] - eta∗coef_diff[i]
51
52 for i in range(len(intercept_params)):
53 intercept_params[i] = intercept_params[i] - eta∗intercept_diff[i]
54
55 return coef_params, intercept_params
56
57 X, y = datasets.load_diabetes(return_X_y = True)
58 y = (y - np.min(y)) / (np.max(y) - np.min(y))
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59 # Use only one feature
60 X = X[:, np.newaxis, 2]
61
62 # Split the data into training/testing sets
63 X_train = X[:400]
64 X_test = X[-10:]
65
66 # Split the targets into training/testing sets
67 y_train = y[:400]
68 y_test = y[-10:]
69
70 coef_params = np.random.normal(size = (2,))
71 intercept_params = np.random.normal(size = (2,))
72
73 start = time.time()
74 for i in range(1000):
75 coef_params, intercept_params = grad(X_train, y_train,

coef_params, intercept_params, np.pi/20, eta = 0.01, boundary = 10)
76 end = time.time()
77
78 y_pred = predict(X_test, coef_params, intercept_params, boundary = 10)

Appendix E. QuantumNeural Network appendix

The code showing in this appendix implements a process from training a QNN model with five layers and
two qubits on the ‘Social_Network_Ads’ dataset. From this dataset, we use a QNN to predict whether a
customer buys a car or not. The function train_test_split() splits the original dataset into the training and
testing datasets. MinMaxScaler() scales the training dataset to [0, 1] before feeding it into the QNN circuit.
The optimization algorithm in this model is the Adam optimization algorithm, as presented in the main text.
The parameters used in the model are: test_size= 0.2; random_state= 0; s= π/20;η = 0.1;β1 = 0.9,β2 =
0.99;ϵ= 10−6;number_of_iterations= 150.

Code example 5. Implementation of the QNN with two layers and two features in Qsun.

1 # import libraries
2 from Qsun.Qcircuit import ∗

3 from Qsun.Qgates import ∗

4 from Qsun.Qmeas import ∗

5 from sklearn.model_selection import train_test_split
6 from sklearn.preprocessing import MinMaxScaler
7 from sklearn.metrics import confusion_matrix
8 import pandas as pd
9 import seaborn as sn

10 import matplotlib.pyplot as plt
11 import time
12
13 # one layer with full entanglement
14 def layer(circuit, params):
15 circuit_layer = circuit
16 n_qubit = len(params)
17 for i in range(n_qubit):
18 RX(circuit_layer, i, params[i][0])
19 RY(circuit_layer, i, params[i][1])
20 for i in range(n_qubit-1):
21 CNOT(circuit_layer, i, i+1)
22 CNOT(circuit_layer, n_qubit-1, 0)
23 return circuit_layer
24
25 # encoding the features
26 def initial_state(sample):
27 circuit_initial = Qubit(len(sample))

19
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28 ampli_vec = np.array([np.sqrt(sample[0]), np.sqrt(1-sample[0])])
29 for i in range(1, len(sample)):
30 ampli_vec = np.kron(ampli_vec, np.array([np.sqrt(sample[i]),

np.sqrt(1-sample[i])]))
31 circuit_initial.amplitude = ampli_vec
32 return circuit_initial
33
34 # QNN circuit
35 def qnn(circuit, params):
36 n_layer = len(params)
37 circuit_qnn = circuit
38 for i in range(n_layer):
39 circuit_qnn = layer(circuit_qnn, params[i])
40 return circuit_qnn
41
42 # QNN model
43 def qnn_model(sample, params):
44 circuit_model = initial_state(sample)
45 circuit_model = qnn(circuit_model, params)
46 return circuit_model
47
48 # activation function
49 def sigmoid(x):
50 return 1 / (1 + math.exp(-10∗x))
51
52 # make a prediction
53 def predict(circuit):
54 prob_0 = measure_one(circuit, 0)
55 prob_1 = measure_one(circuit, 1)
56 expval_0 = prob_0[1]
57 expval_1 = prob_1[1]
58 pred = sigmoid(expval_0-expval_1)
59 return [pred, 1-pred]
60
61 # make a prediction for exp
62 def predict_ex(circuit):
63 prob_0 = measure_one(circuit, 0)
64 prob_1 = measure_one(circuit, 1)
65 expval_0 = prob_0[1]
66 expval_1 = prob_1[1]
67 return [expval_0, expval_1]
68
69 # loss function
70 def square_loss(labels, predictions):
71 loss = 0
72 for l, p in zip(labels, predictions):
73 loss = loss + (1 - p[l]) ∗∗ 2
74 loss = loss / len(labels)
75 return loss
76
77 # loss function of QNN
78 def cost(params, features, labels):
79 preds = [predict(qnn_model(x, params)) for x in features]
80 return square_loss(labels, preds)
81
82 # https://d2l.ai/chapter_optimization/adam.html?highlight=adam
83 def adam(X_true, y_true, params, v, s, shift, eta, drop_rate, beta1, beta2, eps,

iter_num):
84 diff = np.zeros(params.shape)
85 for i in range(len(params)):
86 for j in range(len(params[i])):
87 for k in range(len(params[i][j])):
88 dropout = np.random.choice([0, 1], 1, p = [1 - drop_rate,

drop_rate])[0]
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89 if dropout = = 0:
90 params_1 = params.copy()
91 params_2 = params.copy()
92 params_1[i][j][k] + = shift
93 params_2[i][j][k] - = shift
94 for x, y in zip(X_true, y_true):
95 circuit = qnn_model(x, params)
96 circuit_1 = qnn_model(x, params_1)
97 circuit_2 = qnn_model(x, params_2)
98 ex_plus = predict_ex(circuit_1)
99 ex_subs = predict_ex(circuit_2)

100 pred = predict(circuit)
101 diff_loss = ((-1)∗∗y)∗(-2)∗(1-pred[y])∗pred[y]∗(1-pred[y])
102 diff_ex = 10∗((ex_plus[0] - ex_subs[0]) - (ex_plus[1] -

ex_subs[1]))/(2∗np.sin(shift))
103 diff[i][j][k] + = diff_loss∗diff_ex
104
105 diff / = len(y_true)
106 v = beta1 ∗ v + (1 - beta1) ∗ diff
107 s = beta2 ∗ s + (1 - beta2) ∗ (diff∗∗2)
108 v_bias_corr = v / (1 - beta1 ∗∗ (iter_num+1))
109 s_bias_corr = s / (1 - beta2 ∗∗ (iter_num+1))
110 params - = eta ∗ v_bias_corr / (np.sqrt(s_bias_corr) + eps)
111
112 return params, v, s
113
114 # source: https://www.kaggle.com/rakeshrau/social-network-ads
115 dataset = pd.read_csv('Social_Network_Ads.csv')
116 X = dataset.iloc[:, 2:-1].values
117 y = dataset.iloc[:, -1].values
118
119 # splitting dataset
120 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2,

random_state = 0)
121
122 # scaling feature
123 scaler = MinMaxScaler()
124 X_train = scaler.fit_transform(X_train)
125 X_test = scaler.transform(X_test)
126
127 # create parameters
128 n_layer = 5
129 params = np.random.normal(size = (n_layer, len(X_train[0]), 2,))
130 v = np.zeros(params.shape)
131 s = np.zeros(params.shape)
132
133 # training model
134 start = time.time()
135 for i in range(150):
136 params, v, s = adam(X_train, y_train, params, v, s,
137 shift = np.pi/20, eta = 0.1, drop_rate = 0.0,

beta1 = 0.9, beta2 = 0.999, eps = 1e-6, iter_num = i)
138
139 # confusion matrix
140 label = y_test
141 pred = [predict(qnn_model(x, params)) for x in X_test]
142 pred = np.argmax(pred, axis = 1)
143 con = confusion_matrix(label,pred)
144 sn.heatmap(con, annot = True, cmap = ''Blues'')
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