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Abstract: The most widely distributed blaCTX-M gene on a global scale is blaCTX-M-15. The dissemi-
nation has been associated with clonal spread and different types of mobile genetic elements. The
objective of this review was to describe the genetic environments of the blaCTX-M-15 gene detected
from Enterobacteriaceae in published literature from Africa. A literature search for relevant articles
was performed through PubMed, AJOL, and Google Scholar electronic databases; 43 articles from
17 African countries were included in the review based on the eligibility criteria. Insertion sequences
were reported as part of the genetic environment of blaCTX-M-15 gene in 32 studies, integrons in
13 studies, and plasmids in 23 studies. In this review, five insertion sequences including ISEcp1,
IS26, orf447, IS903, and IS3 have been detected which are associated with the genetic environment
of blaCTX-M-15 in Africa. Seven different genetic patterns were seen in the blaCTX-M-15 genetic envi-
ronment. Insertion sequence ISEcp1 was commonly located upstream of the end of the blaCTX-M-15

gene, while the insertion sequence orf477 was located downstream. In some studies, ISEcp1 was
truncated upstream of blaCTX-M-15 by insertion sequences IS26 and IS3. The class 1 integron (Intl1)
was most commonly reported to be associated with blaCTX-M-15 (13 studies), with Intl1/dfrA17–aadA5
being the most common gene cassette array. IncFIA-FIB-FII multi-replicons and IncHI2 replicon
types were the most common plasmid replicon types that horizontally transferred the blaCTX-M-15

gene. Aminoglycoside-modifying enzymes, and plasmid-mediated quinolone resistance genes were
commonly collocated with the blaCTX-M-15 gene on plasmids. This review revealed the predominant
role of ISEcp1, Intl1 and IncF plasmids in the mobilization and continental dissemination of the
blaCTX-M-15 gene in Africa.
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1. Introduction

The most widely distributed blaCTX-M gene on a global scale is blaCTX-M-15, especially in
the enterobacterial species such as Escherichia coli, Klebsiella spp. and Salmonella enterica [1,2].
The global dissemination of the blaCTX-M-15 gene has been associated with the clonal spread
of E. coli O25: H4-ST131 strains and different types of mobile genetic elements (MGEs)
such as insertion sequences, transposons, integrons, phage elements, and conjugative
plasmids [1–3]. Of these MGEs, insertion sequences (IS) are of special concern because
this mobile element can facilitate the independent transposition with insertion mutation
and genetic rearrangements in Enterobacteriaceae [4–6]. Several types of IS elements have
been recognized; however, ISEcp1, IS26, orf447 and ISCR1 have been frequently found to
be responsible for the mobilization and expression of different antimicrobial resistance
genes [7]. ISEcp1 is the most frequently reported IS type [7]. ISEcp1 is a member of the
IS1380 family and was first identified on the plasmid pST01 in E. coli strain 79 but has now
been globally disseminated in association with different blaCTX-M phylogenetic clusters [8].

The roles of ISEcp1 and other MGEs in the genetic environments of blaCTX-M genes have
been well described [7,9,10]. ISEcp1 is commonly located upstream of the blaCTX-M-15 gene
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and is responsible for the downstream mobilization and transposition of itself, adjacent
genes, and the blaCTX-M-15 gene. IS26 has commonly been found to be located upstream of
the blaCTX-M-15 alone or in association with ISEcp1 [1,7]. ISCR1, on the other hand, has been
associated with class 1 integron, forming a transposition complex for the mobilization of
blaCTX-M-15 and other beta-lactamase genes [8]. Integrons are site-specific recombination
systems that capture various arrays of gene cassettes within the conserved regions and can
integrate one or several non-functional gene cassettes and convert these into functional
genes [6]. Molecular characterization and replicon typing of various plasmid groups have
facilitated the recognition and location of blaCTX-M-15 genes co-existing with other AMR
genes on both narrow host-range and, to a lesser extent, broad-host-range plasmids [11].

Genetic environments of blaCTX-M genes have been described and reported in enter-
obacterial species from different parts of the world, however variation in genetic patterns
exists from region to region [10]. Additionally, analysis of genetic environments of blaCTX-M
gene and associated MGEs on a continental scale may provide necessary information on
the diversity and complexity of the genetic environments as well as provide opportunities
for better understanding of the epidemiology of this globally disseminated resistance gene.
This study aimed to review and describe the genetic environments of blaCTX-M-15 genes and
associated MGEs in Enterobacteriaceae in published literature from Africa.

2. Materials and Methods

The literature search was conducted in the PubMed, AJOL and Google Scholar elec-
tronic databases between June 2018 and January 2019 for the purpose of this narrative and
non-systematic review. The following terms were used for the literature search: blaCTX-M-15
gene AND Africa OR blaCTX-M-15 AND genetic environment AND Africa. A literature
search was also conducted based on studies reporting the detection of blaCTX-M-15 from
each African country, e.g., blaCTX-M-15 AND Nigeria, blaCTX-M-15 AND Egypt, blaCTX-M-15
and Kenya, etc. The reference lists of all eligible articles were further reviewed and used to
carry out a supplementary literature search. The articles were further screened after the
removal of duplicates by titles and abstracts for their relevance to the study objectives and
purpose. The primary outcomes of interest were to describe the genetic environment of
blaCTX-M-15 in Enterobacteriaceae from different African countries.

For studies to be included in the qualitative description, the studies must have reported
the genetic environment of the blaCTXM-15 resistance gene with special reference to the
associated insertion sequences. The data were abstracted onto an Excel (Microsoft Office
Excel 2010) spreadsheet. For each eligible study, data extracted included: first author
details, year of publication, country from which the study was conducted, sources of the
samples (animal, human or environment), enterobacterial species in which the blaCTX-M-15
gene was detected, insertion sequences associated with the genetic environment, additional
data on other mobile genetic elements including type of integron and associated gene
cassette arrays, plasmid and associated replicon types, as well as additional antimicrobial
resistance genes associated with the blaCTX-M-15 gene on different plasmids.

3. Results

From the literature search, 43 articles from 17 African countries were included in
the review based on the eligibility criteria (Table 1). Thirty-nine studies were based
on blaCTX-M-15-producing Enterobacteriaceae isolated from human clinical cases, three
studies from animals, and one study from the environment. Bacteria of Enterobacteriaceae
reported were Escherichia coli alone (19 studies), Klebsiella spp. alone (8 studies), Salmonella
enterica (6 studies), E. coli and Klebsiella spp. (4 studies), as well as combinations of other
enterobacterial species (6 studies). Insertion sequences were reported in 32 of the 43 studies
(Table 1). Seven different genetic patterns were observed among these studies (Figure 1). In
eight studies [12–19], the insertion sequence ISEcp1 was located upstream of the end of the
blaCTX-M-15 gene with insertion sequence orf477 located downstream (ISEcp1-blaCTX-M-15-
orf477). Twenty-three studies [20–42] found ISEcp1 to be the only insertion sequence located
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upstream of the blaCTX-M-15 gene (ISEcp1-blaCTX-M-15). Additionally, two studies [16,42]
reported the location of ISEcp1 upstream of blaCTX-M-15 truncated by IS26 without any
downstream IS element (ISEcp1-IS26-blaCTX-M-15). In one these two studies [16], IS26 was
located upstream of blaCTX-M-15 with orf447 located downstream in an enterobacterial
isolate. In another two studies [12,43], ISEcp1 was truncated upstream of blaCTX-M-15 by
IS26 (ISEcp1-IS26-blaCTX-M-15-orf477). In one study [42], ISEcp1 was truncated upstream
of blaCTX-M-15 by IS26, with IS903 located downstream (ISEcp1-IS26-blaCTX-M-15-IS903);
however, novel IS3 type [16] was reported in one study to truncate ISEcp1 upstream of
the start of blaCTX-M-15 gene (ISEcp1-IS3-blaCTX-M-15). The promoter region (−35 and −10)
of 48 bp [14,23,24,29,37], V and W promoter region of 127 bp [31], and other unspecified
promoter regions of 400–1800 bp [17,19,26,35] of ISEcp1 were located upstream between
the left end of ISEcp1 and the start codon of the blaCTX-M-15 gene.
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Figure 1. Schematic representations of different genetic environments of blaCTX-M-15 reported in the 
literature from Africa. (A) The insertion sequence ISEcp1 was located upstream of the end of the 
blaCTX-M-15 gene with insertion sequence orf477 located downstream. (B) The ISEcp1 is the only in-
sertion sequence located upstream of the blaCTX-M-15 gene. (C) ISEcp1 located upstream of blaCTX-M-15 
truncated by IS26 without any downstream IS element. (D) IS26 was located upstream of blaCTX-M-15 
with orf447 located downstream. (E) ISEcp1 was truncated upstream of blaCTX-M-15 by IS26 while 
orf477 was located downstream. (F) ISEcp1 was truncated upstream of blaCTX-M-15 by IS26, with 
IS903 located downstream. (G) Novel IS3 type truncated ISEcp1 upstream the start codon of blaCTX-

M-15 gene. 
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Figure 1. Schematic representations of different genetic environments of blaCTX-M-15 reported in the literature from Africa.
(A) The insertion sequence ISEcp1 was located upstream of the end of the blaCTX-M-15 gene with insertion sequence orf477
located downstream. (B) The ISEcp1 is the only insertion sequence located upstream of the blaCTX-M-15 gene. (C) ISEcp1
located upstream of blaCTX-M-15 truncated by IS26 without any downstream IS element. (D) IS26 was located upstream of
blaCTX-M-15 with orf447 located downstream. (E) ISEcp1 was truncated upstream of blaCTX-M-15 by IS26 while orf477 was
located downstream. (F) ISEcp1 was truncated upstream of blaCTX-M-15 by IS26, with IS903 located downstream. (G) Novel
IS3 type truncated ISEcp1 upstream the start codon of blaCTX-M-15 gene.

Integrons were associated with blaCTX-M-15 genes in 13 studies [12,15,18,19,21,25,31,
32,34,42–45]; a class 1 integron (Intl1) was reported in 13 studies, while a class 2 integron
(Intl2) was reported in 3 studies together with a class 1 integron. A class 3 integron was not
reported in all the studies reviewed, one gene cassette arrangement; Intl2/dfrA1-sat-aadA1
was detected in Intl2 in this review from only one study. However, with the exception of
two studies, different gene cassette arrays were detected in variable regions of Intl1, with
Intl1/dfrA17–aadA5 being the most reported gene cassette from 6 out of 43 studies reviewed
(Table 1). Different types of plasmid incompatibility groups were reported to transfer
blaCTX-M-15 gene horizontally. These plasmid groups include IncF, IncH, IncN, IncY, IncK,
IncX, IncI, IncA, IncC, IncL, and IncM [14,16,25,30,32–36,38,39,42,43,45–54]. However,
IncF plasmid was the most reported plasmid associated with blaCTX-M-15 gene from 17
out of the 43 studies reviewed (Table 1). Antimicrobial resistance genes including the
narrow-spectrum blaOXA-1 and blaTEM-1 beta-lactamases, tetracycline resistance genes (tetA
and tetB), sulfonamide resistance genes (sul2 and sul3) and plasmid-mediated quinolone
resistance genes qnrA, qnrB, and qnrS and aminoglycoside-modifying enzyme encoding
genes (aac-(6′)-lb-cr), were reportedly associated with blaCTX-M-15 genes on plasmids.

Table 1. Genetic environment of CTXM-15 genes in enterobacterial species from Africa.

References Country Sample
Sources

Enterobacterial
Species

Genetic
Environment

Pattern
Additional

Resistance Genes

Mobile Genetic Elements

Integron/Gene
Cassettes Plasmids

[12] Nigeria Environment Escherichia coli
ISEcp1-IS26-

orf477,
ISEcp1-orf477

Intl1/dfrA17-aadA5,
Intl1/dfrA32-ereA-

aadA2,
Intl1/dfrA16-aadA2,

Intl1/aadA1,
Intl1/dfrA7, Int2

[20] Nigeria Human Escherichia coli ISEcp1 aac-(6′)-lb-cr, qnrB1,
qnrA1

[44] Nigeria Human
Enterobacter

cloacae, Pantoea
agglomerans

aadA1, aph,
aac-(6′)-Ib), sul1, cat1,
qnrB1, tet (A), tet (E)

Intl1, Intl2

[21] Nigeria Human Proteus mirabilis ISEcp1 aac (6′)-Ib-cr, qnrA,
blaTEM-1

Int1, Int2, aadA1,
aadA1-qacH,

aadB-aadA2, aadA5,
dfrA7, dfrA15, dfrA17,

dfrA17-aadA5

[47] Nigeria Human Escherichia coli
aac (6′)-Ib-cr, qnrS1,

qnrB1, qepA1,
blaOXA-1, blaTEM-1,

blaCMY-2

IncFIA-FIB-FII,
IncHI2, IncY,
IncX, IncX2,

IncI2

[46] Nigeria Chicken, pig Escherichia coli qnrS1, blaTEM-1 IncN
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Table 1. Cont.

References Country Sample
Sources

Enterobacterial
Species

Genetic
Environment

Pattern
Additional

Resistance Genes

Mobile Genetic Elements

Integron/Gene
Cassettes Plasmids

[42] Nigeria Human Escherichia coli
ISEcp1,

ISEcp1-IS26,
ISEcp1-IS26-

IS903

qnrB, aac (6′)-lb-cr,
blaTEM-1

Int1/aadA1,
int1/dfrA17-aadA5

IncFIA, IncFIB,
HI2 IncK

[13] Nigeria Human Escherichia coli ISEcp1-orf477
aac (6′)-Ib-cr,

blaOXA-1, blaSHV,
blaTEM-1

[48] Nigeria Human Escherichia coli,
Klebsiella spp.

blaCTXM-2, blaOXA-1,
blaSHV, blaTEM-1,

blaAmpC

IncF

[43] Nigeria Chicken Escherichia coli ISEcp1-IS26-
orf477

aac (3)-IIa, aac
(6′)-Ib-cr, dfrA5,

dfrA12, strA, strB,
sul1, sul2, tet (A), tet

(B), blaOXA-1,
blaTEM-1

Intl1/aadA2-orfF-
dfrA12

IncFIB, IncFIA-
IncFIB-IncI1

[22] Nigeria Human
Escherichia coli,
Klebsiella spp.,

Proteus mirabilis
ISEcp1 blaTEM, blaSHV

[23] Nigeria Human Klebsiella spp. ISEcp1 tet(A), aac (3)-II, aac
(6′)-Ib

[14] Ghana Human Escherichia coli,
Klebsiella spp. ISEcp1- orf477 blaTEM, aac (3)-II,

blaOXA-30

IncFII-FIA-FIB,
IncFIIK

[49] Ghana Human Salmonella
Poona

blaTEM-1B, blaOXA−1,
qnrB1, aac (6′) Ib-cr,
tet(A), dfrA15, sul2,
catB3, strA, strB, aac

(3)-Iia

TrfA-IncHI2-
IncHI2A

[15] Mauritania Human Escherichia coli ISEcp1-orf477
aac (6′)-Ib-cr, tet(A),
sul2, sul3, strA, strB,
blaOXA-1, blaTEM-1B

intI/dfrA17-aadA5

[24] Niger Human
Morganella
morganii,

Citrobacter
freundii

ISEcp1 blaDHA, blaCIT,
blaTEM-1

[50] Niger Human Escherichia coli blaCMY-2, blaSHV-44
FII/FIA/FIB,

FII/I1/Iγ,

[51] Senegal Human Salmonella
enterica qnrB1, aac (6′)-Ib-cr IncHI2, IncN,

IncFII

[25] Senegal Human Escherichia coli ISEcp1 blaTEM-1, blaOXA-1,
aac (6)-Ib-cr, tet(A) intI/dfrA17-aadA5 IncFIA-FIB-FII

[26] Senegal Human Salmonella
Kentucky ISEcp1 blaTEM-1, blaOXA-30

[52]
Sao Tome

and
Principle

Human Escherichia coli blaOXA-181, blaTEM-1,
rmtB IncX3

[27] DRC Human Salmonella
Typhi ISEcp1 blaTEM-1D, sulI, dfrA7

[53]
Central
African

Republic
Human

Escherichia coli,
Enterobactercloa-

cae
aac (6′)-Ib-cr, qnrB,

qnrS IncF

[28] Cameroon Human Escherichia coli ISEcp1 blaOXA-181, blaTEM-1,
aac (6′) Ib-cr

[54] Cameroon Human Klebsiella spp.
sul1, fosA, oqxA,
oqxB, blaTEM-1B,

dfrA15, strA, strB

ColRNAI,
IncFIB (K),

IncFIA (HI1

[29] Egypt Human Escherichia coli ISEcp1 blaTEM-1

[30] Algeria Human
Salmonella
enterica ser

Infantis
ISEcp1 armA, blaTEM-1 IncL, IncM

[31] Algeria Human Klebsiella spp. ISEcp1 blaTEM-1 Int1

[16] Angola Human Escherichia coli,
Klebsiella spp.

ISEcp1-orf477,
IS26-orf447,
ISEcp1-IS3-

orf477

blaOXA-1, blaTEM-1,
aac-6′-Ib-cr

IncFII, IncFIIK6,
IncHI2 and

IncY

[45] Angola Dog Escherichia coli qepA, qnrS1, qnrB19,
aac (6′)-Ib-cr

Intl1/dfrA17-aadA5,
Intl1/dfrA1-aadA1,

Intl2/dfrA1-sat-aadA1
IncFIB, IncY,
IncN, IncI1
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Table 1. Cont.

References Country Sample
Sources

Enterobacterial
Species

Genetic
Environment

Pattern
Additional

Resistance Genes

Mobile Genetic Elements

Integron/Gene
Cassettes Plasmids

[32] Madagascar Human Escherichia coli,
Klebsiella spp. ISEcp1

blaTEM-1, blaOXA-1,
aac (6′)-Ib-cr,

sul1-sul2, tet(A),
qnrB

Intl1/
aadA1-aadA2-aadA4-
aadA5-dfrA5-dfrA22

IncFII-FIA-FIB,
IncHI2

[17] Morocco Human Klebsiella spp. ISEcp1-orf477
blaTEM-1B , bla OXA-1

, aac (6′)- Ib-cr,
qnrB1

[33] Morocco Human Klebsiella spp. ISEcp1 qnrB1, bla NDM-1 IncH

[34] Kenya Human Salmonella
Typhimurium ISEcp1

blaTEM-1, blaOXA-1,
aac (6′)-Ib, sul1, sul2,

aadA1
Intl1/dfrA14-catA1 IncFII, IncHI2

[35] Tanzania Human Escherichia coli ISEcp1 blaTEM-1 IncFIA- FIB

[41] Tanzania Human Enterobacter
spp. ISEcp1

[36] Tanzania Human Klebsiella spp. ISEcp1 blaTEM-1, blaSHV-11 IncFII, IncFIA

[37] Tunisia Human Escherichia coli ISEcp1 blaTEM-1, blaSHV-12

[18] Tunisia Human Escherichia coli ISEcp1-orf477
blaTEM-1, blaOXA-1,

aac (3)-II,
aac (6′)-Ib-cr, strA,
strB, sul2, tet (B)

Intl1/ dfrA17–aadA5,
Intl1/

dfrA12–orfF–aadA2,
Intl1/aadA2

[38] Tunisia Human Escherichia coli ISEcp1 blaTEM-52 IncA, IncC

[39] Tunisia Human Klebsiella spp. ISEcp1 blaTEM-1, blaSHV-12
IncFII, IncL,

IncM

[40] Tunisia Human Escherichia coli ISEcp1-IS26

[19] Tunisia Human Klebsiella spp. ISEcp1- orf477 blaTEM-1, blaOXA-1,
blaSHV-1

Intl1/ dfrA17–ereA2,
Intl1/aadA

4. Discussion

This review was carried out to describe the genetic environments of the internationally
disseminated blaCTX-M-15 gene in Enterobacteriaceae from Africa. Most of the studies in
this review were from human clinical settings, which suggests that blaCTX-M-15-producing
Enterobacteriaceae are a challenge to healthcare facilities in Africa. The blaCTX-M-15 gene
has been associated with the pandemic-initiating E. coli O25: H4 ST131 clone that causes
both community and human healthcare infections globally [2]. Review of the genetic
environments of blaCTX-M-15 in Enterobacteriaceae revealed five ISs including ISEcp1, IS26,
orf447, IS903, and IS3 which had been detected in Africa. With the exception of a novel IS3
type that was reported from Angola [16], all the other ISs have been reported from other
parts of the world to be associated with the genetic environment of different AMR genes
in general [7,8,55]. From all the studies reviewed, ISEcp1 was typically located upstream
of blaCTX-M-15 gene. This IS often encodes a transposase that facilitates the mobilization of
blaCTX-M-15 gene among integrons, transposons, plasmids, and chromosomes, as well as pro-
vides promoters that can activate the weakly expressed state of blaCTX-M-15 [56–58]. This IS
has been reported to contribute to the global dissemination of blaCTX-M-15 genes in associa-
tion with other MGEs [1,59,60]. The ISEcp1/ blaCTX-M-15 genetic association observed in this
review has previously been reported from other parts of the world including India, France,
Turkey, Poland, Canada, the United Kingdom, Spain, and China [8–10,55,56,58,61–64].
This IS element has also been commonly found associated with other blaCTX-M genes and
other beta-lactamase resistance genes [10,59]. Of the genetic environments associated with
blaCTX-M genes, ISEcp1 is one of the most commonly detected IS elements in the genetic
environment of blaCTX-M genes, suggesting a possible co-evolutionary relationship between
the ISEcp1 and blaCTX-M genes [9,52,61,65].

The insertion site of ISEcp1 was different from study to study in this review; this may be
due to the variation in bacterial strains, IS promoter types, and other factors associated with
genetic environments of the blaCTX-M-15 gene. Three studies provided information on the
promoter regions in this review; the −35 and −10 putative promoter regions (48 bp) were
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reported in five studies, while V and W sequences (127 bp) were in one study. In all cases,
these promoter regions are important in the transcription, mobilization, and expression
of the blaCTX-M-15 gene as previously described [7,9,10]. IS26 was another IS described in
Africa. However, this IS element was located upstream of blaCTX-M-15, disrupting ISEcp1
elements in all studies reporting the presence of IS26 and ISEcp1 in the genetic environment
of blaCTX-M-15. IS26 has also been reported from other parts of the world to be associated
with blaCTX-M genes alone without ISEcp1 [64] or associated with blaCTX-M genes together
with and located upstream of ISEcp1 [55,56,66], or located truncating ISEcp1 [55,64] in
genetic arrangements with blaCTX-M genes similar to the findings of this review. In all
these genetic arrangements involving IS26, the IS was suggested to be associated with
transposition and stabilization of the ISEcp1/ blaCTX-M-15 complex on plasmids [63,67].

The genetic environment downstream of the blaCTX-M-15 revealed flanking of the
blaCTX-M-15 gene by two different types of insertion sequences, orf447 and IS903. Both IS
elements are the major IS elements commonly reported downstream of blaCTX-M [8,68,69].
However, based on this review, orf447 is the major IS element downstream of blaCTX-M-15
gene in Africa. In this review, seven different genetic patterns were observed; four of the five
genetic patterns have previously been reported. ISEcp1-blaCTX-M-15-orf477 genetic pattern
has been reported from European and Indian strains of Enterobacteriaceae [55,61,66];
ISEcp1 blaCTX-M-15 has been reported from Spain, Canada, India, and Poland [64,70–73];
ISEcp1-IS26-blaCTX-M-15-orf447 has also been reported from France [55,74]; while the ISEcp1-
IS3 blaCTX-M-15 pattern was reported to be novel from Angola [16]. Other genetic patterns
have been reported in the genetic environments of other types of blaCTX-M and other
beta-lactamase genes [8,61,75]. These genetic patterns from Africa reveal how the genetic
environment of blaCTX-M-15 is consistent with what has been reported on global scales.
Additionally, immigration, global migration, and traveling for tourism purposes could also
contribute to these global genetic patterns of blaCTX-M-15. Similar genetic environments of
blaCTX-M-15 reported in this review and other novel genetic patterns have previously been
reported from travelers returning to the United Kingdom from the Middle East, Africa,
and Asian countries, which suggests the possible overseas acquisition of these genetic
patterns [66].

Class 1 integrons were more commonly associated with blaCTX-M-15 compared to
class 2 integrons; this is consistent with previous reports elsewhere [8,76]. Class 1 integrons
are often associated with IS elements such as ISEcp1 and ISCR1. These integrons are often
located adjacent to ISEcp1 and ISCR1 and function in the mobilization and transposition
of blaCTX-M-15 genes [8]. In addition, some AMR genes associated with blaCTX-M-15 are
captured within the conserved regions of the class 1 integrons. AMR genes were harbored
within the cassette arrays of class 1 integron in different studies in this review. Antimicro-
bial resistance genes including dfrA17, dfrA5, dfrA1, aadA5, aadA2, aadA1 and catA1 were
observed within the conserved region of the class 1 integrons, and these genes often confer
multi-drug resistance to trimethoprim, aminoglycosides, and chloramphenicol. Conjuga-
tive plasmids are essential for the evolution and global dissemination of the blaCTX-M-15
gene. Similar to this review, several studies have found that the narrow-host range plasmid
IncF is the predominant plasmid group that harbors the blaCTX-M-15 gene [77]. The IncF
plasmid is mainly restricted to Enterobacteriaceae with support mechanisms such as lower
fitness cost, transferability properties, plasmid addiction, and stability systems that favor:
(i) the higher prevalence of blaCTX-M-15 in Enterobacteriaceae compared to other Gram-
negative bacteria; and (ii) global dissemination of blaCTX-M-15 in association with other
mobile genetic elements [11,59,78]. The IncFII-FIA-FIB multi-replicon plasmids were more
commonly associated with blaCTX-M-15 in this review and have been widely distributed in
the Enterobacteriaceae, especially E. coli, globally [79,80]. This replicon group could be
maintained and propagated between enterobacterial species and from host to host without
antimicrobial selective pressure [59,77]. This may provide some explanation to the rapid
and global spread of the blaCTX-M-15 gene. Another important finding of this review was
the presence of other antimicrobial resistance associated with blaCTX-M-15 often co-located
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on the same plasmid. Different AMR genes commonly co-exist on plasmids, therefore
facilitating the co-dissemination of resistance genes and greater survival fitness of bacte-
ria under antimicrobial selective pressure [78]. Antimicrobial resistance genes including
the narrow-spectrum blaOXA-1 and blaTEM-1 beta-lactamases, aminoglycoside-modifying
enzymes (aac-(6′)-lb-cr), tetracycline resistance genes (tetA and tetB), sulfonamide resistance
genes (sul2 and sul3) and plasmid-mediated quinolone resistance genes (qnrA, qnrB and
qnrS) were found to be consistently associated with blaCTX-M-15 from different studies in the
review. These AMR genes have previously been reported to be co-located on IncFII-FIA-FIB
plasmid replicons in association with blaCTX-M-15-producing E. coli O25:H4-ST131 [81,82],
conferring multi-drug resistance to different antimicrobial classes, complicating the genetic
environments, and facilitating the global spread of blaCTX-M-15 in Enterobacteriaceae. In
addition to the contribution of clonal spread of some bacteria of Enterobacteriaceae, espe-
cially E. coli and Klebsiella spp., the association of blaCTX-M-15 with mobile genetic elements
such as insertion sequences, integrons, and conjugative plasmids may explain its global
dominance and dissemination. This review has showed the diversity and the complexity
of the genetic environments of blaCTX-M-15 beta-lactamase gene in Enterobacteriaceae from
Africa. We recognize that a limited number of articles were included in this review, which
was a limitation of this review. This is partly due to limited published articles on this
subject matter in Africa. Our focus was to provide a narrative review that can serve as
baseline literature for a future comprehensive and systematic review and indicate the need
for more research on this internationally disseminated beta-lactamase resistance gene.
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