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Abstract
Since its introduction, transfer entropy has become a popular information-theoretic tool for detecting
causal inference between two discretized random processes. By means of statistical tools we evaluate
the transfer entropy of stationary processes whose continuous probability distributions are known. We
study transfer entropy of processes coming from the family of γ-order generalized normal distribution.
Applying Kullback-Leibler divergence we provide explicit expressions of the transfer entropy for
processes which are normal, as well as for processes from the class of γ-order normal distributions.
The results achieved in the paper for continuous time can be applied also to the discrete time case,
concretely to the time series whose underlying process distribution is from the discussed classes.
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1 Introduction
Transfer entropy (TE), defined in [1], and equivalently in [2] via conditional mutual information, is
an information-theoretic statistic, measuring the amount of directed (time-asymmetric) transfer of
information between two random processes. It is a statistic working with time series. After its introduc-
tion, transfer entropy gained a wide interest in physics, neuroscience, climatology and other scientific
disciplines, see for example [3], [4], among others.

Transfer entropy has been studied in relation to Granger causality (G-causality), see for example in [5],
[6]. The results in [7] are asymptotic. In this paper, we study the relationship of transfer entropy and
Granger causality for discretized random processes following certain probability distributions, including
the family of γ-order generalized normal distributions (briefly γ-GND) as introduced in [8] and studied
in [9, 10, 11, 12], delivering certain entropy and information-theoretic results. Moreover, the γ-GND
was also considered in a work by [13], and the corresponding transfer entropy was in the spirit of data
analysis, as introduced in the pioneering paper of Tukey [14].

2 Causality Measures in Time Series
Causality or causal inference, can be defined in terms of an effect of interventions, giving direction to
the association between two variables. This approach was studied by great philosophers and recently
by statisticians, as [15] among others. Another approach, coming from econometrics, called Granger
causality, introduced in [16] utilizes time series analysis of the processes. It has been argued that the
concept of Granger causality belongs to a different category than those of Pearl’s causal model, but these
concepts are closely linked, since each relates to straightforward notions of direct causality embodied in
settable systems; see for example [17].

In our paper, we deal with two temporal approaches to causality inference: an econometric one, introduced
by [16], and the transfer entropy (or conditional mutual information) one, as introduced by physicists
[1] and [2]. In particular, we study transfer entropy by means of statistical tools, namely by considering
distributions belonging to the family of γ-order generalized normal distributions, and express the corres-
ponding transfer entropy by means of their parameters.

2.1 Granger causality
The concept of causality based on time series was introduced by C. W. J. Granger (the 2003 Nobel prize
winner in economy) in [16]. Inspired by the Wiener’s work, Granger based his concept on two principles:

1. The cause precedes in time the effect;

2. The cause contains information about the effect that is unique, and is in no other variable.

In other words, the causal variable can help to forecast the effect variable; see [18] for details. It is said
that for “process X t Granger causes another process Yt”, if future values of Yt can be predicted better
using the past values of X t and Yt rather than only past values of Yt.

The related hypotheses testing which Granger developed by [16] is based on a linear regression model,
and uses two alternative test statistics, the Granger-Sargent and the Granger-Wald test.
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For our future development, we adopt and use here the notation of [5]. Let d be a positive integer
number and let ⊕ denote the concatenation of vectors, so that for x = (x1, . . . , xd) and y = (y1, . . . , ym),
x⊕ y is the d+m vector (x1, . . . , xd , y1, . . . , ym). Given jointly distributed multivariate random variables
(r.v.-s) X and Y , i.e. random vectors inRd , we denote by Σ(X ) the d×d matrix of covariances Cov(X i , X j)
and by Σ(X ,Y ) the d×m matrix of cross-covariances Cov(X i ,Yk). Let Σ(X |Y ) denote the d×d matrix

Σ(X |Y )=Σ(X )−Σ(X ,Y )Σ(Y )−1Σ(X ,Y )T, (2.1)

whenever Σ(Y ) is invertible.

Assume a multivariate stochastic process X t in discrete time (i.e. marginal distributions are jointly
distributed). Denote with X (k)

t = X t ⊕X t−1 ⊕·· ·⊕X t−k+1 for X along with k−1 lags so that X (k)
t is a kd

random vector for each t. Given the lag k, where it is clear, we use the shorthand notation X−
t ≡ X (k)

t−1
for the lagged variable.

Suppose we have three jointly distributed stationary multivariate stochastic processes X t,Yt, Zt. Consider
the regression models

X t = αt +
(
X (k)

t−1 ⊕Z(r)
t−1

)
A+εt, (2.2a)

X t = α′t +
(
X (k)

t−1 ⊕Y (q)
t−1 ⊕Z(r)

t−1

)
A′+ε′t, (2.2b)

where A and A′ are the matrices of regression coefficients, αt and α′t are the constant terms and the
random vectors εt and ε′t comprise the residuals, so that the predictee variable X is regressed firstly on
the previous k lags of itself plus r lags of the conditioning variable Z and secondly, in addition, on q lags
of the predictor variable Y .

The G-causality of Y to X given Z assesses the extent to which inclusion of Y in the second model
(2.2b) reduces the prediction error of the first model (2.2a). The standard measure of G-causality in the
literature is defined for the predictor and predicted variables Y and X respectively, and is given by the
natural logarithm of the ratio of the residual variance in the restricted regression (2.2a) to that of the
unrestricted regression (2.2b). It has been proven by [5] that for the G-causality it holds

FY→X |Z = log
Σ(X |X−⊕Z−)

Σ(X |X−⊕Y−⊕Z−),
(2.3)

where FY→X |Z denotes the G-causality for a univariate predictor and predicted variables Y and X ,
conditioned by Z.

2.2 Transfer entropy
This section is based on the definitions given in [19]. Transfer entropy (TE) is a model-free, information-
theoretic expression measuring the amount of time-directed information between two dynamical systems,
which was introduced by [1], and contemporarily by [2] as conditional mutual information; for comparison
see [20]. Given the past time of a dynamical system X , then the TE from another dynamical system
Y to the first system X is the amount of the reduction of Shannon uncertainty measured in the future
time of X when the past of Y is given. Since its introduction it has been extensively applied in modeling
complex systems, especially in neuroscience and climatology, see e.g. [4, 3]. Transfer entropy is based on
Shannon entropy, which is defined for X , a discrete (multivariate) r.v. given by a set of possible values
{x1, x2 . . . , xn}, as

H(X ) :=
n∑

i=1
p(xi) ln p(xi), (2.4)

where p denotes the probability mass function of X . With X t, Yt, and Zt as defined earlier, the transfer
entropy of Y to X given Z, denoted by TY→X |Z , is then defined as the difference between the entropy of
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X conditioned on its own past and the past of Z, and its entropy conditioned on the past of Y :

TY→X |Z := H(X |X−⊕Z−)−H(X |X−⊕Y−⊕Z−), (2.5)

where H(.|.) is the conditional entropy. In other words, TY→X |Z denotes the transfer entropy of the
time series (stochastic process) Y to the time series (stochastic process) X under the condition of time
series (stochastic process) Z. For stationary variables, transfer entropy does not depend on t, so we shall
exclude it from labeling.

For a broad class of predictive models, Barnett and Bossomaier showed in [7], that the log-likelihood
ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the
transfer entropy itself. An asymptotic chi-squared distribution was established for the transfer entropy
estimator. Their result generalizes the equivalence of transfer entropy and Granger causality in the
Gaussian case and bridges the notion of directed information transfer and G-causality.

In addition to these general results, it has been proven that the complexity of approximation of entropy
is polynomial; see e.g. [21]. However, practical methods to achieve a good approximation of (differential)
entropy are non-trivial; see for details [22] or [23] among others.

3 Continuous Transfer Entropy
Zhu et al. in [24] formulated the definition of causality by transfer entropy for continuous processes via
Markov processes, equivalent to transfer entropy definition as in [25]. For our computations in what
follows, we adopt that definition.

Denote by X (k)
t = (X t−k+1, X t−k+2, . . . , X t), k > 0, and assume the probability measure PX (defined on

measurable subsets of real sequences) on X fulfills the m− th order Markov property:

for all t : for all m′ > m : dP X t+1
∣∣X (m)

t

(
xt+1

∣∣x(m)
i

)
= dP

X t+1
∣∣X (m′)

j

(
xt+1

∣∣x(m′)
t

)
,

for xt+1 ∈R, x(k)
t ∈Rk. Then, the past information X (m)

t (preceding the time instant t+1) is sufficient
for predicting X t+k, k ≥ 1, and can be considered as an m-dimensional state vector at time t. Assume
further that N is a positive integer corresponding to the length of the discretized time series (X̂ t, X−

t ,Y−
t ),

t = 1,2, . . . , N. For independent and identically distributed (i.i.d.) random series, each term has the
same distribution as the random vector (X̂ , X−,Y−) ∈R1+m+n, whatever i is considered. For random
variables X̂ , X−, Y−, note that ”ˆ” indicates “predicted”, while “−” means “past”, which is a common
notation in the literature; see for example [20] among others.

3.1 Causality defined by deviation from Markov property
In this section we use the terms random variable and random process interchangeably. Let us suppose
that a causal influence exists from random process Y to process X , and is such that at each time i
integer and for some n > 0, Y−

t is an image of the physical state Y , and it can be written as Y−
t ,Y (n)

t .
The negation of this causal influence implies that for given t:

dP X̂ t
∣∣X (m)

t

(
x̂t

∣∣x(m)
t

)
= dP X̂ t

∣∣X (m)
t ,Y (n)

t

(
x̂t

∣∣x(m)
t , y(n)

t

)
, for all m,n > 0, (3.1)

defines the causal flow. If (3.1) holds, it is said that there is an absence of information transfer from Y
to X .

Otherwise, the process X can be no longer considered strictly as a Markov process. Let us suppose the
joint process (X ,Y ) is Markovian, i.e. there exists a given pair

(
m′,n′), a transition function f and an
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independent random sequence εt, t ∈Z (Z denotes the set of integer numbers), such that [X t+1,Yt+1]T =
f
(
X (m′)

i ,Y (n′)
t ,εt+1

)
, where the r.v. εt+1 is independent of the past random sequence (X j ,Y j ,ε j), j ≤

t, whatever t is considered. As X t = g
(
X (m)

t ,Y (n)
t

)
, where g is clearly a non-injective function, the

triplet
(
X (m)

t ,Y (n′)
t , X t

)
, t ∈Z, corresponds to a hidden Markov process, and it is well-known that this

observation process is not generally Markovian, [24].

Similarly as in Section 2.2, for the discrete transfer entropy, if the processes X and Y are assumed to
be jointly stationary, then the expectation of the form E

(
g
(
X t+1, X (m)

t ,Y (n)
t

))
does not depend on t for

any function g : Rm+n+1 →R, see [24]. This assumption is essential for the construction of transfer
entropy, since it allows us to omit the index t, as we are moving from the discrete to the continuous case.

3.2 Transfer entropy as Kullback-Leibler divergence
Recall the Kullback-Leibler (KL) divergence, defined by [26], is a non-symmetric measure of the difference
between X and Y as

DKL(X‖Y ) :=
∫
Rd

p(x) log
p(x)
q(x)

dx, (3.2)

where p(x) and q(x), x ∈Rd being the probability densities of X and Y respectively.

Formulated using probability theory, transfer entropy is a conditional mutual information, [2], [22].

The deviation from Markov property can be expressed through the Kullback-Leibler divergence which
leads to the definition of transfer entropy at time t:

TEY→X ;t =
∫

R1+m+n

log


dP X̂ t

∣∣X−
t ,Y−

t

(
x̂t

∣∣x−t , y−t
)

dP X̂ t
∣∣X−

t

(
x̂t

∣∣x−t )
 dP X̂ t

∣∣X−
t ,Y−

t

(
x̂t

∣∣x−t , y−t
)
. (3.3)

If the joint probability measure P X̂ t|X−
t ,Y−

t
(x̂t|x−t , y−t ) can be derived with respect to the Lebesgue

measure µ in R1+m+n, then the (joint) probability density function (p.d.f.) exists (and also each p.d.f.
for each subset of X̂ t

∣∣X−
t ,Y−

t ); we denote it as pX̂ t|X−
t ,Y−

t
(x̂t|x−t , y−t ). Then, transfer entropy TEY→X ;t

can be rewritten as

TEY→X ;t =
∫

R1+m+n

p
X̂ ,X−

t ,Y−
t

(x̂, x−t , y−t ) log
p

X̂ ,X−
t ,Y−

t

(
x̂, x−t , y−t

)
pX−

t

(
x−t

)
pX−

t ,Y−
t

(
x−t , y−t

)
p

X̂ ,X−
t

(
x̂t, x−t

) dx̂t dx−t dy−t . (3.4)

More details to the derivation of the definition of transfer entropy can be found in [24].

Now we proceed as follows. Denote u := x̂t, v := x−t and w := y−t (assuming stationary processes), where
U := X̂ , V := X−

t , W := Y−
t . We can define a simpler form of (3.4) through the definition of the triple

(u,v,w) and the corresponding probabilistic relationship:

q(u,v,w) := p(v,w)p(u,v)
p(v)

. (3.5)

Then through (3.5) and (3.4) we obtain the more simplified form,

TEY→X ;t = TEW→U |V =
∫

R1+m+n

p(u,v,w) log
p(u,v,w)p(v)
p(v,w)p(u,v)

dudvdw (3.6)

=
∫

R1+m+n

p(u,v,w) log
p(u,v,w)
q(u,v,w)

dudvdw, (3.7)
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where p and q are probability distributions.

Equation (3.7) for TE will be investigated as the Kullback-Leibler measure between two probability
distributions. In this paper, we assume that p(·) is a γ-order generalized normal p.d.f. (p follows the
γ-GND). These will be briefly discussed in the following section.

The causality, measured by transfer entropy in (3.4) and, in agreement with notation in Section 3 can
be tested with hypothesis H0 : U ⊥W |V , where ⊥ denotes probabilistic independence.

4 Family of γ-Order Generalized Normal Distributions
[8] came with the idea of generalizing Fisher’s entropy type information, the entropy type measure from

J(X ) :=
∫
Rd

∣∣∇ log f
∣∣2 f dx =

∫
Rd
∇ f ·∇ log f dx, (4.1)

see [27], to

Jα(X ) :=
∫
Rd

∣∣∇ log f
∣∣α f dx =

∫
Rd

∣∣∇ f
∣∣α ·∇ log f 1−αdx, (4.2)

for r.v. X with probability density f on Rd .

Applying the optimal Euclidean logarithm Sobolev inequality, [8] noted that its extremals (i.e. the
function that makes the Sobolev inequality to be an equality) offered a generalized form of the multivariate
normal distribution, called as the γ-order normal distribution, and denoted with Nγ(µ,Σ). The density
function of a r.v. X ∼N d

γ (µ,Σ) is of the form

fX (x; µ,Σ)= C(γ,d)|Σ |−1/2 exp
{
−γ−1

γ QX (x)
γ

2(γ−1)

}
, x ∈Rd , (4.3)

where QX (x) := 〈
x −µ,Σ−1(x −µ)T

〉 = (x −µ)Σ−1(x −µ)T, |Σ | denotes the determinant of Σ, and the
normalizing factor, for γ ∈R\ [0,1] is given by

Cd = C(γ,d) :=π−
d
2

Γ
( d

2 +1
)

Γ
(
d γ−1

γ +1
) (γ−1

γ

)d γ−1
γ . (4.4)

For details see Kitsos and Tavoularis in [8].

The generalized Fisher entropy type information, as well as the generalized entropy power for a r.v.
X ∼N d

γ (µ,Σ) were studied in [9] and [28]. Moreover, the maximum likelihood estimation (MLE) for the
γ-GND family is studied in [11]. The family of γ-order GND is based on a solid theoretical background
and extensively studied in [10], [11], and [12], for the multivariate case. Notice that with γ = 2 we get
the well known N d

2 (µ,Σ).

One of the merits of the γ-order GND is that “fat tails” can be produced for a particular γ value.
The shape parameter γ influences the “amount of probability at the tails” of the normal distribution.
Moreover, from an information-theoretic point of view, the γ-GND provides the equality in the generalized
Cramér-Rao inequality, introduced by [8]), just like the usual normal distribution does for the usual
Cramér-Rao inequality; see also [29].

The γ-GND is an elliptically contoured distribution when its scale matrix Σ is a positive definite matrix,
while is spherically contoured when Σ :=σ2Ip.

The family of N d
γ (µ,Σ), i.e. the family of the elliptically contoured γ-order normals, provides a ”smooth

6



Toulias et al.; BJMCS, 17(5), 1-20, 2016; Article no.BJMCS.27377

bridging” between the multivariate (and elliptically countered) uniform, normal and Laplace r.v.-s U , N
and L respectively, i.e. between U ∼ U d(µ,Σ), N ∼ N d(µ,Σ) and Laplace L ∼ L d(µ,Σ) r.v.-s as well as
the multivariate degenerate Dirac distributed r.v. D ∼Dd(µ), with pole at the point µ. Recall the p.d.f-s
of U , N, L, and D, i.e.

fU (x)= fU (x; µ,Σ) :=


Γ

( d
2 +1

)
πd/2p|Σ| , x ∈ Aθ ,

0, x ∉ Aθ ,
(4.5a)

fN (x)= fN (x; µ,Σ) := 1
(2π)d/2p|Σ | exp

{
− 1

2 Qθ(x)
}
, x ∈Rd , (4.5b)

fL(x)= fL(x; µ,Σ) := Γ
( d

2 +1
)

d!πd/2p|Σ | exp
{
−

√
Qθ(x)

}
, x ∈Rd , (4.5c)

fD (x)= fD (x; µ) :=
{

+∞, x =µ,
0, x ∈Rd \{µ},

(4.5d)

where Aθ denotes the area enclosed by the d-ellipsoid defined by Qθ , i.e. Aθ : Qθ(x) ≤ 1, x ∈Rp, with
Qθ(x)=: (x−µ)Σ−1(x−µ)T, θ := (µ,Σ).

That is, the N d
γ , family of distributions not only contains the usual normal, but two other very significant

distributions, as the uniform and Laplace distributions, are also members of this family, together with
the degenerated Dirac distribution. The above discussion is summarized in the following theorem; see
also [10].

Theorem 4.1. The elliptically contoured d-variate γ-order normal distribution N d
γ (µ,Σ) for order values

of γ= 0,1,2,±∞ coincides with

N d
γ (µ,Σ)=



Dd(µ), for γ= 0 and d = 1,2,
0, for γ= 0 and d ≥ 3,
U d(µ,Σ), for γ= 1,
N d(µ,Σ), for γ= 2,
L d(µ,Σ), for γ=±∞.

(4.6)

The above briefly discussed properties of the γ-GND are applied in Section 6, generalizing the results
that we obtained for normal distribution in Section 5. Moreover, Section 7 develops the achieved results
and provides examples of the known distributions this family includes. For different γ values (shape
parameter) close to the value 2, different ”normal-like distributions” can be obtained.

5 Explicit Form of Transfer Entropy for the Normal Distri-
bution

The joint probability density pX̂ i |X−
i ,Y−

i
(x̂i |x−i , y−i ), as in (3.4), is considered now to be a d-variate normal

distribution, with d := 1+ m + n, m,n ∈ N∗ := N \ {0}, m 6= n. In order to calculate TEW→U |V as
in (3.6), first we consider a vector x ∈ Rd such that x = (xi)di=1 := u ⊕ v⊕ w, where u := x1 ∈ R, v :=
(x2, x3, . . . , xm+1) ∈Rm, and w := (xm+2, xm+3, . . . , xd=1+m+n) ∈Rn. In general, for every d-dimensional
vector x ∈Rd , we can write x = xu ⊕ xv ⊕ xw, where vectors xu, xv and xw are the corresponding 1-, m-
and n-dimensional components of x ∈Rd , like u, v, and w as above. Moreover, let xu⊕v := xu ⊕ xv =
x1 ⊕ xv ∈Rm+1 and xv⊕w := xv ⊕ xw ∈Rd−1 =Rm+n.

Consider now a d-variate and spherically contoured normally distributed r.v., say X , i.e. X ∼N d(
µ,σ2Id

)

7
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with mean vector µ = (µi)di=1 ∈ Rd and σ > 0 with Id ∈ Rd×d denoting the identity d × d matrix.
Using the notation as above, we can adopt the m-variate, (m+1)-variate, and (m+n)-variate normally
distributed random variables Xv ∼ N m(

µv,σ2Im
)
, Xu⊕v ∼ N 1+m(

µu⊕v,σ2I1+m
)
, as well as Xv,w ∼

N m+n(
µv⊕w,σ2Im+n

)
.

Assume now that the joint probability density p(u,v,w) of the transfer entropy W → U |V , as in the
simplified form of (3.6), corresponds to the (1+m+n)-variate normal distribution followed by r.v. X as
above, i.e. p(u,v,w) := pX (x), x ∈Rd , with random variable X :=U ⊕V ⊕W ∼ N d(

µ,σ2Ip
)
. Then the

p.d.f.-s p(v), p(u,v) and p(v,w) can be calculated and hence the value of TEW→U |V can be obtained.
Indeed, we consider

p(u,v,w) := pX (x)=
(p

2πσ
)−d

exp
{
− 1

2

∥∥∥ x−µ
σ

∥∥∥2
}

, x ∈Rd , (5.1)

where ‖ ·‖ denotes the L 2(
Rd)

norm.

Thus, we let p(u) := pU (u), p(u,v) := pU⊕V (u,v), p(v,w) := pV⊕W (v,w) and p(u,v,w) := pU⊕V⊕W (u,v,w),
where the random variables V := Xv, U ⊕V := Xu⊕v and V ⊕W := Xv⊕w. Therefore,

TEW→U |V =
∫
Rd
pU⊕V⊕W log

pU⊕V⊕W pV

pU⊕V pV⊕W
, (5.2)

which is a mathematically correct expression (using random variables) of (3.6), which shall be used
here. Substituting (5.1) and p(u), p(u,v) and p(v,w) as described above, into (5.2) we obtain, after some
computations, that

TEW→U |V =− 1
2(2π)d/2σd

∫
Rd

(∥∥∥ x−µ
σ

∥∥∥2 +
∥∥∥ xv −µv

σ

∥∥∥2 −
∥∥∥ xv⊕w −µv⊕w

σ

∥∥∥2
)
exp

{
− 1

2

∥∥∥ x−µ
σ

∥∥∥2
}

dx. (5.3)

Through the linear transformation z = z(x) := (x−µ)/σ, x ∈ Rd , which implies dx = dx1 dx2 · · · dxd =
σd dz1 dz2 · · · dzd =σd dz, we have

TEW→U |V =− 1
2 (2π)−d/2

∫
Rd

(
‖z‖2 +‖zv‖2 −‖zu⊕v‖2 −‖zv⊕w‖2

)
e−

1
2 ‖z‖2

dz. (5.4)

However, as

‖z‖2 = z2
1 +

(
z2

2 + z2
3 +·· ·+ z2

m+1
)+ (

z2
m+2 + z2

m+3 +·· ·+ z2
d
)
, (5.5a)

‖zv‖2 = z2
2 + z2

3 +·· ·+ z2
m+1, (5.5b)

‖zu⊕v‖2 = z2
1 +

(
z2

2 + z2
3 +·· ·+ z2

m+1
)
, (5.5c)

‖zv⊕w‖2 = (
z2

2 + z2
3 +·· ·+ z2

m+1
)+ (

z2
m+2 + z2

m+3 +·· ·+ z2
d
)
, (5.5d)

it holds, eventually, that TEW→U |V = 0 after substituting (5.5a)–(5.5d) into (5.4). Therefore, the transfer
entropy with normally distributed and spherically contoured joint distribution vanishes. Indeed, the
concatenated vectors z in eqs. (5.5a)-(5.5d) imply that TE = 0. For the most general multivariate normal
distribution, i.e. the elliptically contoured normal, can be in general TE non-zero.

On the other hand, it is well-known that the conditional mutual information I(U ,W |V ) is zero if and only
if random variables U |V and W |V are independent. Since we can express transfer entropy, according to
[2] by means of conditional mutual information

TEW→U |V = I(U ,W |V ),

the statement holds also for transfer entropy.

8
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For TEW→U |V rewritten in our notation as TEY−
t →X̂ |X−

t
, it holds that TEY−

t →X̂ |X−
t
= 0 if and only if

the processes
(
X̂

∣∣X−
t

)
and

(
Y−

t
∣∣X−

t
)

are independent. This is the case when Markov property (3.1) is not
violated, i.e. there is (for stationary processes) no information transfer from Y to X ; in other words Yt
has no causal influence on X t.

The vanishing of TEW→U |V can also be justified by the fact that (5.2) is written as a KL divergence
between p(u,v,w) (normally distributed) and q(u,v,w) as in (3.5). This is because, substituting p(u),
p(u,v) and p(v,w), as described earlier, into (3.5), then q(u,v,w) coincides with p(u,v,w) (the corres-
ponding summations inside the exponential function follow the same pattern as shown by the relations
(5.5b)–(5.5d)). Thus, the KL divergence between the same p.d.f. is zero, and hence TEW→U |V = 0.

6 Explicit Form of Transfer Entropy for the γ-GND
Consider now that the joint probability density p(u,v,w) of the transfer entropy TEW→U |V in (3.6)
corresponds to the (1+m+ n)-variate γ-order normal distribution. In particular, let X := U ⊕V ⊕W ∼
N d
γ

(
µ,σ2Id

)
with mean vector µ = (µi)

q
i=1 ∈Rd and σ > 0. Its p.d.f. is then given by (4.3). We also

adopt the m-variate, (m+1)-variate, and (m+n)-variate γ-GND r.v.-s V := Xv ∼N m
γ

(
µv,σ2Im

)
, U⊕V :=

Xu⊕v ∼N 1+m
γ

(
µu⊕v,σ2I1+m

)
, and V ⊕W := Xv⊕w ∼N m+n

γ

(
µv⊕w,σ2Im+n

)
, respectively.

The following Lemma is needed for the calculation of the transfer entropy for the general case of the
γ-order GND. Recall that (r)k := r(r−1)(r−2) · · · (r−k+1), r ∈R, k ∈N, denotes the Pochhammer symbol.

Lemma 6.1. The transfer entropy TEW→U |V , when U ⊕V ⊕W ∼N d
γ

(
µ,σ2Id

)
, d := 1+m+m, equals to

TEW→U |V = logC− Cdσd
g

∞∑
k=0

(g/2)k
k!

k∑
l=0

(
k
l

)
(−1)l Ik−l

∑
Tk−l

d

(k− l)!
t1! · · · td !

d−1∏
`=1

J`, (6.1)

where C := CdCm/
(
C1+mCm+n)

, g := γ/(γ−1), and Tk−l
d is considered to be the set of indexes Tk−l

d :={
(t1, t2, . . . , td) ∈Nd

1 : t1 + t2 +·· ·+ td = k− l and
(
0< t1 < k− l or 0< tm+2 +·· ·+ td < k− l

)}
. Moreover,

Ik−l :=
∫ +∞

0
ρ2(k−l)+d−1 exp

{
− 1

gρ
g
}

dρ, k− l ∈N, (6.2a)

J` :=
∫ π

0
sinτ` ϕ` cos2t` ϕ`dϕ`, `= 1,2, . . . ,d−2, (6.2b)

Jd−1 :=
∫ 2π

0
sinτd−1 ϕd−1 cos2td−1 ϕd−1 dϕd−1. (6.2c)

See Appendix A for the proof.

The following theorem provides the transfer entropy for the general case of the γ-order GND, and
therefore generalizes the result in Section 5.

Theorem 6.2. The transfer entropy TEW→U |V for U ⊕V ⊕W ∼N d
γ

(
µ,σ2Id

)
, is calculated to be

TEW→U |V = log
Γ

( d
2

)
Γ

( m
2

)
Γ

( 1+m
g

)
Γ

( m+n
g

)
Γ

( d
g
)
Γ

( m
g

)
Γ

( 1+m
2

)
Γ

( m+n
2

)−
Γ

( d
2

)
πd/2Γ

( d
g
)
g(d+g)/g

∞∑
k=0

(g/2)k
k!

k∑
l=0

(
k
l

)
(−1)l g

2(k−l)+q
g Γ

(
2(k−l)+q

g

) ∑
Tk−l

d

(k− l)!
t1!t2! · · · tq! Pd , (6.3)

9
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where

Pd := 2π
m+n

2


m+n

2 −1∏
`=0

(−1)
τ2`+1+1

2

2τ2`+1−2 R2`+1

(τ2`+1−1)/2∑
j=0

(−1) j

τ2`+1 −2 j

(
τ2`+1

j

)
m+n

2∏
`=1

R2`
2τ2`

( τ2`
τ2`/2

)
, (6.4)

for m,n ∈N∗ being both odd or even numbers, and

Pd := 2π
d
2 −1


m+n−1

2∏
`=0

R2`+1
2τ2`+1

( τ2`+1
τ2`+1/2

)
m+n−1

2∏
`=1

(−1)(τ2`−1)/2

2τ2`−2 R2`

(τ2`−1)/2∑
j=0

(−1) j

τ2`−2 j

(
τ2`

j

)
, (6.5)

for m,n ∈N∗ not being both (simultaneously) odd or even numbers, with τ` := 2(t`+1 + t`+2 +·· ·+ td)+
m+n−`, `= 1,2, . . . ,m+n, and for k ∈N,

Rk := (2tk −1)!!
(2tk +τk)(2tk +τk −2) · · · (τk +2)

= (2tk −1)!!

(2tk +τk)tk
(
tk + 1

2τk
)
tk

. (6.6)

See Appendix B for the proof.

It is worth mentioning that the transfer entropy under the γ-GND family N d
γ (µ,Σ), Σ := σ2Id , is

invariant in terms of the mean µ ∈Rd and the (spherically contoured) scale matrix Σ ∈Rd×d .

7 Special Cases
Theorem 6.2 can be applied to all members of the γ-GND family. The cases of normal and Laplace (recall
Theorem 4.1) attract special interest and are studied in the following subsection.

7.1 The normal and the Laplace distribution
The following corollary confirms the vanishing transfer entropy for the case of the multivariate spherically
contoured normal distribution.

Corollary 7.1. The transfer entropy of W → U |V, with U ⊕V ⊕W ∼ N d(
µ,σ2Id

)
, is vanishing, i.e.

TEW→U |V = 0.

Proof. Recall Theorem 4.1 where for value γ := 2 the N d
2

(
µ,σ2Id

)
coincides with the d-variate normal

N d
2

(
µ,σ2Id

)
. Thus, substituting g = γ/(γ−1) := 2 into (6.3) we obtain that

TEW→U |V = − 1
2(2π)d/2

1∑
k=0

(1)k
k!

k∑
l=0

(
k
l

)
(−1)l2

(k−l)+d
2 Γ

( 2k−2l+d
2

) ∑
Tk−l

d

(k− l)!
t1! · · · td ! Pd

= − 1
2(2π)d/2

(1)0
0!

(
0
0

)
2d/2Γ(d/2)

∑
T0

d

1
t1!t2! · · · td ! Pd−

1
2(2π)d/2

(1)1
1!

(
1
0

)
21+d/2Γ(1+d/2)

∑
T1

d

1
t1!t2! · · · td ! Pd−

1
2(2π)d/2

(1)1
1!

(
1
1

)
2d/2Γ(d/2)

∑
T0

d

1
t1!t2! · · · td ! Pd , (7.1)

which is true, as the Pochhammer symbol (1)k = 0, for k > 1, k ∈N, while (r)0 := 1, r ∈R. Therefore, (7.1)
yields TEW→U |V = 0 as the sets of indexes T0

d ,T1
d =;, due to the assumed inequalities 0< t1 < k− l = 0

10
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or 0< tm+2+tm+3+·· ·+td < k−l = 0 for T0
q, and 0< t1 < k−l = 1 or 0< tm+2+tm+3+·· ·+td < k−l = 1for

T1
d (recall the definition of the indexing set Tk−1

d , d,k− l ∈N).

The following corollary calculates the transfer entropy for the multivariate spherically contoured Laplace
distribution.

Corollary 7.2. The transfer entropy of W →U |V, with U ⊕V ⊕W ∼L 1+m+n(
µ,σ2I1+m+n

)
is given by

TEW→U |V = log
mΓ

( 1+m+n
2

)
Γ

( m
2

)
(m−n)Γ

( 1+m
2

)
Γ

( m+n
2

) − Γ
( 1+m+n

2
)

π(1+m+n)/2(m+n)!
×

∞∑
k=0

(1/2)k
k!

k∑
l=0

(
k
l

)
(−1)l [2(k− l)+m+n]!

∑
Tk−l

d

(k− l)!
t1!t2! · · · t1+m+n! P1+m+n, (7.2)

where P1+m+n is given in (6.4) when m,n ∈N are both odd or both even numbers, or in (6.5) when only
one of m,n ∈N is an odd number.

Proof. Recall Theorem 4.1 for limiting order value γ=±∞. Then, it holds that the limiting L 1+m+n±∞ (µ,Σ)=
limγ→±∞N 1+m+n

γ (µ,Σ), with Σ :=σ2I1+m+n, coincides with the d-variate Laplace distribution L d(µ,Σ).
Thus, substituting g = γ/(γ−1) := 1 into (6.3) we easily obtain the requested form of (7.2).

7.2 Kullback-Leibler divergence and the γ-GND
Recall formula (3.7) from Section 3.1. We can express transfer entropy as

TEY→X = DKL(p‖q), (7.3)

where p(z) := p(u,v,w) with q(z) := q(u,v,w) as in (3.5). Denote by Nd
γ

(
µ0,σ2

1Id
)

a spherically contoured
γ-GND distribution with mean µ0 and scale matrix σ2

1Id . This allows the following conclusions.

Corollary 7.3. If the joint p.d.f. p(X̂ |X−,Y−)(x̂|x−, y−) exists for stationary random processes Y and X,

and for the partial densities holds p = p(x̂, x−, y−) ∼ Nd
γ

(
µ0,σ2

1Id
)

and q = p(x̂, y−)p(x̂, x−)[p(x−)]−1 ∼
Nd
γ

(
µ0,σ2

0Id
)
, then TEY→X coincides with KL divergence and can be expressed in terms of parameters

of the distribution p and q as

TEY→X = DKL(p‖q)= d
{

log
(σ0
σ1

)− γ−1
γ

[
1− (σ1

σ0

) γ
γ−1

]}
. (7.4)

See [9] for details.

From the above corollary recall that for σ0 6=σ1 the same γ parameter, it is easy to see that

Dd
KL(γ)< Dd+1

KL (γ), d = 1,2, . . . ,

where Dd
KL(γ) := DKL(p‖q), p ∼ N d

γ

(
µ,σ2

0Id
)

and q ∼ N d
γ

(
µ,σ2

1Id
)
. In practice it means, the more

variables are involved in processes X and Y , the larger is their KL divergence.

Similar inequalities hold also in case of Laplace probability function for γ→+∞.

For given d, µ1 = µ0, σ0 6= σ1 the KL divergence appears in a strict descending order as γ ∈R\ [01]
rises. In particular,

Dd
KL(γ1)> Dd

KL(γ2), for γ1 < γ2.

11
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Therefore with Laplace, γ→+∞, we obtain a lower bound, i.e.

Dd
KL(∞)< Dd

KL(γ), for every γ and d

. Moreover, it is easy to see that TEY→X is a function of the ratio σ0/σ1.

Recall now the definition of the symmetric KL divergence or Jeffreys divergence, [30]:

J(p‖q) := 1
2
[
DKL(p‖q)+DKL(q‖p)

]= 1
2

∫
(p− q)(log p− log q).

Denote with STE(X ,Y ) the average of TEY→X and TEX→Y for given processes X , Y .

From Corollary 7.3 the following result can be obtained.

Corollary 7.4. The symmetric transfer entropy STE(X ,Y ) with p ∼N d
γ

(
µ,σ2

0Id
)

and q ∼N d
γ

(
µ,σ2

1Id
)
,

equals
STE(X ,Y ) := 1

2
(
TEY→X +TEX→Y

)=−d γ−1
2γ

(
2− sg − s−g)

, (7.5)

where s :=σ1/σ0 and g := γ/(γ−1). For p and q normal, it is

STE(X ,Y )= d
2

(
2− s2 − s−2)

. (7.6)

Proof. Following [30] and evaluating TEY→X and TEX→Y through (7.4), their average gives (7.5)
Moreover, the case γ= 2, again provides the normal case as in (7.6).

Notice that when q being a uniform distribution, it holds STE(X ,Y ) = 0, i.e. TEX→Y and TEY→X
are cancelling each other. Results can also be obtained for the Geometric and Harmonic means of
DKL(p‖q) and DKL(q‖p), which provide the corresponding geometric and harmonic means of TEY→X
and TEX→Y respectively. These can be useful indexes for their applications. Moreover, as J(p, q) is
between min and max of the DKL(p‖q) and DKL(q‖p), it provides a measure of comparison about the
desired min and max of the corresponding TE.

Corollary 7.5. It holds that TEY×Y1→X×X1 = TEY→X +TEY1→X1 with X1 and Y1 being also normally
distributed random variables.

Proof. Recall that the Rényi divergence measure Rα is equal to the KL divergence, as Rényi’s extra
parameter α tends to 1. Then, Rα(p× p1, q× q1) = Rα(p, q)+Rα(p1, q1); see [31]. Therefore, as α→ 1,
DKL(p× p1‖q× q1)= DKL(p‖q)+DKL(p1‖q1) and hence Corollary is true.

8 Conclusions
In this paper we evaluated transfer entropy of stationary processes for which we know their probability
distributions. Transfer entropy for the normal (Section 5) and for the class of the generalized normal
distribution (γ-GND, in Section 6) were computed. Special cases were also discussed in Section 7 and
examined for different values of the shape parameter γ of for the γ-GND. We expressed transfer entropy
of two processes with their probability distributions given from γ-GND by means of the parameters
of these distributions. We derived that the transfer entropy of processes with spherically contoured
multivariate normal distributions is zero.

The results for continuous time achieved in the paper can also be applied to the discrete time case,
particularly to the time series whose underlying process distribution is from the discussed classes.

12
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In terms of information theory, transfer entropy can be considered as a special case of Kullback-Leibler
divergence, namely as a “distance” between two probabilities corresponding to the studied processes.

There are some open problems we still have to face; the easiest one is to study processes for which
transfer entropy is always non-zero, i.e. to find a subset of functions, within the family of γ-GND, that
their members provide non-zero TE. The simplified (discretized) forms can be applied to time series and
therefore can be used in practice. In our future work we shall provide examples with calculations.
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Appendix

A
Proof of Lemma 6.1. Considering the γ-GND r.v.-s X :=U⊕V ⊕W , V := Xv, U⊕V := Xu⊕v and V ⊕W :=
Xv⊕w, the corresponding transfer entropy (5.2) gets the form

TEW→U |V = log CdCm

C1+mCm+1 −

Cd
g

∫
Rd

(∥∥∥ x̃−µ
σ

∥∥∥g
+

∥∥∥ xv −µv
σ

∥∥∥g −
∥∥∥ xu⊕v −µu⊕v

σ

∥∥∥g −
∥∥∥ xv⊕w −µv⊕w

σ

∥∥∥g)
exp

{
− 1

g

∥∥∥ x−µ
σ

∥∥∥g}
dx,

where g = g(γ) := γ/(γ−1)> 1, for all defined γ values, and through the linear transformation z = z(x) :=
(x−µ)/σ, x ∈Rd , which implies that dx =σd dz, we have

TEW→U |V = log CdCm

C1+mCm+1 − g−1Cdσd
∫
Rd

hg(z)exp
{
− 1

g ‖z‖g
}

dz, (A.1)

where
hg(z) := ‖z‖g +‖zv‖g −|zu⊕v‖g −‖zv⊕w‖g, z ∈Rd , g ∈R+, (A.2)

while z = (zi)
p
i=1 ∈ Rd , zv := (zi)m+1

i=2 ∈ Rm, zu⊕v := z1 ⊕ zv = (zi)m+1
i=1 ∈ R1+m, and zv⊕w := zv ⊕ zw =

(zi)1+m+n
i=2 ∈Rm+n.

In order to calculate the multiple integral in (A.1), a series expansion of hg is utilized. Firstly, the series
expansion of f (x) := xg, x, g ∈R+ is obtained, i.e.

‖z‖2g = f
(‖z‖2)= ∞∑

k=0

f (k)(1)
k!

(‖z‖2 −1
)k =

∞∑
k=0

(g)k
k!

(‖z‖2 −1
)k, (A.3)

z ∈Rd , where (r)k := r(r−1)(r−2) · · · (r−k+1), r ∈R, k ∈N, denotes the Pochhammer symbol. Therefore,
function h can also be expanded, through (A.3), as

hg(z)=
∞∑

k=0

(g/2)k
k!

[(‖z‖2 −1
)k + (‖zv‖2 −1

)k − (‖zu⊕v‖2 −1
)k − (‖zv⊕w‖2 −1

)k
]
, (A.4)

z ∈Rd . With the help of the known binomial theorem, the expressions
(‖a‖2−1

)k, a ∈ {z, zv, zu⊕v, zv⊕w},
k ∈N, can also be expanded as

(‖a‖2 −1
)k =

k∑
l=0

(
k
l

)
(−1)l‖a‖2(k−l),

and hence (A.4) is then written as

hg(z)=
∞∑

k=0

(g/2)k
k!

k∑
l=0

(
k
l

)
(−1)l h2(k−l)(z), z ∈Rd . (A.5)

Applying this time the multinomial theorem, the expressions ‖a‖2t, a ∈ {z, zv, zu,v, zv,w}, can be expanded
furthermore as
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‖z‖2t =
(

d∑
i=1

z2
i

)t

=
∑
t1+t2+···+td=t

A(t1, t2, . . . , td), (A.6a)

‖zv‖2t =
(

m+1∑
i=2

z2
i

)t

=
∑
t2+t3+···+tm+1=t

A(t2, t3, . . . , tm+1), (A.6b)

‖zu⊕v‖2t =
(

m+1∑
i=1

z2
i

)t

=
∑
t1+t2+···+tm+1=t

A(t1, t2, . . . , tm+1), (A.6c)

‖zv,⊕w‖2t =
( q∑

i=2
z2

i

)t

=
∑
t2+t3+···+td=t

A(t2, t3, . . . , td), (A.6d)

where
A(ti)

b
i=a = A(ta, ta+1, . . . , tb) := t!

ta!ta+1! · · · tb! z2ta
a z2ta+1

a+1 · · · z2tb
b , (A.7)

for a,b = 1,2, . . . , t. However, (A.6a), (A.6c), and (A.6d) can be splitted as

‖z‖2t =
∑
t1=t(
t2=···=td=0

)A(t1) +
∑
t2+t3+···+td=t(
t1=0

)A(t2, t3, . . . , td)+
∑
t1+t2+···+td=t
0<t1<t
0<t2+···+td<t

A(t1, t2, . . . , td)

= z2t
1 +

‖zv‖2t +
∑
tm+2+tm+3···+td=t(
t1=t2=···=tm+1=0

)A(tm+2, tm+3 . . . , td)+
∑
t2+t3+···+td=t
0<t2+···+tm+1<t
0<tm+2+···+td<t

A(t2, t3, . . . , td)

+
∑
t1+t2+···+td=t
0<t1<t
0<t2+···+td<t

A(t1, t2, . . . , td), (A.8a)

‖zu⊕v‖2t = z2t
1 +‖zv‖2t +

∑
t1+t2+···+tm+1=t
0<t1<t
0<t2+···+tm+1<t

A(t1, t2, . . . , tm+1), (A.8b)

‖zv⊕w‖2t = ‖zv‖2t +
∑
tm+2+···+td=t(
t1=···=tm+1=0

)A(tm+2, tm+3, . . . , td)+
∑
t2+t3+···+td=t
0<t2+t3+···+tm+1<t
0<tm+2+···+td<t

A(t2, t3, . . . , td), (A.8c)

respectively. We note here that the multi-index inequalities in the above summations has to be considered
as “union” rather than as ”intersection”. For example,∑

t1+t2+···+td=t
(ineq. 1)
(ineq. 2)

f (t1, t2, . . . , td) :=
∑
t1+t2+···+td=t
(ineq. 1)

f (t1, t2, . . . , td)+
∑
t1+t2+···+td=t
(ineq. 2)

f (t1, t2, . . . , td), (A.9)

for an arbitrary expression f of d indices t1, t2, . . . , td ∈N. By substitution of (A.8a)-(A.8c) into (A.2) we
derive that
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h2t(z) =
∑
t1+t2+···+td=t
0<t1<t
0<t2+t3+···+td<t

A(t1, t2, . . . , td)−
∑
t1+t2+···+tm+1=t
0<t1<t
0<t2+t3+···+tm+1<t

A(t1, t2, . . . , tm+1)

=


∑
t1+t2+···+tm+1=t
0<t1<t
0<t2+t3+···+tm+1<t(
tm+2=···=td=0

)
A(t1, t2, . . . , tm+1)+

∑
t1+t2+···+td=t
0<t1<t
0<t2+t3+···+td<t
0<tm+2+···+td<t

A(t1, t2, . . . , td)


−

∑
t1+t2+···+tm+1=t
0<t1<t
0<t2+t3+···+tm+1<t

A(t1, t2, . . . , tm+1)=
∑
t1+t2+···+td=t
0<t1<t
0<t2+t3+···+td<t
0<tm+2+···+td<t

A(t1, t2, . . . , td),

with z ∈Rd , and hence, through (A.7),

h2t(z)=
∑
t1+t2+···+td=t
0<t1<t
0<tm+2+···+td<t

t!
t1!t2! · · · td ! z2t1

1 z2t2
2 · · · z2td

d , z ∈Rd . (A.10)

Therefore, the series expansion of hg(z) is obtained by substitution of (A.10) to (A.5), i.e.

hg(z)=
∞∑

k=0

(g/2)k
k!

k∑
l=0

(
k
l

)
(−1)l

∑
t1+t2+···+td=k−l
0<t1<k−l
0<tm+2+···+tq<k−l

(k− l)!
t1!t2! · · · td ! z2t1

1 z2t2
2 · · · z2td

d , z ∈Rd . (A.11)

Eventually, the requested transfer entropy as in (A.1) adopts the form

TEW→U |V = logC− Cqσq
g

∫
Rq

e−
1
g ‖z‖g ∞∑

k=0

(g/2)k
k!

k∑
l=0

(
k
l

)
(−1)l

∑
Tk−l

q

(k− l)!
t1!t2! · · · tq! z2t1

1 z2t2
2 · · · z2td

d dz, (A.12)

where C := CdCm/
(
C1+mCm+n)

and Tk−l
d is considered to be the set of indices, according to the description

in (A.9), as stated in Lemma 6.1.

By switching subsequently to hyperspherical coordinates the multiple integral in (A.12) can be solved,
and hence the transfer entropy can finally derived through series expansions. Recall that the known
hyperspherical transformation H :Sd →Rd , where Sd :=R+× [0,π)d−2 × [0,2π) such that

Sd 3 (ρ,ϕ1,ϕ2, . . . ,ϕd−1) H7−→ (z1, z2, . . . , zd) ∈Rd ,

is given by

z1 = ρ cosϕ1, (A.13a)

zi = ρ sinϕ1 sinϕ2 · · ·sinϕi−1 cosϕi , i = 2,3, . . . ,d−1, (A.13b)

zq = ρ sinϕ1 sinϕ2 · · ·sinϕd−2 sinϕd−1, (A.13c)

where ρ ∈R+, ϕ1,ϕ2, . . . ,ϕd−2 ∈ [0,π), and ϕd−1 ∈ [0,2π). It is hold that ‖z‖2 = z2
1 + z2

2 + ·· ·+ z2
d = ρ2,

z ∈Rd , while the volume element dz = dz1 dz2 · · · dzd of the d-dimensional Euclidean space is given in
hyperspherical coordinates as

dz = J(H)dρdϕ1,ϕ2, · · · dϕd−1 = ρq−1
(

d−2∏
k=1

sind−k−1ϕk

)
dρdϕ1 · · · dϕd−1, (A.14)

where J(H) is the Jacobian determinant of the transformation H, i.e.

J(H) :=
∣∣∣∣det

∂(z1, z2, . . . , zd)
∂(ρ,ϕ1, . . . ,ϕd−1)

∣∣∣∣= ρd−1 sind−2ϕ1 sind−3ϕ2 · · ·sinϕd−2. (A.15)
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Firstly, from (A.13a)-(A.13c) it holds that

z2t1
1 z2t2

2 · · · z2td
d = ρ2(k−l)

[
sin2(t2+···+tq)ϕ1 cos2t1 ϕ1

][
sin2(t3+···+td )ϕ2 cos2t2 ϕ2

]
· · ·[

sin2(tq−1+td )ϕq−2 cos2td−2 ϕd−2

][
sin2td ϕd−1 cos2td−1 ϕd−1

]
= ρ2(k−l)

d−1∏
`=1

sin2(t`+1+···+td )ϕ` cos2t` ϕ`, z ∈Rd ,

with ti ∈ Nd
1 , i = 1,2, . . . ,d, such that t1 + t2 + ·· · + td = k − l, and multiplying the hyperspherically

transformed volume element in (A.14) to the above product, we obtain

z2t1
1 z2t2

2 · · · z2td
d dz = ρ2(k−l)+d−1

d−1∏
`=1

sinτ` ϕ` cos2t` ϕ`, z ∈Rd , (A.16)

where τ` := 2(t`+1 + t`+2 +·· ·+ td)+d−`−1, `= 1,2, . . . ,d−1.

Applying finally then the hyperspherical transformation (A.13a)-(A.13c) to the multiple integral in
(A.12) it is transformed, through (A.16), as in (6.1).

B

Proof of Theorem 6.2. The transfer entropy from (6.3) can be fully calculated through the calculation of
the three multiple integrals (6.2a), (6.2b) and (6.2c).

In particular, the single definite integral in (6.2a) implies, through the appropriate transformation, an
expression of the known gamma function, while the definite integrals J`, `= 1,2, . . . ,d−1, in (6.2b) and
(6.2c), can be calculated using the following indefinite trigonometric integrals, [32, pp. 152–153], i.e.∫

sinτϕcos2n dϕ = sinτ+1ϕ

2n+τ

cos2n−1ϕ+
n−1∑
k=1

(2n−1)(2n−3) · · · (2n−2k+1)cos2(n−k)−1ϕ

(2n+τ−2)(2n+τ−4) · · · (2n+τ−2k)

+

(2n−1)!!
(2n+τ)(2n+τ−2) · · · (τ+2)

∫
sinτϕdϕ, n ∈N, τ ∈R\{−2,−4, . . . ,−2n}, (B.1)

and ∫
sin2nϕdϕ = 1

22n

(2n
n

)
ϕ+ (−1)n

22n−1

n−1∑
k=0

(
2n
k

) (−1)k sin
(
2(n−k)ϕ

)
2(n−k)

, (B.2a)

∫
sin2n+1ϕdϕ = (−1)n+1

22n

n∑
k=0

(
2n+1

k

) (−1)k cos
(
2(n−k)ϕ+ϕ)

2(n−k)+1
, (B.2b)

Applying the transformation r = r(ρ) := g−1ρg, ρ ∈ R+, which yields dr = ρd−1 dρ, integral (6.2a) is
calculated as

Ik−l =
∫ +∞

0
ρ2(k−l)+d−ge−r dr = g

2(k−l)+d
g −1

∫ +∞

0

(
g−1ρg) 2(k−l)+d−g

g e−r dr

= g
2(k−l)+d

g −1
∫ +∞

0
r−1+ 2(k−l)+d

g e−r dr = g
2(k−l)+d

g −1
Γ

( 2(k−l)+d
g

)
. (B.3)

As far as the trigonometric integrals, as in (6.2b) and (6.2c), are concerned, we note that due to the fact
that the power values τ`, `= 1,2, . . . ,d−1, can be either odd or even numbers, they have an influence on
the corresponding integration, as (B.1) needs the calculation of

∫
sinτ` ϕ`dϕ`, which is given through

(B.2a) or (B.2a). Therefore, the product of J` in (6.1) has to be splitted in odd and even parts in order
the right form of (B.2a) or (B.2a) can be used. In particular, the following product-splits are adopted:
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• Case d := 2s+1, s ∈N: Equivalently m,n ∈N being both odd or even numbers. It holds that

d−1:=2s∏
`=1

J` = (J1J3 · · ·J2s−1)(J2J4 · · ·J2s−2)J2s =
 d−1

2 −1∏
`=0

J2`+1

 d−1
2 −1∏
`=1

J2`

 Jd−1, (B.4)

while the power values τ2`+1 = 2(t2`+2+ t2`+3+·· ·+ td)+d−2`, `= 0,1, . . . , (d−1)/2−1, are all then odd
numbers (recall the definition of t`, ` = 1,2, . . . ,d−1, in (A.16)). Thus, integrals J2`+1, ` = 0,1, . . . , (d−
1)/2−1, as in (6.2b), are then calculated through (B.1) and (B.2b), i.e.

J2`+1 =
[∫

sinτ2`+1 ϕ2`+1 cos2t2`+1 ϕ2`+1 dϕ2`+1

]π
ϕ2`+1=0

= 0+
(2t2`+1 −1)!!

[∫
sinτ2`+1 ϕ2`+1 dϕ2`+1

]π
ϕ2`+1=0

(2t2`+1 +τ2`+1)(2t2`+1 +τ2`+1 −2) · · · (τ2`+1 +2)

= (−1)(τ2`+1+1)/2(2t2`+1 −1)!!
2τ2`+1−2(2t2`+1 +τ2`+1)(2t2`+1 +τ2`+1 −2) · · · (τ2`+1 +2)

(τ2`−1−1)/2∑
j=0

(−1) j

τ2`+1 −2 j

(
τ2`+1

j

)
, (B.5)

for `= 0,1, . . . , (d−1)/2−1. Moreover, as τ2`, `= 1,2, . . . , (d−1)/2−1, and τd−1 are even number, integrals
Jd−1 as in (6.2b), and J2`, ` = 1,2, . . . , (d −1)/2−1, as in (6.2c), are then calculated through (B.1) and
(B.2a), i.e.

Jd−1 =
[∫

sinτd−1 ϕd−1 cos2td−1 ϕd−1 dϕd−1

]2π

ϕd−1=0
= 0+

(2td−1 −1)!!
[∫

sinτd−1 ϕd−1 dϕd−1

]2π

ϕd−1=0

(2td−1 +τd−1)(2td−1 +τd−1 −2) · · · (τd−1 +2)

= π(2td−1 −1)!!
2τd−1−1(2td−1 +τd−1)(2td−1 +τd−1 −2) · · · (τd−1 +2)

( τd−1
τd−1/2

)
, and (B.6)

J2` =
[∫

sinτ2` ϕ2` cos2t2` ϕ2`dϕ2`

]π
ϕ2`=0

= π(2t2`−1)!!
2τ2` (2t2`+τ2`) · · · (τ2`+2)

( τ2`
τ2`/2

)
, (B.7)

for `= 1,2, . . . , (d−3)/2. Thus, by substitution of (B.5)–(B.7) into (B.4), we derive that
∏d−1
`=1 J` = Pd , with

Pd as in (6.4), where Rk, k ∈N, as in (6.6). Note that the last equality in (6.6) holds from the fact that
(r/2)k = r(r−2)(r−4) · · · (r−2k+2)/(rk), r ∈R, k ∈N, and hence the product (2n+τ)(2n+τ−2) · · · (τ+2)
as appeared in (B.1) can be written, in a more compact form, as

( 2n+τ
2

)
n(2n+τ)n.

• Case d := 2s, s ∈N: Equivalently m,n ∈N not being both odd or even numbers simultaneously.
It holds that

d−1:=2s−1∏
`=1

J` = (J1J3 · · ·J2s−3)J2s−1(J2J4 · · ·J2s−2)=
 d

2 −2∏
`=0

J2`+1

 Jd−1

 d
2 −1∏
`=1

J2`

 , (B.8)

while the power values τ2`+1 = 2(t2`+2 + t2`+3 +·· ·+ td)+d−2`, `= 0,1, . . . ,d/2−1, correspond then to
even numbers. Thus, integrals J2`+1, `= 0,1, . . . ,d/2−1, as in (6.2b), are then calculated through (B.1)
and (B.2b), i.e.

Jd−1 =
[∫

sinτd−1 ϕd−1 cos2td−1 ϕd−1 dϕd−1

]2π

ϕd−1=0

= π(2td−1 −1)!!
2τd−1−1(2td−1 +τd−1)(2td−1 +τd−1 −2) · · · (τd−1 +2)

( τd−1
τd−1/2

)
, and (B.9)

J2`+1 =
[∫

sinτ2`+1 ϕ2`+1 cos2t2`+1 ϕ2`+1 dϕ2`+1

]π
ϕ2`+1=0

= π(2t2`+1 −1)!!
2τ2`+1 (2t2`+1 +τ2`+1)(2t2`+1 +τ2`+1−2) · · · (τ2`+1 +2)

( τ2`+1
τ2`+1/2

)
, `= 0,1, . . . , d

2 −2. (B.10)
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Moreover, as τ2`, `= 1,2, . . . ,d/2−1, are odd numbers, integrals J2`, `= 1,2, . . . ,d/2−1, as in (6.2b), are
then calculated through (B.1) and (B.2b), i.e.

J2` =
[∫

sinτ2` ϕ2` cos2t2` ϕ2`dϕ2`

]π
ϕ2`=0

= (−1)(τ2`+1)/2(2t2`−1)!!
2τ2`−2(2t2`+τ2`) · · · (τ2`+2)

(τ2`−1−1)/2∑
j=0

(−1) j

τ2`−2 j

(
τ2`

j

)
, (B.11)

for `= 1,2, . . . , d
2 −1. Thus, by substitution of (B.9)–(B.11) into (B.8), we derive that

∏d−1
`=1 J` = Pd , with

Pd as in (6.5).

Therefore, by substitution of (6.2a), and
∏d−1
`=1 J` with Pd (for d odd as in (6.4), or for d even as in (6.5))

into (6.1), and then using (4.4), the requested transfer entropy is eventually derived in (6.3) as a series
expansion form.
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