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Abstract

The Gaia satellite will observe the positions and velocities of over a billion Milky Way stars. In the early data
releases, the majority of observed stars do not have complete 6D phase-space information. In this Letter, we
demonstrate the ability to infer the missing line-of-sight velocities until more spectroscopic observations become
available. We utilize a novel neural network architecture that, after being trained on a subset of data with complete
phase-space information, takes in a star’s 5D astrometry (angular coordinates, proper motions, and parallax) and
outputs a predicted line-of-sight velocity with an associated uncertainty. Working with a mock Gaia catalog, we
show that the network can successfully recover the distributions and correlations of each velocity component for
stars that fall within ∼5 kpc of the Sun. We also demonstrate that the network can accurately reconstruct the
velocity distribution of a kinematic substructure in the stellar halo that is spatially uniform, even when it comprises
a small fraction of the total star count.

Unified Astronomy Thesaurus concepts: Radial velocity (1332); Neural networks (1933); Dark matter (353); Milky
Way dynamics (1051)

1. Introduction

Gaia has ushered in a new age in astrometry, with the goal of
providing precise positions and velocities for an unprecedented
number of stars in the Milky Way (Gaia Collaboration et al.
2016, 2018). This complete phase-space information will
revolutionize our understanding of both disk and halo
dynamics. In the current data release (EDR3), most Gaia stars
only have 5D astrometry available (two angular coordinates,
two proper motions, and parallax); less than 1% of the stars
have a measured line-of-sight velocity (Gaia Collaboration
et al. 2021). We demonstrate how to use regressive neural
networks to successfully predict stellar line-of-sight velocities
with an associated uncertainty from 5D astrometry. This
approach increases the scientific output of early Gaia data
releases until more spectroscopic data is available.

The science applications that benefit from having line-of-
sight velocities are vast—see Wilkinson et al. (2005) for a
review—and include measuring the Milky Way potential,
obtaining the local dark matter density, distinguishing the thin
and thick disk, and mapping substructure in the stellar disk.
One particular case where having full stellar phase-space
information is highly beneficial is the identification of stellar
remnants of disrupted satellite galaxies in the Milky
Way (Johnston et al. 1996; Johnston 1998; Bullock &
Johnston 2005). Such mergers are a natural consequence of
hierarchical structure formation (White & Rees 1978), and in
addition to depositing stars that form the stellar halo, also leave
behind dark matter substructures.

The neural network approach proposed in this Letter has the
potential to dramatically and immediately increase the subset of
Gaia data that can be used toward these applications. We
present the results of training, validating, and testing the
network using a simulated Gaia mock catalog that models both
the smooth stellar halo and disk, as well as kinematic

substructure in the halo. The network is trained on a subset
of stars with full 6D phase-space information using a simple
network loss function similar to the method described in Nix &
Weigend (1994). While 5D astrometry alone is insufficient to
provide a reliable prediction of the line-of-sight velocity for
every individual star, incorporating the learned uncertainty
allows us to obtain accurate distributions of the line-of-sight
velocity for the full population of stars, as well as the
correlations between different velocity components in the
Galactocentric frame. Additionally, the confidence of the
network prediction of the line-of-sight velocity of each star
can be inferred from the learned uncertainty.
The machine-learning approach introduced in this Letter is

intended to work in tandem with spectroscopic surveys, such as
Apache Point Observatory Galactic Evolution Experiment
(APOGEE), the Gaia-ESO-Survey, Galactic Archaeology with
HERMES (GALAH), Large Sky Area Multi-Object Fibre
Spectroscopic Telescope (LAMOST), Radial Velocity Experi-
ment (RAVE), and Sloan Extension for Galactic Understanding
and Exploration (SEGUE; Yanny et al. 2009; Cui et al. 2012;
Gilmore et al. 2012; Majewski et al. 2017; Kunder et al. 2017;
Buder et al. 2021). These surveys provide high-quality line-of-
sight velocities, as well as abundances and stellar parameters.
However, their sky coverage typically overlaps with only a
small fraction of the Gaia catalog. While direct observations
remain the gold standard, we show that neural network-based
inference can serve a complementary role in studying the Milky
Way’s stellar phase-space distribution.
This Letter is organized as follows. Section 2 introduces the

simulated mock Gaia catalog, and overviews the machine-
learning architecture and the training procedure. Section 3
summarizes the network’s success in predicting stellar line-of-
sight velocities. We conclude in Section 4 and include three
appendices that are referenced in the text. The neural network
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used in this work is provided at the following github
repository https://github.com/adropulic/ML_6th_Dimension.

2. Methodology

In this section, we provide a description of the mock data set
used in this work, followed by a detailed discussion of the
neural network setup and training strategy.

2.1. Mock Data Catalog

To build our mock catalog, we start from the mock
Gaia DR2 catalog introduced in Rybizki et al. (2018). This
catalog was generated by applying a 3D dust extinction map to
mock Milky Way stellar data simulated using the public code
GALAXIA (Sharma et al. 2011). GALAXIA employs the
Besançon Galactic model (Robin et al. 2003), which includes
the bulge, thin and thick disk, as well as the stellar halo. The
final mock catalog of ∼1.6 billion stars, each with full
astrometric and photometric properties, was created by
applying the combined 3D extinction map from Bovy et al.
(2016) to model dust attenuation along with the Gaia selection
criteria. Mock stars were populated by directly sampling the
analytic phase-space distribution. This final point is important
for our application, as the network should ideally learn the
original kinematic distribution, not artifacts that may have been
introduced in the sampling procedure that populates the mock
catalog. Comparatively, generating mock catalogs from num-
erical galaxy simulations with finite stellar-mass resolution can
introduce artifacts into the stellar kinematics.

For this study, we begin with the full GALAXIA mock catalog
of stars6 and select only those with relative parallax uncertainty
δϖ/ϖ< 0.1 and line-of-sight velocity vlosä [− 550, 550] km s−1.
This results in a sample of ∼75 million stars, concentrated
within ∼5 kpc of the Sun. This sample only models the smooth
component of the stellar halo and disk. To study the effect of
kinematic substructure on the neural network learning, we
supplement the GALAXIA catalog with a population of spatially
uniform stars whose velocity distribution resembles that of
Gaia Enceladus (Belokurov et al. 2018; Helmi et al. 2018). The
Enceladus-like stars are introduced into the training, validation,
and test sets by replacing 50% of stars with low-metallicity
([Fe/H]<− 1.3) in each of these sets with stars drawn from
the Enceladus distribution in Necib et al. (2018).

The training and validation sets contain 7 and 1 million
randomly selected stars, respectively, both with G< 13.5 and
Teff ä [3550, 6900] K. This is intended to parallel the subset of
Gaia data with full 6D information (Katz et al. 2019). The test
set consists of ∼10 million stars of any magnitude and
temperature.

Approximately 0.5% of the training and validation set stars
and 0.3% of the test set stars are in substructure. Only ∼14% of
stars in the test set fall into the magnitude and effective
temperature range of the training set, including the substructure
stars.

2.2. Neural Network Architecture and Training

A feedforward neural network is trained to predict a line-of-
sight velocity for each star in the input catalog, with an
associated uncertainty on this prediction. The network is
implemented in Keras (Chollet et al. 2015) using the

Tensorflow backend (Abadi et al. 2016). It is a combination
of two halves that are structured identically except for the last
layer (Figure A1 in Appendix A). This compound network
structure permits two outputs: the line-of-sight velocity as well
as the uncertainty on the network’s prediction. Each half of the
network consists of six layers: the input, four hidden layers,
and the output. The input consists of five quantities per star:
Galactic longitude (ℓ), Galactic latitude (b), proper motion in
R.A. (μα), proper motion in decl. (μδ), and parallax (ϖ). The
hidden layers comprise 30 nodes each, and use a hyperbolic
tangent activation function. All of the network weights are
initialized with the glorot uniform method (Glorot &
Bengio 2010). Comprehensive comparisons of different net-
work architectures were performed to determine this optimal
setup (Appendix A). For example, we trained the network on
only Galactic positions x, y, z, and found suboptimal results.
The output layer from one half of the network, which we will

call the “velocity predictor,” consists of a single node with
linear activation in order to attain a continuous value, the line-
of-sight velocity. The output layer from the other half of the
network, which we will call the “uncertainty predictor,” uses a
ReLU activation function in order to constrain the uncertainty
on the predicted line-of-sight velocity to positive values. This
network is similar to the mixture density network presented in
Bishop (1994).
The goal of training is to minimize the weighted Gaussian

log-likelihood loss function:
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where vlos,i is the true value of a star’s line-of-sight velocity,
v ilos,

pred is the network’s predicted value of a star’s line-of-sight

velocity, wi is the sample weight of a star, s ilos,
pred is the network’s

predicted uncertainty, and N is the total number of stars. The
sample weights are a function of both ℓi and vlos,i, and are used
to force the network to learn the tails of the velocity distribution
(Appendix A).
The velocity predictor is first trained using s = 1ilos,

pred for the
loss in Equation (1). Then the uncertainty predictor is trained
using the vlos,i prediction from the velocity predictor in
Equation (1) without allowing the velocity predictor to update.
Finally, both the velocity predictor and the uncertainty
predictor are updated simultaneously using both the predicted
v ilos,

pred and s ilos,
pred in the loss function. This produces a predicted

line-of-sight velocity value and an uncertainty value per star.
During a training epoch, the stars are partitioned into batches

of 104 stars, and the network is optimized on a given batch. The
Adam optimizer (Kingma & Ba 2017) is used to minimize the
loss function in Equation (1).
We use an initial learning rate of 10−3 while the default

values are used for the other parameters of the optimizer. If the
loss computed on the validation stars does not improve for 10
epochs, the learning rate is decreased by a factor of 10, with a
minimum learning rate of 10−5. Training is stopped when the
validation loss has not improved for 40 epochs. We verified
that the training and validation losses were similar to check for
overfitting.6 https://dc.zah.uni-heidelberg.de/gdr2mock/q/download/static/
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3. Results

Next, we present the results of applying the neural network
to our mock catalog. A powerful outcome of this procedure is
the ability to construct an error-sampled line-of-sight velocity
distribution using the network’s predicted uncertainty. We now
want to quantify how well the resulting velocity distributions,
as well as their correlations with each other, reproduce the
truth. With the network’s prediction, we can perform a
coordinate transformation on all three velocities into the
Galactocentric frame (vr, vθ, vf) and properly assign uncertain-
ties using the procedure in Appendix B. This makes the
presence of the Enceladus-like substructure more readily
apparent.

The top row in Figure 1 compares the truth, predicted, and
error-sampled predicted distributions for vr, vθ, vf. The error-
sampled predicted distribution is determined by the average of
50 Monte Carlo (MC) trials, which are computed by Gaussian
sampling a line-of-sight velocity per star using the network’s
prediction for its value and uncertainty. The sampled line-of-
sight velocity along with the five known components are
subsequently transformed into Galactocentric spherical coordi-
nates. As is apparent in Figure 1, the error-sampled predicted
distribution is an excellent approximation of the true
distribution.

In the bottom row of Figure 1, the predicted uncertainty on
the Galactocentric velocities is shown as a function of the
predicted Galactocentric velocity for all stars in the test set, as
well as the subset of stars that comprise the substructure. For

each velocity bin, the box denotes the 50% containment about
the median uncertainty, while the whiskers denote the 5% and
95% containment. The predicted uncertainty for a given star
is correlated with its spatial location and proper motion
(Figure C1 in Appendix C). In general, we find that the velocity
uncertainties for all stars (pink) are lowest for values of vr, vθ,
vf, where there is a comparatively small contribution of
substructure stars (green). This is also where the velocity
uncertainties on the substructure stars are largest, as expected
given that the network is forced to distinguish them from the disk
stars. Indeed, we see that that the network erroneously predicts a
small tail of substructure stars near ~ -fv 200pred km s−1.
The spread in the predicted velocity uncertainties in the

Galactocentric frame can be substantial. Depending on the
application, one may wish to restrict to a subset of the data with
predicted uncertainties in a particular range. We find that 25%
(13%) of the 10-million star test set has s r

pred 10(5) km s−1,
while 13% (6%) of the ∼35,000 substructure stars in the test set
have s r

pred 10(5) km s−1. Additionally, we find that 55%
(33%) of the entire test set and 9% (4.5%) of the substructure
stars in the test set have sq pred 10(5) km s−1, and 20% (10%)
of the entire test set and 10.5% (5%) of the substructure stars in
the test set have sf pred 10(5) km s−1. We have verified that
restricting the sample of stars to those with the lowest predicted
uncertainties does not bias the kinematic distributions (Figure A2
in Appendix A, and Figure C2 in Appendix C).
Figure 2 explores the extent to which the network captures

the correlations among the velocity components. The top
panels show the high-metallicity stars with [Fe/H]>− 1.3

Figure 1. The top row shows the velocity distribution for Galactocentric velocity components. The solid pink (green) histogram is the true distribution of all
(substructure) test-set stars sampled from the mock catalog; note the separate scales for the separate star counts. The network is trained on 7 million stars (∼35,000
substructure stars) from the same catalog. The black dashed lines show the network’s predicted distribution. The dark pink (green) solid line shows the network
prediction after it is Gaussian-sampled with the predicted uncertainty. The thickness of this line refers to the minimum and maximum of 50 Monte Carlo trials,
described in the text. The error-sampled distribution provides a better approximation of the truth than the predicted distribution alone. In the bottom row, the predicted
uncertainty on the Galactocentric velocities is shown as a function of the predicted velocity. The pink (green) boxes mark the 50% containment about the median, and
the whiskers mark the 5% and 95% containment for all (substructure) stars.
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(9,944,046 stars), and the bottom panels show the low-
metallicity stars with [Fe/H]<− 1.3 (55,942 stars). Dividing
the data set into high- and low-metallicity stars allows us to
evaluate the performance of the network on disk and halo/
substructure stars, respectively. To compute the density
histograms in Figure 2, we take the mean of 10 (500) MC
samples drawn from the high-metallicity (low-metallicity)
predicted distribution; these are calculated the same way as
the error-sampled distributions shown in Figure 1.

The solid blue (dashed yellow) contours in Figure 2 indicate
the location of 30%, 60%, and 90% containment intervals for
the true (error-sampled) distributions. For comparison, the
dashed white contours correspond to the predicted distributions
without sampling over the network’s error prediction; while
they do a reasonable job at capturing the 2D velocity
correlations, they do not exactly reproduce the truth distribu-
tions. In contrast, the error-sampled distributions nicely track
the truth distributions for both the metal-poor and metal-rich
samples. This is most striking for the metal-poor sample,
where the velocity contours have a non-trivial shape due to
contributions from the stellar disk, halo, and substructure. For
example, the network captures the extended vr distribution at
the 60% containment interval in the low-metallicity vr–vf
plane, which is a characteristic of the Enceladus-like stars. It is
important to highlight that while Figure 2 is separated into
metal-rich and metal-poor categories, this is done after training;
the network has no direct access to this information, and yet is

able to predict the differences in line-of-sight distributions for
these categories.
Figure 3 summarizes the network’s prediction accuracy in

the 3D velocity phase space. Each panel is a quantile–quantile
plot that shows the fraction of stars (according to their true
stellar velocities) that fall into containment intervals defined
by the contours of the error-sampled and predicted distribu-
tions, examples of which are delineated in Figure 2, for
different pairs of velocity coordinates. Below the gray line,
the network is considered overconfident because a given
containment region in the predicted distribution is too small
compared to the truth expectation (i.e., the predicted x%
containment region contains< x% of the true stars). Above
the gray line, the opposite is true and the network is
considered underconfident.
The solid and dashed–dotted lines in Figure 3 correspond to

the [Fe/H]>− 1.3 and [Fe/H]<− 1.3 panels in Figure 2,
respectively. The green lines show the results for the error-
sampled distributions. We see that both the metal-poor and
metal-rich distributions are well-calibrated in the vr–vf, vr–vθ,
and vθ–vf planes. For comparison, the blue lines show the same
results, but without taking into account the predicted errors.
The network is more overconfident in this case, especially in
the vθ–vf plane. These results reflect the qualitative features of
Figure 2.
Without machine-learning techniques, reconstructing the

full 6D Galactocentric phase space of stars with only 5D

Figure 2. 2D distributions are shown for the Galactocentric velocity components. The background histogram shows the network-predicted kinematic distributions of
stars in the test set, sampled over the networks uncertainty prediction, to obtain the error-sampled distribution. The top row shows the stars with high-metallicity ([Fe/
H] > − 1.3), and the bottom row shows the stars with low-metallicity ([Fe/H] < − 1.3) in which the stellar halo and substructure is more prominent. The contours
indicate the location of 30%, 60%, and 90% containment intervals for the true (solid blue), predicted (dotted white), and error-sampled (dashed yellow) distributions.
We emphasize that the correlations between metallicity and velocity are being captured by the network, even though the network has no direct access to the metallicity
information.
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information can only be achieved under certain restrictive
conditions. For example, Koppelman et al. (2019) proposed
setting vlos= 0 for stars that lie in the region defined by

+ ℓ b 152 2 or -  + ℓ b180 152 2( ) . In this region,
vθ and vf roughly correspond to the proper motion of stars, and
therefore can be reconstructed reasonably accurately, with
limited dependence on vlos. Restricting to this region, we have
508,798 metal-rich stars and 1504 metal-poor stars. We then
compare the predicted velocity distributions, obtained by
simply setting vlos= 0 km s−1, to the truth distribution;
however, it is important to note that there is no principled
way to assign errors to vlos with this prescription. As seen in
Figure 3, the results are well-calibrated and even outperform
the network in the vθ–vf plane, where this method is designed
to excel. We can see, however, that the same method is
overconfident in the vr–vf plane and vr–vθ plane for both the
metal-rich and metal-poor subsets. Therefore, our neural
network approach has the benefit of being applicable beyond
a narrow spatial region, and can additionally predict
uncertainties.

4. Conclusions

In this Letter, we have demonstrated that a neural network
can successfully predict a star’s line-of-sight velocity and
associated uncertainty from 5D astrometric inputs, after being
trained on a subset of data with complete 6D phase-space
information. We trained, tested, and validated the network on
mock data that contained a disk, stellar halo, and Enceladus-
like substructure. The error-sampled network prediction
successfully reproduced the individual velocity distributions,
as well as their correlations. The final results also captured the
expected metallicity dependence of the velocity distributions,
even though metallicity was not provided as an input to the
network. The network successfully reconstructed the velocities
of the substructure stars, even though they comprised only
∼0.5% of the training set. This result demonstrates that the
network is learning more than just the bulk motion of the stars.

A critical feature of the network design is its ability to
provide an uncertainty on its velocity prediction. The predicted

velocity distributions more reliably reproduced the true
distributions when properly sampled over these errors. The
mean network uncertainty on the predicted line-of-sight
velocity was s = 38los

pred km s−1, with about 8%(1%) of all
stars in the test set having s  30 20los

pred ( ) km s−1. We stress
that these uncertainties should not be directly compared to the
measured errors on Gaia’s line-of-sight velocities. In particular,
slos

pred is the network’s predicted uncertainty on its projected
value of line-of-sight velocity—for instance, a correct network
prediction for vlos can still be associated with a large
uncertainty. However, we do find that stars with smaller slos

pred

are typically associated with more accurate velocity predic-
tions. Furthermore, restricting to a subset of stars with these
smaller uncertainties does not bias the overall velocity
distributions.
The simple idea of regressing missing kinematic information

can be accomplished by a variety of architecture choices. For
example, Bayesian neural networks (Mackay 1995; Bhat &
Prosper 2005; Neal 1996; Bai et al. 2016; Gal & Ghahramani
2016; Blei et al. 2017; Bollweg et al. 2020; Charnock et al.
2020; Wagner-Carena et al. 2021) may provide an alternative
method for incorporating uncertainties on the network output.
In this case, the network would be rerun many times over the
same inputs, while the weights float within some prior
distribution. Since these approaches require a more sophisti-
cated neural network architecture, we leave a detailed
comparison for future work.
We optimized the neural network architecture by applying it

to a mock Gaia catalog. In practice, the network will be trained
on the subset of Gaia data with complete 6D phase space,
eliminating any systematic uncertainty on the network output
associated with using simulated data. Our training set will
expand with Gaia DR3, which will provide line-of-sight
velocities for an additional ∼30 million stars (Gaia Collabora-
tion et al. 2021). The success of our machine-learning approach
motivates further studies on other potential applications, such
as recovering individual stellar streams and/or multiple
substructures that overlap in phase space.
Thus far, we have trained and tested the network on stars

concentrated within 5 kpc of the Sun, but it would also be

Figure 3. Quantile–quantile plots on the neural network posteriors in Galactocentric velocity components, showing the fraction of stars with true values that fall into
containment intervals defined by the contours of the error-sampled and predicted distributions. The solid green (blue) line and the dashed–dotted green (blue) line
correspond to the error-sampled (predicted) contours in the metal-rich ([Fe/H] > −1.3) and metal-poor ([Fe/H] < −1.3) panels in Figure 2, respectively. In general,
the network is well-calibrated for the error-sampled distributions (i.e., the green lines track the diagonal gray line in each panel). For comparison, we compare the
network results with those of setting vlos = 0 for stars that lie in the 15° region toward and away from the Galactic Center (pink lines; Koppelman et al. 2019).
Restricting to this region of interest produces a stellar sample for which we are relatively sure of vθ and vf, as reflected in the calibration in the vθ–vf (third panel).
However, the neural network yields a much better calibration in the vr–vf and vr–vθ planes.
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beneficial to adapt the method presented here to apply to stars
farther out in the halo. This extension would be particularly
relevant for mapping the potential of the Milky Way halo and
identifying dwarf galaxies and other substructures, as just two
important examples. For current Gaia data releases, the primary
challenge is the lack of a sufficient training sample, limited by
the number of stars at these distances with complete 6D
information. One possibility is to train the network on a subset
of Gaia stars whose line-of-sight velocities come from cross-
matches to other spectroscopic surveys. Whether this approach
will succeed depends on both the number of cross-matched
stars and whether the selection function of the spectroscopic
surveys complicates the network inference. If successful, this
machine-learning approach can potentially be adapted to the
upcoming Rubin Observatory.

This Letter shows that there is often incredible information
waiting to be extracted from high dimensional correlations,
which can be used to maximize the utility of real world data.

The authors acknowledge H. Koppelman, P. Melchior,
S. Mishra-Sharma, L. Necib, O. Slone, and N.Weiner for
fruitful conversations. M.L. gratefully acknowledges financial
support from the Schmidt DataX Fund at Princeton University
made possible through a major gift from the Schmidt Futures
Foundation. B.O. was supported in part by the U.S. Department
of Energy (DOE) under contract DE-SC0013607 and DE-
SC0020223. L.J.C. was supported in part by a Paul & Daisy
Soros Fellowship and the NSF GRFP Award Number DGE-
1656466. T.C. is supported by the DOE under Award Number
DE-SC0011640. H.L. and M.L. are supported by the DOE
under Award Number DE-SC0007968. This work is supported
by the National Science Foundation under Cooperative
Agreement PHY-2019786 (The NSF AI Institute for Artificial
Intelligence and Fundamental Interactions, http://iaifi.org/).
The work presented in this Letter was performed on computa-
tional resources managed and supported by Princeton Research
Computing. This research made use of the astropy (Robitaille
et al. 2013), corner (Foreman-Mackey 2016), h5py (Collette
2013), IPython (Perez & Granger 2007), Jupyter (Kluyver
et al. 2016), matplotlib (Hunter 2007), NumPy (van der
Walt et al. 2011), pandas (Wes McKinney 2010), and SciPy
(Jones et al. 2001) software packages.

Appendix

In Appendix A, we elaborate on the details of our network
architecture, as well as its optimization. In Appendix B, we
explain how to transform the line-of-sight velocity and
uncertainty provided by the network to Galactocentric velocities
and associated uncertainties. Finally, in Appendix C, we provide
several supplemental figures that are referenced in the main text.

Appendix A
Network Information

A.1. Tested Network Architectures

In this appendix, we elaborate on the procedure used to
select the network architecture described in Section 2.2. The
final configuration, illustrated in Figure A1, was chosen after
extensive tests that varied the number of hidden layers, the
number of nodes per layer, the activation function associated
with each layer, the sample weights, and the input parameters.

We tested network architectures under combinations of the
following specifications: 1–5 hidden layers, 30–2000 nodes per
layer, ReLU/ELU/Tanh activation functions on the interior
layers, and different combinations of input parameters. Deeper
(more layers) and wider (more nodes per layer) networks do not
yield a significantly more accurate regression, and conversely,
smaller and narrower networks both perform a less accurate
regression. Neither the ReLU activation function nor the ELU
activation function predict the velocity distribution as accu-
rately as the Tanh activation function.
In order to evenly sample the tails of the vlos distribution in

our data set, we implement sample weighting to de-emphasize
the contribution of stars with vlos∼ 0 km s−1. The simplest way
to effectively “flatten” the peak of the vlos distribution is to take
the vlos distribution itself to be the reciprocal of the weighting
function. In practice, we histogram the vlos values in each data
set, then interpolate the histogram to extract the probability pi
corresponding to a given star’s value of vlos,i and take =wi p

1

i
to

be the weight for that star. We refer to this as the “linear
weights” prescription, to contrast with the “logarithmic
weights” prescription described below.
We can also implement a weighting scheme that is a less-

steep function of vlos,i than
p

1

i

. To do so, we define the

“logarithmic weights” as = +w p wlog 1i i 0( ) , where w0 is
chosen so that wi is positive for all stars. In practice, we find
that linear weights in vlos overly de-emphasize the central vlos
values, while logarithmic weights alleviate this issue. Given the
dependence of vlos on Galactic longitude, ℓ, we also implement
linear and logarithmic weights on the joint distribution of vlos
and ℓ. Of the four weighting schemes tested, the joint vlos–ℓ
logarithmic weights method is the most effective at recovering
the truth distributions. We thus choose this to be our fiducial
method for sample weighting.
We also tested a network that included the information from

each star’s 10 nearest neighbors during training.
Because this additional information does not improve the

regression, at least for the data set considered here, we do not
adopt it for the fiducial method. Lastly, we compared our
combined network structure, described in Section 2.2, to a

Figure A1. Diagram of the neural network used in this work.
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single network with two outputs, and found that the latter does
not not learn or train well.

A.2. Network Diagnostics

The network architectures described above in Section B.1
were evaluated using the Kullback–Leibler (KL) divergence, as
well as the R2 and χ2 test statistics. These statistics are defined
as follows:

c
s

= å

= - å
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where vlos,i, v ilos,
pred, and s ilos,

pred are defined as in Equation (1), and
vlos¯ is the mean of the true line-of-sight velocity distribution.
Also, p, q are the values of the kernel density estimation of the
true and predicted distributions, respectively, evaluated at each
histogram bin value s ä [− 350, 350] km s−1 in Figure 1.

The KL divergence is a measure of how one probability
distribution differs from a second, reference probability
distribution (Kullback & Leibler 1951). A small value of the
KL divergenceKL indicates very good agreement between the
true and predicted distributions. In other words, if the
probability for an event from p is large, but the probability
for the same event in q is small, there will be a large
contribution to the statistic. The R2 test statistic provides a
measure of how well the truth values are replicated by the
predicted values, without including the predicted uncertainty
measure, slos

pred. The R2 statistic generally ranges from 0 to 1, but
can be negative if the fit is very poor. R2= 0 is obtained if the
predicted velocity is always the mean velocity, while R2= 1
indicates a completely accurate prediction for all stars. The χ2

test statistic is a test of the uncertainty prediction, slos
pred. In

general, if χ2? 1, then the predicted uncertainty is too small.
Conversely, if χ2= 1, then the predicted uncertainty is too
large. We note that each predicted uncertainty is approximately
Gaussian. That is, the quantity s-v vi i ilos, los,

pred
los,
pred( ) for the ith

star is approximately Gaussian-distributed over the full sample.
We trained and tested the different network architectures on

a smaller data set than the one ultimately used in this work and
analyzed these architectures using the test statistics in
Equation (A1). We then calculated the test statistics for each
case, evaluating how sensitive the results are to various cuts
that span s < 30los

pred km s−1 to s < 150los
pred km s−1. The results

are provided in Table A1; all networks included in this table
utilize the logarithmic sample weights on the joint distribution
of vlos and ℓ.

Dropout is a technique in which randomly selected nodes are
ignored when the network is trained. When not using dropout
and including the proper motions in the input, the results are
not sensitive to cuts on the predicted uncertainty (i.e., the range
of the test statistic is small). This is very desirable because the
goodness-of-fit does not depend on the particular selection of
stars. However, the networks with dropout have a wide range in
the diagnostic metrics as cuts on slos

pred are applied. Using such

networks thus requires extra calibration to understand predic-
tions when departing from the nominal set of stars.
In the case without dropout, the test statistics and ranges for

the (ℓ, b, ϖ, μα, μδ, x, y, z) and (ℓ, b, ϖ, μα, μδ) configurations
are very similar, suggesting that including the redundant
(x, y, z) inputs does not aid the network.
In general, the (x, y, z) network does worse overall,

especially when using dropout. This provides a strong
indication that the network is learning more than just the bulk
stellar motion, because it uses more than just the location in the
Galaxy.
When dropout is included, the network does better on the

initial predictions (i.e., the R2 and KL divergence have better
scores than without dropout at one end of the range), but the
spread of the test statistics is still very large. Also, when
looking at χ2 for these models, we see that the estimate of the
uncertainty is less accurate, and the spread of these values is
much greater.
After running numerous tests on network architectures,

activation functions, input data, and weighting schemes, we
ultimately selected a network with 4 hidden layers with 30
nodes each and without dropout. We only include the 5D
coordinates ℓ, b, ϖ, μα, μδ as input because the extra variables
do not significantly help with the regression.
As described in the main text, Figure 1 highlights the

significance of including predicted uncertainty by comparing
the truth, predicted, and error-sampled distributions of vr, the
Galactocentric radial velocity. The test statistics described
above in Section B.2 were calculated for the vr histograms
containing all test stars. When sr

pred is included, the KL
divergence is 0.009, compared to 0.016 when sr

pred is not
included. Figure A2 shows the same Galactocentric radial
velocity histograms as in Figure 1, but selecting stars with
s < 30, 20, 10r

pred km s−1. The KL divergence between the
truth and error-sampled distributions decreases from 0.005
when s < 30r

pred km s−1, to 0.002 when s < 20r
pred km s−1,

to <0.001 when s < 10r
pred km s−1. Making increasingly

stronger cuts on uncertainties in a certain velocity component
can be used to obtain increasingly more accurate distributions
in that component. It is also possible to make an uncertainty cut
on two coordinates, for example vr and vf, in pursuit of a high-
purity sample of Enceladus-like stars.

Table A1
Network Architectures Studied in This Work, and the Range of Test Statistics
Obtained for Each Case when Restricting the Data Set by Making Various Cuts

that Span s < 30los
pred km s−1 to s < 150los

pred km s−1

Input Variables Dropout KL χ2 R2

ℓ, b, ϖ, μα, μδ, x,
y, z

No 0.008–0.010 0.699–0.749 0.720–0.746

ℓ, b, ϖ, μα, μδ No 0.008–0.010 0.685–0.739 0.704–0.721

x, y, z No 0.009–0.035 0.578–0.779 0.681–0.738

ℓ, b, ϖ, μα, μδ, x,
y, z

Yes 0.002–0.986 0.245–4.214 0.713–0.857

ℓ, b, ϖ, μα, μδ Yes 0.017–0.075 0.348–0.789 0.712–0.757

x, y, z Yes 0.008–0.096 0.314–3.040 0.651–0.818

Note. The test statistics are defined in Equation (A1). Our fiducial model is the
second row of the table.
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The predicted vr values are also evaluated using the χ2 and
R2 test statistics. The value of χ2 for the test set is 0.68 and
remains stable when cuts on sr

pred are made, from 0.679 when
s < 30r

pred km s−1, to 0.663 and 0.641 when s < 20r
pred and

10 km s−1, respectively. The value of R2 is 0.72. As cuts on
sr

pred are made, the value of R2 approaches 1.0, from 0.862
when s < 30r

pred km s−1, to 0.937 and 0.985 when s < 20r
pred

and 10 km s−1, respectively. This again highlights the useful-
ness of the network’s uncertainty prediction in attaining
accurate velocity predictions. The correlations for the set of
stars with s < 10r

pred km s−1 are shown in Figure C2, in which
the truth, predicted, and error-sampled distributions align very
well in vr. As expected, we see that the truth and error-sampled
distributions across all velocity pairs align better overall.

Appendix B
Transforming Velocities and Uncertainties

In this appendix, we derive the affine transformation that
maps proper motions and line-of-sight velocity to Galacto-
centric velocities. As a corollary, we also obtain the
transformation mapping velocity uncertainties between these
respective coordinate systems.

Consider a star with equatorial coordinate velocities, given
by a d d v d d, cos ,los[ ]  , where α and δ are R.A. and decl.,
respectively, vlos is the line-of-sight velocity and d is the
distance of the star from the Sun. The dot represents a
derivative with respect to time. With respect to previously
defined variables in the text, we have m a d=a d cos , m d=d d ,
and d= 1/ϖ. Following Bovy (2011), equatorial coordinate
velocities can be transformed into Galactic coordinates
velocities via

y y
y y

a d
d

a d
d

=
-

º
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where ψ; 78°.3433 is the Galactic parallactic angle.
Next, we want to convert velocities in Galactic coordinates

into Galactocentric coordinates. To do this, we begin by

writing down the relation between Cartesian coordinates in
each coordinate system. Consider a star with Cartesian
Galactocentric coordinates rGC; its coordinates rg in Cartesian
Galactic coordinates is given by

= --r r R , B2g
1

GC ,GCM ( ) ( ) 

where = R x z, 0,,GC ,GC ,GC( )   is the Cartesian Galacto-
centric coordinates of the Sun (we adopt the standard
convention that the Sun lies in the xz-plane in these
coordinates, with the Galactic plane lying in the xy-plane).
The matrix Me rotates the Galactic coordinate axes such that
they become parallel to the Galactocentric coordinate axes, and
is written explicitly as

b b

b b
=

-
-

cos 0 sin
0 1 0

sin 0 cos
, B31M

⎛

⎝
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⎞

⎠
⎟ ( )

where b º z xarctan ,GC ,GC( )  . Taking the derivative of the
coordinates, we find that

=r

v
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Figure A2. The lines depicted in this figure are the same as those in Figure 1. However, this figure specifically focuses on the Galactocentric radial velocity vr, to show
that the distribution is unbiased as more restrictive cuts on sr

pred are made.
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with

f f
f f

q q

q q
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Finally, taking the derivative of Equation (B2) and using the
expressions derived above, we arrive at the following
transformation between Galactic and Galactocentric velocities:

= +f

q

v
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v

v
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where we have defined M=M1M2MeM3M4, while ve,GC is the
Cartesian velocity of the Sun in the Galactocentric frame.
Combining this with Equation (B1), we obtain the full
transformation mapping equatorial coordinate velocities to
Galactocentric coordinate velocities:

a d
d

= +f

q

v
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v
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This result has been verified by comparison with coordinate
transformations implemented by Astropy (Robitaille et al.
2013).
We now turn our attention to the transformation of

uncertainties. Assuming Gaussian uncertainties, the differential
probability P(vtrue; vm) that the true velocity of a star is
vtrue(vlos, μα, μδ) given a measured velocity vm(vlos, μα, μδ) is
proportional to

µ - - --v v v v v vP ; exp
1

2
,

B10

true m true m
1

true mS⎡
⎣

⎤
⎦

( ) ( ) ( )

( )

where S(vlos, μα, μδ) is the covariance matrix in the basis of
equatorial coordinate velocities. Since the differential prob-
ability is invariant under coordinate transformations, we can
see immediately that the covariance matrix in the basis of
Galactocentric velocities can be obtained by

m m=f q a d
- -v v v v, , , , . B11r los

1 1S MP S P M( ) · ( ) · ( )

Appendix C
Supplementary Figures

In this appendix, we provide some figures that supplement
the discussion in the main text.
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Figure C1. Corner plot for all stars in the test set for the following quantities: true line-of-sight velocity (vlos
true), predicted line-of-sight velocity (vlos

pred), predicted
uncertainty on light-of-sight velocity (slos

pred), Galactic longitude and latitude (ℓ,b), inverse parallax (1/ϖ), and proper motions (μα,δ).
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